Automated Extraction of Research Software
Installation Instructions from README files:
An Initial Analysis

1,2[0000—0002—9994—1462
[I, Oscar
1[0000—0003—0454—71454]

Carlos Utrilla Guerrero
Corcho!10000-0002-9260-0753] " 3d Daniel Garijo

! Ontology Engineering Group, Universidad Politécnica de Madrid
carlos.utrilla.guerrero@alumnos.upm.es, {dgarijo,ocorcho }@upm.es
2 Research Data and Software (RDS) Department in Delft University of Technology

Abstract. Research Software code projects are typically described with
a README files, which often contains the steps to set up, test and
run the code contained in them. Installation instructions are written
in a human-readable manner and therefore are difficult to interpret by
intelligent assistants designed to help other researchers setting up a
code repository. In this paper we explore this gap by assessing whether
Large Language Models (LLMs) are able to extract installation instruc-
tion plans from README files. In particular, we define a methodol-
ogy to extract alternate installation plans, an evaluation framework to
assess the effectiveness of each result and an initial quantitative eval-
uation based on state of the art LLM models (1lama-2-70b-chat and
Mixtral-8x7b-Instruct-v0.1). Our results show that while LLMs are a
promising approach for finding installation instructions, they present im-
portant limitations when these instructions are not sequential or manda-
tory.

Keywords: Research/Scientific Knowledge Graphs - Natural Scientific
Language Processing - Information Extraction

1 Introduction

Research Software [5] is becoming increasingly recognized as a means to support
the results described in scientific publications. Researchers typically document
their software project in code repositories, using README files (i.e., readme .md)
with instructions on how to install, setup and run their software tools. However,
software documentation is usually described in natural language, which makes
it challenging to automatically verify whether the installation steps required to
make the software project work are accurate or not. While seemingly arbitrary, it
can be challenging for researchers to follow instructions from different document
standards and make sure they work harmonically and consistently.

In this work we aim to address these issues by exploring and assessing the
abilities of state of the art Large Language Models (LLMs) to extract installation
methods (Plans) and their corresponding instructions (Steps) from README

2 Carlos Utrilla Guerrero, Oscar Corcho, and Daniel Garijo

files. LLMs such as GPT-4 [21] and MISTRAL [12] have been firmly established
as state of the art approaches in various natural scientific language process-
ing (NSLP) tasks related to knowledge extraction from human-like scientific
sources such as software documentation from public sharing code hosting ser-
vices. LLMs have also shown promise in following instructions [26] and learning
to use tools [25]. However, existing research in the field is still quite novel.

Our goal in this work is twofold: given a README file, we aim to 1) detect all
the available Plans (e.g., installation methods for different platforms or operative
systems) and, 2) for each Plan, detect what steps are required to install a software
project, as annotated by the authors. Our contributions® include:

1. PlanStep, a methodology to extract structured installation instructions from
README files;

2. An evaluation framework to assess the ability of LLMs to capture installation
instructions, both in terms of Plans and Steps;

3. An annotated corpus of 33 research software projects with their respective
installation plans and steps.

We implement our approach by following our methodology to evaluate two
state of the art LLMs (LLaMA-2 [31] and (MIXTRAL [12]) on both installation
instruction tasks with our corpus of annotated projects.

The reminder of the paper is structured as follows. Section 2 discusses rele-
vant efforts to ours, while Section 3 describes our approach. Section 4 describes
our experimental setup and early results, Section 5 addresses our limitations and
Section 6 concludes the paper.

2 Related work

The goal of extracting relevant information from scientific software documenta-
tion forms the foundation of complex knowledge extraction with Natural Lan-
guage Processing (NLP) models, all of which use machine-learning-based (ML)
approaches as basic building blocks [10].

Extracting action sequences from public platforms (e.g. Github, StackOver-
flow) or README files is an instance of a complex planning tasks class of
problems. Remarkably, the field of automated software engineering has rapidly
developed novel approaches using LLMs on important problems, for instance, in-
tegrating tool documentation [23], detecting action sequence from manuals [18],
testing software [39], traceability and generating software specifications [42].

LLMs such as GPT-4 and others follow an architecture using encoder-decoder
structure [37], and have been shown to perform well on simple-plans extraction
and procedure mining [24], as well as mining to support scientific material dis-
covery [2], [38]. The fundamental constraint of multi-step reasoning abilities,
however, remains [35], [33], [19].

3 The code and corpus are publicly available at: https://github.com/carlosug/
READMEtoP-PLAN/ [44]

Title Suppressed Due to Excessive Length 3

In the Knowledge Extraction (KE) field, foundational work builds on general-
propose metadata extractor and domain-specific have been successfully applied
in a variety of tasks including scientific mentions [6], software metadata ex-
traction [32, 17], and scientific knowledge graph creation [15]. The automated
planning community has also continued to push the boundaries of approaches
that learn how to extract plans [20] and action sequences from text in domain-
specific [13], [4], [8], and general domains (i.e., [18], [35]). Recently, [43], [22]
and [26] have made an impressive advance in the feasibility of connecting LLMs
with massive APIs documentation. However, in most cases installation instruc-
tions, specifically for plans and steps are absent from the corresponding studies.

Recent work [9] [11] has achieved significant improvements in multi-step
extraction tasks by using different prompt strategies [36], [34]. In these prompt
strategies, the number of operations required to extract entities or events from
text grows. This makes it more difficult to learn semantics between the inputs
as the instructions are not self-actionable, especially when several steps are in-
volved. Early approaches also discussed the missing descriptions in generated
plans [30], and composed learning a mapping from natural language instructions
to sequences of actions for planning proposes [27]. In this experiment, this is
reduced to a number of formal definitions, albeit at cost of reduced effective
resolution due to natural language problem, an effect we plan to counteract with
improved prompt variations using formal representation [7, 18] as described in
Section 3.6.

To the best of our knowledge, this is the first approach relying entirely on
LLMs to extract installation instructions from research software documentation.
We focus on eliciting multi-step reasoning by LLMs in a zero-shot configuration.
We ask LLMs to extract both the installation plans and step instructions, ef-
fectively decomposing the complex task of installing research software into two
kinds of sub-problems: 1) extraction of installation methods to capture various
ways of installing research software as Plan(s) from unstructured documenta-
tion, and 2) extraction of installation instructions to identify sequential actions
for each method as Step(s) (i.e., Step(s) per Plan)

3 PlanStep: Extracting Installation Instructions from
README Files

In this section we present PlanStep, our proposed approach designed to address
limitations briefly outlined in Section 2. First, we describe the core goal and
problem we attempt to solve. Next, we describe the PlanStep architecture and
building blocks. Finally, we describe the data generation and corpus.

3.1 Classical Planning: Software Installation Instructions

The central objective of planning tasks for an intelligent assistant is to au-
tonomously detect the sequence of steps to execute in order to accomplish a

4 Carlos Utrilla Guerrero, Oscar Corcho, and Daniel Garijo

Input (README.md) PlanStep G ion (Tool: Pla
to-step)
Installation
Install fron{{pip) Installation Plans-detection

The key dependencies of DIG: Dive into Graphs are PyTorch (1 : ag: 2 Output (PlanStep json)
1. Install PyTorch >=1.10.0)
{

$ python -c "import torch; print(torch._version_)"
>>> 1.10.0

2. Install PyG (>=2.0.0) P

$ python —c "import torch_geometric; print(torch_geo
>>> 2.0.0

3. Install DIG: Dive into Graphs.
Install fron{ source

If you want to try the latest features that have not been released yet

“: “Package Manager”,
stall PyTorch",
stall PyG",

v v

. Clone repo and
Install Pytorch Stepl install module

Install PyG J

repository and install module",
“git clone//cd//pip install .*

Install DIG

Action sequence-extraction

git clone https://github. con/divelab/DIG. git
cd 016

Task - LLMs to simplify the multi-plan selection: (1) the
installation Plans, (2) installation instructions steps

pip install .

Fig.1: An example of our experimental approach for PlanStep. A research soft-
ware project includes two installation methods: a simple installation plan i.e.
Package Manager and a complex one (i.e. Source). Each installation method
has a different number of steps and configuration details.

task. In classical planning domain, this procedure relies on a formal represen-
tation of the planning domain and the problem instance, encompassing actions,
and their desired goals [9].

In our case, a problem instance within the installation instruction activity
is illustrated in Figure 1. This instance features research software with two al-
ternate plans for installation available in the README: "Install from pip"
and "Install from source". Each plan is defined fairly briefly, but detailed in
the corresponding headers of the markdown file. Subsequently, installation steps
outlining the requirements for the setup and execution, are displayed. For in-
stance, the Plan 1 (categorised as "Package Manager") includes Steps contains
three steps (or actions). Plan 2, classified as "Source”, involves one step. If we
ask an intelligent assistant to autonomously decide on what sequence of steps
to execute this software, we might use an LLM to mine its documentation and
break down the installation objective into smaller sub-tasks: first detecting the
requirements, then identifying the plan available, and finally execute the neces-
sary commands. Many installation procedures may not need planning. For ex-
ample, the "Package Manager" plan usually entails a one-step with code block,
showing exactly what others need to type into their install software from a com-
mand line. However, in complex installation plans such as "from Container"
(i.e., Docker compose-up, create virtual environments, configure public keys,
etc,..) planning allows the assistant to decide dynamically what steps to take. If
we want an assistant to consider a software component and install it following its
instructions, the task may be decomposed into different steps: 1) detect alternate
plans which are available as installation methods and, 2) for each installation
method, detect its corresponding sequence of steps.

Title Suppressed Due to Excessive Length 5

3.2 PlanStep Methodology

Consistency in the extracted installation methods across different software ver-
sions is key for researchers to accurately reproduce experiments, regardless of
when and how to access a README file. Therefore, our method aims to consis-
tently connect human-readable instructions to installation Plans and Steps.

PlanStep receives as input the entire README file, and aims to extract
action sequences from text in natural language, representing tasks with two
distinct levels of granularity: 1) alternate installation methods (e.g., installation
instructions for a separate operative system, installation instructions from source
code, etc.), and 2) for each installation method, the sequence of steps associated
with it.

Figure 2 depicts the methodology we followed for developing PlanStep, which
comprises five stages: the first stage is to collect a set of research software for our
study. Second, for each software component in the corpus, we retrieve the link
for the code repository, if present, and extract the installation instruction text
from its README file. Then, we inspect the original README and represent
the alternate installation plans for each README in a structured format. Af-
terwards, for each entry, we prompt Large Language Models in order to detect
plans and their corresponding steps. Finally, we design an evaluation framework
to assess the quality of our results.

We limit ourselves to tasks that can be characterized as research software
installation activities and involve a reasonable or necessary order of steps to be
executed, such as manually setting up a software project component, installing
additional libraries using package managers, running from isolated containers,
or building from source.

1. Paper With 2. PlanStep Corpus Creation 3. PlanStep Ground Truth Extraction 5. Computation of Accuracy Metrics
Code Collection

L

i =
<
- TsoN /©
Multi-plan and = ~
Steps installation
instruction |

4. PlanStep Prompting

HEEE

ontent: your task is to identify and list the uniq

NLP-tasks evaluation

RS

Fig.2: Overview of the methodology followed to collect research software and
design an evaluation framework to assess PlanStep

6 Carlos Utrilla Guerrero, Oscar Corcho, and Daniel Garijo

3.3 PlanStep Corpus creation

To systematically evaluate LLM performance on extracting installation plans
with steps across varying setups, complexity, and domains, we started by select-
ing a corpus of research papers with their code* implementations from diverse
Machine Learning (ML) areas and across different task categories. For this eval-
uation, we excluded, however, papers with no link to their public repository
available on Github or Gitlab.

All annotations were made by the authors of this paper separately, and sub-
sequently compared until consensus was achieved. We discussed each entry to
determine the final set of steps and plans for each research software. Very rarely,
agreement on specific properties remained elusive even after evaluation, and
these cases were manually resolved through additional discussion. In summary,
our corpus has 33 fully active and maintained open-source research software
projects.

3.4 Ground Truth Extraction for PlanStep

The 33 research software projects in our corpus were selected as study subjects.
In a manual co-annotation process, we tasked annotators with identifying both
the installation plans and steps associated with each project’s README. The
installation plans varied in complexity and description style, with some, like from
pip typically comprising a single-sentence step (excluding requirements), while
others, such as ‘from source,” included multiple steps, considering various user
environments and requirements. Additionally, we defined specific properties for
each plan type, taking into account technology-specific support, such as package
repositories like npm or PyPI. Further elaboration on these definitions is provided
below:

A. Plan: represents the concept of an installation method available in a README,
which is composed of steps, that must be executed in a given order. For instance,

a “Source” is an instance of a Plan concept. A README can include one or
multiple Plans in the installation instructions section. A brief explanation of the
plans and examples is provided in Table 1.

B. Step: represents the concept of a planned action as part of a ‘Plan’ to be
executed sequentially. It may consist of either a single action or a group of ac-
tions. We define a ‘Step’ based on the original README text, where consecutive
actions mentioned together are annotated as one step. For instance, Listing 1.4
illustrates this concept with a simple JSON example. In the example, the au-
thors’ original text describes the first step (Stepl) as ‘Clone this repository
and install requirements,’ which encompasses two distinct actions: ‘Clone

4 we made use of Paper with Code platform: https://paperswithcode.com/ as it links

together articles with software repository

Title Suppressed Due to Excessive Length 7

Plan Type Short definition Examples
Binary Installing by directly downloading|GitHub releases
and running precompiled files.
Container Installing by packaging software|Docker, Podman, Singularity

components and its dependencies
using containerization.

Downloading and installing from
official repositories.

Package Manager

Conda, Homebrew, Pip, npm

Installing by manually compil-
ing original code into machine-

Source

Clone from repository, create vir-
tual environment

readable binaries.

Table 1: Definition of plan types and examples found in our corpus

this repository’ and ‘install requirements.‘. The second step (Step2)
simply involves one action ‘iRun the container with docker - compose’

{

nign: manw,

"name": "utiasASRL/steam_icp",
"https://raw.githubusercontent.com/utiasASRL/steam_icp/master/README.

"plans": [

"Container",
[

"text":

"seq_order": 1

"is_optional":

>

"Clone this repository and install requirements.",

’false

"text": "Run the container with docker-compose",
"seq_order": 2

"is_optional": false

1,
"README_instructions": "## Installation Clone this repository and its
]n

submodules.[....

Listing 1.1: JSON snippet showing Step 1 including two actions (Steps) “clone”
and “install”

We manually examined cases where annotators disagreed. For example, sig-
nificant confusion arose from overly complicated instructions detected in README
files, particularly in cases where installation instructions were included in the
markdown subheadings, such as #Stepl: Download the files, followed by a
paragraph like Stepl: Download the files with the following commands.
We resolved these conflicts by removing the content of these subheadings and
providing detailed annotations for the subsequent paragraph.

Next, we faced challenges when describing plan types and steps across sup-
ported technologies. For instance, while instructions for the package manager
plan typically involve running pip install, the TorchCP library offered alterna-
tive installation methods like the TestPyPI server. To resolve this, we created a
distinct plan named "package manager” and specified TestPyPI as the associated
technology property.

8 Carlos Utrilla Guerrero, Oscar Corcho, and Daniel Garijo

Lastly, conflicts emerged concerning the inclusion of installation require-
ments. Some cases listed requirements within the installation instructions, while
others deposited them in a separate section, traditionally before the installation
instruction content begins. We decided to include these software requirements
specifications only when they were part of the installation instruction section
content.

3.5 Distribution of the installation instructions of README files

Table 2 shows descriptive statistics of the selected research software projects
based on our annotations. We reported four distinct installation Plans: binary,
source, package manager and container. Notably, over half of our corpus exclu-
sively relied on the “source” method for installing research software via README
files. While “from source” was the most prevalent standalone method (66%),
container and package manager plans were observed in only two and one cases,
respectively. As anticipated, the “binary” method was not reported at all, indi-
cating its rarity on open source general repositories such as Github. Unsurpris-
ingly, the most popular research software tools e.g., tensorflow or langchain
incorporated the instructions to install with package manager, typically consist-
ing of up to two steps. The Plans vary widely in their number of steps. For
example, “simple” Plans e.g., Package Manager and Container consists of 2-3
steps, while “complex” featured 10 (see Table 2 col (Total Steps)). This diversity
in the number of steps impacts installation Plan length in two ways: 1) more
steps introduce more complexity, and 2) additional instructions can serve as
obstacles, needing further action for installation.

Approximately 44% of our samples offered multiple plans or combinations for
software installation, suggesting a diverse landscape of installation approaches.
Further analysis of these combinations revealed redundant information across
many instruction sections, highlighting potential challenges for LLMs in accu-
rately identifying plans and steps. For instance, the maximum length of installa-
tion instructions for the source plan reached approximately 1,765 tokens, under-
scoring the complexity and variability of these instructions. This diversity not
only reflects the varied nature of installation plans but also poses challenges for
LLMs in accurately parsing and selecting relevant instructions, potentially lead-
ing to errors in plan and step detection. The total average length of installation
instructions across all subjects was 130.79 tokens.®

3.6 PlanStep prompting

This section introduces our PlanStep prompt templates and its explanations for
such tasks, as depicted in PROMPT101 and PROMPT201.

5 Additional details about the corpus and its data exploration are available in our
GitHub repository: https://github.com/carlosug/READMEtoP-PLAN/blob/main/
RESULTS/corpus-explore-data.ipynb

Title Suppressed Due to Excessive Length 9

Plan Types(Combinations) Counts(Prop. %) Max. Total Steps Max.Tokensinstall_.md

Source 22 (66.66%) 10 253
Container 2 (6.06%) 3 158
Package Manager 1 (3.03%) 2 102
Binary - (-%) - -
Mult. Binary 1 (3.03%) 1 108
Mult. Source 1 (3.03%) 3 303
Mult. Package Manager 3 (9.09%) 3 348
Package Manager & Source 1 (3.03%) 3 217
Package Manager & Binary 1 (3.03%) 2 187
Container & Source 1 (3.03%) 9 725
ALL 33 (100%)

Table 2: Statistics of plan and steps in the corpus. We report the number and average
of “ids” per plan type, multiple plans, maximum total steps in a plan, and the length
of installation instructions with parameters (TokenInstall.)

We directly instruct the LLMs with prompt design to describe the installation
methods (Plan) and their corresponding installation instructions (Step) for each
README. That is, the usual zero-shot prompt is set to ask LLM two tasks,
Plan and Step, respectively. Since the LLM contains no information about these
terms, we describe the terms and their respective meanings next to the task of the
prompt. Consequently, the prompts used in our experiment can be categorised
as follows:

Plan prompting: This task is about extracting the installation method as
Plans described in a README. We named it the PROMPT101, and it contains
the four unique Plans and its definitions.

Step prompting: This task asks for detecting the installation instructions as
Steps found in a README. We named it the PROMPT201 and it requests a
list of Steps for a given installation plan.

4 Experiments

In order to evaluate the effectiveness of our approach, we conducted experiments
to test the ability of LLMs to capture plans and the sequence of tasks required
to install different software.

4.1 Experimental Setup

We employed Mixtral-8x7b-Instruct-v0.1 [12] and LLaMA2-70b-chat [31],
which are two of the most widely-used open-source LLMs with public access. ©
Both models demonstrate moderately good instruction-following capabilities [43].
Throughout our experiments, we maintained a temperature of 0 (argmax sam-
pling) to ensure reproducible results. The ground-truth annotations and study

5 Accessible through a public Python APT Library: https://pypi.org/project/groq/

10

Carlos Utrilla Guerrero, Oscar Corcho, and Daniel Garijo

Plan Task (PROMPT101)

Plan Task (PROMPT101):

Given the following README, your task is to identify and list the unique
installation methods. These methods are plans containing instructions for in-
stalling research software, to be executed in a specific order and under defined
conditions. Exclude code commands. Be concise.

1. Binary: Install via download and run precompiled files. For example,
GitHub releases.

2. Container: Install the software and its dependencies via isolated environ-
ments. For example, Docker, Podman, or Singularity.

3. Package Manager: Install via tools and indexed repositories. For example,
Conda, Homebrew, or Pip.

4. Source: Run via command-line, manage and install dependencies, compile
source code to a target machine, build, and run. For example, download
raw source code, clone repositories, and install dependencies from code
repositories.

Step Task (PROMPT201)

Step Task (PROMPT201):

Given the following README, extract the installation instructions for each
installation method. These methods are plans containing instructions as steps
for installing research software, to be executed in a sequential order, and under
defined conditions. Exclude code commands. Be concise.

1. Binary:[....] 4. Source®.

% We insert the same definitions as states in PROMPT101

Title Suppressed Due to Excessive Length 11

LLM Zero-shot

Precision Recall F1 score
llama-2-7b-chat 0.4615 0.8333 0.5941

Mixtral-8x7b-Instruct-v0.1 0.4068 0.6667 0.5053
Table 3: Results obtained on the Plan detection task. The best result is boldfaced.

subjects used to compare LLM’s predicted responses in the experiments were
those presented in Section 3.3 and Section 3.4.

4.2 Evaluation Metrics

To assess our proposed PlanStep method, we employed the following metrics to
assess the performance of LLMs on NLP-oriented tasks (as proposed by [3]):

— F1l-scores: these scores are computed to compare the performance of LLMs
in extracting plans with the ground truth annotations.

— Recall-Oriented Understudy for Gisting Evaluation (ROUGE) [16]:
we report ROUGE-1 (R1), ROUGE-2 (R2), and ROUGE-L to evaluate the
quality of of the results by comparing the LLMs extracted steps with the
ground-truth dataset.

4.3 Evaluation Results

The results of our evaluation are shown in Table 3 and Table 4 for Plan and
Step tasks respectively. We present the performance of open-source LLM on
two task with the standard (PROMPT101 and PROMPT201) zero-shot prompt
templates.

Plan-task: To evaluate the effectiveness of the LLMs, we tested the models in
different ways, measuring the change in performance on plan task by comparing
their generated response plans with ground truth annotations. We used zero-
shot approach. Table 3 summarises our results on plan tasks, and compares
both LLMs’ performance.

Both LLMs in zero-shot prompting achieved roughly a performance of more
than 50% F1-score. LLaMA-2 exhibits superior performance over MIXTRAL in
plan task with the LLaMA-2 outperforming the best of our experiment by 9%
compared to MIXTRAL.

Step-task: We evaluated the performance with three metrics to measure the
quality in analyzing step-task. Table 4 shows the performance of the models
(e.g., MIXTRAL and LlaMA).

12 Carlos Utrilla Guerrero, Oscar Corcho, and Daniel Garijo

LLM Zero-shot
R11 R21T RL
1llama-2-7b-chat 29.48 18.88 27.75

Mixtral-8x7b-Instruct-v0.1 46.42 37.53 45.27

Table 4: Evaluation results for detecting task steps for each plan. The scores (%) for
Rouge-1 (R1), Rouge-2 (R2), and Rouge-L (RL) for the generated step descriptions
compare our results against the ground truth steps.

We further observe that while MIXTRAL consistently outperforms LLaMA-2
across all ROUGE scores (R1, R2, and RL) in the Step-task, achieving approxi-
mately 15% higher scores, both models demonstrate similarly poor performance
in adhering to optimal step orderings, with scores ranging from 0.46 to 0.29.
These findings suggest that both models struggle with the task of sequentially
ordering steps in a installation Plan.

4.4 Analysis

Results of Plan-Step task. Experimental results indicate that both LLMs
scored an average of around 55% F1-score for plan-task, and 37% ROUGE scores
for step-task. This suggest that LLMs intrinsically vary in their abilities to solve
complex tasks and reason efficiently, which are crucial for extracting plans and
detecting steps more accurately.

Error Analysis. We performed a detailed analysis on specific cases where
the detection performance of the LLMs differ significantly from the annotations
to understand why certain steps were falsely detected. We manually studied all
errors made by LLMs and classify them into four categories. Table 57 shows the
count of each error type on Plan-Step tasks: E1: means models call Plans and
Steps installation instructions wrongly by reusing prompt input e.g. ,"Binary":
["Step 1: Definition Prompt."; E2: indicates cases where models include
notes and code commands in their responses, resulting in falsely imputed new
steps to a wrong Plan; E3 refers to situations where models extract steps cor-
rectly but assign them to the wrong Plan Types due to a mixture of verbs
or words associated with the different methods, and lack of context e.g., if the
word "pip" appears, the LLM directly assigns the corresponding step to directly
“Package Manager”®; O represents errors in an unclassified category (e.g., sum-
marizing steps, incorporating steps from a previous README, splits steps or
invented sentences as hallucinations). Further tables, plots and error responses
examples can be found in the Appendix.

" the raw material we used to calculate the counts are listed in our repository [44]:
qualitative_error_analysis.md

8 install python packages from a git repository has been classified as step of “Source”
plan”

Title Suppressed Due to Excessive Length 13

Our results suggest that different Plans exhibit a wide diversity in error types:
simple installation tasks with few actions (“Package” and “Binary”) primarily
encounter issues related to E3; notably, “Source” faces more issues with E1, indi-
cating a significant impact of prompts on model performance. Across Plan types,
we observe nearly identical results suggesting a possible explanation: concise in-
structions in README files may significantly reduce these incorrect behaviors,
leading to successful execution of installation steps. Additional experiments are
needed to assess this hypothesis.

LLAMA MISTRAL

Error Type: E1E2E3OE1E2 E3 O
Binary 0 010O0O 0 1
Source 154 810 6 4 2

Package Manager 0 0 1 0 1 O 4 0
Container 01 1100 1 0

Table 5: Counts of PlanStep on different Plans. E1: wrong Plans category but
correct Steps; E2: wrong order of steps but correct number; E3: wrong sequential
order; E4: unanswerable with API; O: others

Effect of Prompts. Figure 3 shows an overview of the steps detected by
each LLM. Both MIXTRAL and LLaMA-2 perform on par (score: 10 vs. 7) in
detecting steps correctly and incorrectly (score: 8 vs. 9). However, the latter ex-
hibits slightly worse performance compared to the former in over-detection cases
(score: 4 vs. 9), which is likely due to the ability of the model to insert prompts
information into the responses. The definitions seem to inadvertently lead LLMs
to incorrectly detect plans and steps by copying extra steps added solely to
the prompt definition i.e., E1: call non-existing Plans by adding prompt’s input.
This observation suggests the need for additional testing with zero-shot prompts
for different installation plans (and reduce the definitions used in the prompt).
More advanced zero-shot prompting methods [40] as well as chain-of-thought
prompt strategies [41] to effectively guide LLMs in translating steps into smaller
sub-tasks will be investigated in our future work.

Few-shot prompt strategies such as LLM4PDDL [28] together with chain-of-
thought prompts, may provide an expressive and extensible vocabulary repre-
sentation for semantically writing and describing plans to machines. We plan to
investigate this approach further in future work.

5 Discussion

This work aims to automatically extract all available installation information
from research software documentation. Our experiments demonstrate that while

14 Carlos Utrilla Guerrero, Oscar Corcho, and Daniel Garijo

— JaLLAMA
JOMIXTRAL

10

¢
1 1
perfect under-d over-d incorrect

Fig.3: Total count of steps detected for each Plan per LLM, in comparison
with the ground truth. If a LLM detected fewer steps than the annotations, we
consider it under-detection (under-d), while if it detected more, it indicate over-
detection (over-d). A correct step detection ((perfect) indicates the number
of steps agree with those in the ground truth. The (incorrect) detection counts
steps in a plan that are falsely detected i.e., the LLM model detected a plan
with steps that are not part of our annotations)

LLMs show promising results, there is substantial room for improvement. During
our analysis, we prioritized extracting concise plans and steps of software instal-
lation text using two LLMs. LlaMA-2 generally demonstrates the fewest errors
in plan-task, indicating a higher accuracy in predicting the installation methods.
The LlaMA-2, however,shows a progressively higher number of errors when deal-
ing with steps. MIXTRAL exhibits the opposite. We observe that MIXTRAL
outputs are significantly more truthful than LlaMA-2 with less randomness and
creativity in their responses. Notably, the more steps involved, the more fre-
quent errors across both models, indicating the challenges faced in accurately
predicting parameters for tools.

Moreover, the reliance on LLM for the evaluation of plans and step instruc-
tions introduce new challenges. As LLM’s ability in planning tasks in under
scientific scrutiny [29], [14], there is a crucial need for further validation and
fine-tuning of its capabilities in this specific context.

We are in our initial phase of the experimental research project, and con-
sequently, components from PlanStep approach will certainly be updated and
revised. First, we believe that designing combinations of few-shot prompt stan-
dards with the addition of strict formal language will improve the ability of
LLMs to detect plans, and their instructions for installation consistently. Second,
additional evaluations are needed to validate the insights obtained in our exper-
iments. For plan tasks, our approach may be compared with baseline models,
measuring the change in performance. Third, increasing the size of our annotated
corpus is notably advantageous, providing a broader exploration of alternative
semantic approaches formal representations. However, the manual nature of our
instruction writing process limits our capacity to scale this work significantly.

Title Suppressed Due to Excessive Length 15

6 Conclusion and Future Work

In this work we presented an evaluation framework and initial experimentation
for using LLMs as a means to extract alternate research software installation
plans and their corresponding instructions. Our approach involves equipping the
LLM with essential documentation tailored to installation instructions, enabling
them to refine their accuracy when using the README and improve their per-
formance in automating the detection of installation instructions. As part of
our evaluation framework we have proposed an annotated corpus, which collects
different research software with their installation instructions, to systematically
evaluate LLMs in extracting tasks, including plans and steps belonging to those
plans.

Our experiments show promising results for both plan detection and step
detection, although we are still a long way from our goal. We are currently
extending our approach in different directions. First, we are augmenting the
annotation corpus to consider additional README files of increasing complexity
in order to create a comprehensive benchmark, distinguishing READMES of
different complexity. Second, we aim to improve the prompting strategies used
in our approach, including few-shot examples to better equip the model with the
goal of each PlanStep task. Our central goal is to create an assistant that aids
in installing research software while addressing issues that may currently exist
in the installation instructions. Investigating further the addition of executable
instructions in formalised and machine-readable language from classical planning
research community i.e., Domain Definition Language (PDDL) [1] and beyond
i.e., P-Plan Ontology [7] is another research goals of ours.

Acknowledgements

This work is supported by the Madrid Government (Comunidad de Madrid
- Spain) under the Multiannual Agreement with Universidad Politécnica de
Madrid in the line Support for R&D projects for Beatriz Galindo researchers, in
the context of the VPRICIT, and through the call Research Grants for Young
Investigators from Universidad Politécnica de Madrid. The authors would also
like to acknowledge European Union’s Horizon Europe Programme under GA
101129744 — EVERSE — HORIZON-INFRA-2023-EOSC-01-02.

References

[1] Constructions Aeronautiques et al. “Pddl— the planning domain definition
language”. In: Technical Report, Tech. Rep. (1998).

[2] Microsoft Research Al4Science and Microsoft Azure Quantum. “The im-
pact of large language models on scientific discovery: a preliminary study
using gpt-47. In: arXiv:2311.07561 (2023).

[3] Kathrin Blagec et al. “A global analysis of metrics used for measuring
performance in natural language processing”. In: arXiv:2204.11574 (2022).

16

Carlos Utrilla Guerrero, Oscar Corcho, and Daniel Garijo

Daniil A. Boiko et al. “Autonomous chemical research with large language
models”. In: Nature 624.7992 (Dec. 2023). Number: 7992 Publisher: Nature
Publishing Group, pp. 570-578. 1SSN: 1476-4687. DOI: 10.1038/s41586~-
023-06792-0. URL: https://www.nature.com/articles/s41586-023-
06792-0 (visited on 12/31/2023).

Neil P. Chue Hong et al. FAIR Principles for Research Software (FAIR4RS
Principles). Version 1.0. June 2022. DOI: 10.15497/RDA00068.

Caifan Du et al. “Softcite dataset: A dataset of software mentions in
biomedical and economic research publications”. In: Journal of the As-
sociation for Information Science and Technology 72.7 (2021), 870-884.
ISSN: 2330-1635. DOI: 10.1002/asi.24454.

Daniel Garijo and Yolanda Gil. “Augmenting PROV with Plans in P-
PLAN: Scientific Processes as Linked Data”. In: Second International Work-
shop on Linked Science: Tackling Big Data (LISC), held in conjunction
with the International Semantic Web Conference (ISWC). Boston, MA,
2012.

Eran Hirsch, Guy Uziel, and Ateret Anaby-Tavor. “What’s the Plan?
Evaluating and Developing Planning-Aware Techniques for LLMs”. In:
arXiv:2402.11489 (2024).

Eran Hirsch, Guy Uziel, and Ateret Anaby-Tavor. What’s the Plan? Evalu-
ating and Developing Planning-Aware Techniques for LLMs. Feb. 18, 2024.
arXiv: 2402.11489[cs]. URL: http://arxiv.org/abs/2402.11489 (vis-
ited on 03/14/2024).

Xinyi Hou et al. Large Language Models for Software Engineering: A Sys-
tematic Literature Review. Aug. 2023. URL: http://arxiv.org/abs/
2308.10620 (visited on 09/05/2023).

Xu Huang et al. “Understanding the planning of LLM agents: A survey”.
In: arXiv:2402.02716 (2024).

Albert Q Jiang et al. “Mixtral of experts”. In: arXiv:2401.04088 (2024).
Qiao Jin et al. GeneGPT: Augmenting Large Language Models with Do-
main Tools for Improved Access to Biomedical Information. May 16, 2023.
arXiv: 2304 .09667 [cs, q-bio]. URL: http://arxiv.org/abs/2304.
09667 (visited on 03/14/2024).

Subbarao Kambhampati et al. “LLMs Can’t Plan, But Can Help Planning
in LLM-Modulo Frameworks”. In: arXiw:2402.01817 (2024).

Aidan Kelley and Daniel Garijo. “A Framework for Creating Knowledge
Graphs of Scientific Software Metadata”. In: Quantitative Science Studies
(Nov. 2021), pp. 1-37. 1SsN: 2641-3337. DOI: 10.1162/qgss_a_00167.
Chin-Yew Lin. “ROUGE: A Package for Automatic Evaluation of Sum-
maries”. In: Text Summarization Branches Out. Barcelona, Spain: Asso-
ciation for Computational Linguistics, July 2004, pp. 74-81. URL: https:
//www.aclweb.org/anthology/W04-1013.

A. Mao, D. Garijo, and S. Fakhraei. “SoMEF: A Framework for Captur-
ing Scientific Software Metadata from its Documentation”. In: 2019 IEEFE

[26]

[27]

(28]

[29]

[30]

Title Suppressed Due to Excessive Length 17

International Conference on Big Data (Big Data). 2019, pp. 3032-3037.
DOI: 10.1109/BigData47090.2019.9006447.

Shivam Miglani and Neil Yorke-Smith. “NLtoPDDL: One-Shot Learning
of PDDL Models from Natural Language Process Manuals”. In: ICAPS’20
Workshop on Knowledge Engineering for Planning and Scheduling (KEPS’20)
(2020).

Philipp Mondorf and Barbara Plank. “Beyond Accuracy: Evaluating the
Reasoning Behavior of Large Language Models—A Survey”. In: arXiv:2404.01869
(2024).

Alberto Olmo, Sarath Sreedharan, and Subbarao Kambhampati. GPTS-
to-plan: Extracting plans from text using GPT-3. June 13, 2021. arXiv:
2106.07131[cs]. URL: http://arxiv.org/abs/2106.07131 (visited on
01/17/2024).

OpenAl. GPT-j Technical Report. Mar. 27, 2023. arXiv: 2303.08774 [cs].
URL: http://arxiv.org/abs/2303.08774 (visited on 09/24/2023).
Yiwei Qin et al. InFoBench: Evaluating Instruction Following Ability in
Large Language Models. Jan. 7, 2024. arXiv: 2401.03601 [cs]. URL: http:
//arxiv.org/abs/2401.03601 (visited on 02/16,/2024).

Yujia Qin et al. ToolLLM: Fuacilitating Large Language Models to Mas-
ter 16000+ Real-world APIs. Oct. 3, 2023. arXiv: 2307.16789[cs]. URL:
http://arxiv.org/abs/2307.16789 (visited on 02/16/2024).

Anisa Rula and Jennifer D’Souza. “Procedural Text Mining with Large
Language Models”. In: Proceedings of the 12th Knowledge Capture Con-
ference 2023. K-CAP ’23. New York, NY, USA: Association for Computing
Machinery, Dec. 5, 2023, pp. 9-16. DOI: 10.1145/3587259.3627572.
Timo Schick et al. Toolformer: Language Models Can Teach Themselves
to Use Tools. Feb. 9, 2023. arXiv: 2302.04761[cs]. URL: http://arxiv.
org/abs/2302.04761 (visited on 09/21/2023).

Yongliang Shen et al. TaskBench: Benchmarking Large Language Models
for Task Automation. Dec. 9, 2023. arXiv: 2311.18760[cs]. URL: http:
//arxiv.org/abs/2311.18760 (visited on 03/14/2024).

Mohit Shridhar et al. ALFRED: A Benchmark for Interpreting Grounded
Instructions for Everyday Tasks. Mar. 30, 2020. arXiv: 1912.01734 [cs].
URL: http://arxiv.org/abs/1912.01734 (visited on 01/16/2024).

Tom Silver et al. “PDDL planning with pretrained large language models”.
In: NeurIPS 2022 foundation models for decision making workshop. 2022.
Kaya Stechly, Karthik Valmeekam, and Subbarao Kambhampati. “On the
Self-Verification Limitations of Large Language Models on Reasoning and
Planning Tasks”. In: arXiv:2402.08115 (2024).

Moritz Tenorth, Daniel Nyga, and Michael Beetz. “Understanding and
executing instructions for everyday manipulation tasks from the World
Wide Web”. In: 2010 IEEE International Conference on Robotics and
Automation. 2010 IEEE International Conference on Robotics and Au-
tomation (ICRA 2010). Anchorage, AK: IEEE, May 2010, pp. 1486-1491.

18

Carlos Utrilla Guerrero, Oscar Corcho, and Daniel Garijo

ISBN: 978-1-4244-5038-1. DOI: 10.1109/R0OBOT.2010.5509955. (Visited on
02/02/2024).

Hugo Touvron et al. “Llama 2: Open foundation and fine-tuned chat mod-
els”. In: arXiw:2307.09288 (2023).

Jason Tsay et al. “AIMMX: Artificial Intelligence Model Metadata Ex-
tractor”. In: Proceedings of the 17th International Conference on Min-
ing Software Repositories. MSR, ’20. New York, NY, USA: Association for
Computing Machinery, Sept. 18, 2020, pp. 81-92. 1SBN: 978-1-4503-7517-7.
DOI: 10.1145/3379597.3387448. (Visited on 09/20/2023).

Karthik Valmeekam et al. “Large Language Models Still Can’t Plan (A
Benchmark for LLMs on Planning and Reasoning about Change)”. In: ().
Karthik Valmeekam et al. “On the planning abilities of large language
models-a critical investigation”. In: Advances in Neural Information Pro-
cessing Systems 36 (2024).

Karthik Valmeekam et al. PlanBench: An Extensible Benchmark for Eval-
uating Large Language Models on Planning and Reasoning about Change.
Nov. 25, 2023. arXiv: 2206 .10498[cs]. URL: http://arxiv.org/abs/
2206.10498 (visited on 01/18/2024).

Karthik Valmeekam et al. “Planbench: An extensible benchmark for eval-
uating large language models on planning and reasoning about change”.
In: Advances in Neural Information Processing Systems 36 (2024).
Ashish Vaswani et al. “Attention is All you Need”. In: Advances in Neural
Information Processing Systems. Ed. by 1. Guyon et al. Vol. 30. Curran
Associates, Inc., 2017.

Hanchen Wang et al. “Scientific discovery in the age of artificial intelli-
gence”. In: Nature 620.7972 (Aug. 2023). Number: 7972 Publisher: Nature
Publishing Group, pp. 47-60. 1SSN: 1476-4687. DOI: 10.1038/s41586 -
023-06221-2. (Visited on 09/07/2023).

Junjie Wang et al. “Software testing with large language models: Survey,
landscape, and vision”. In: IEEE Transactions on Software Engineering
(2024).

Lei Wang et al. Plan-and-Solve Prompting: Improving Zero-Shot Chain-
of-Thought Reasoning by Large Language Models. May 26, 2023. arXiv:
2305.04091[cs]. URL: http://arxiv.org/abs/2305.04091 (visited on
03/14/2024).

Jason Wei et al. “Chain-of-thought prompting elicits reasoning in large
language models”. In: Advances in neural information processing systems
35 (2022), pp. 24824-24837.

Danning Xie et al. Impact of Large Language Models on Generating Soft-
ware Specifications. June 5, 2023. arXiv: 2306 . 03324 [cs]. URL: http:
//arxiv.org/abs/2306.03324 (visited on 09/11/2023).

Siyu Yuan et al. EASYTOOL: Enhancing LLM-based Agents with Concise
Tool Instruction. Jan. 11, 2024. arXiv: 2401 .06201[cs]. URL: http://
arxiv.org/abs/2401.06201 (visited on 02/06/2024).

NO U R W

3

10
11

13
14
15
16
17

18
19
20
21
22

23
24

26
27

28

© 0N OO N

15

16
17

Title Suppressed Due to Excessive Length 19

[44] Carlos Z. carlosug/READMEtoP-PLAN: READMEtoP-PLAN First Re-
lease. Apr. 2024. DOIL: 10.5281/zenodo . 10991890.

Appendix

Examples of Error types produced by LLMs:

Question: PROMPT201
Correct Answer:

1,
nyw. {
"Source": [
"### Dependencies \n Initialize git submodules with",
"### Python environment \n Install the specific ver51ons of every
package from “requirements.txt” in a new conda environment:
"To ensure that Python paths are properly defined, update the
“~/.bashrc” by adding the following lines"
]

1,
LLAMA Answer:

wn,
"Binary":
"Step 1: Download the precompiled files from GitHub releases."
1,
"Container": [

"Step 1: Initialize git submodules with “git submodule init” and
Tgit submodule update " . ",

Step 2: Create a new Conda environment with the specific
versions of every package from “requirements.txt ™ using “conda create --
name gsft python=3.9°

"Step 3: Activate the environment using “conda activate gsft .",
"Step 4: Install the packages listed in “requirements.txt ™ using
“pip install -r requirements.txt ."

5
"Source": [

"Step 1: Clone the repository.",

"Step 2: Initialize git submodules with “git submodule init~ and
“git submodule update.",

"Step 3: Create a new Conda environment with the specific
versions of every package from “requirements.txt® using “conda create --
name gsft python=3.97.",

"Step 4: Activate the environment using “conda activate gsft’™.",

"Step 5: Imnstall the packages listed in “requirements.txt ™ using
“pip install -r requirements.txt’

1,

Listing 1.2: Demonstration id: 7 (Error Type. 1 - Adding definition in the LLM
answer)

Question: PROMPT201
Correct Answer:
ll14||: {
"Source": [
"Install the requirements with:"
"or set up TPU VM with:"
]

1,
MISTRAL Answer:
g,
"Package Manager": [
Create a new conda environment with Python 3.10.

"2 Activate the new conda environment.

"3. Install Jax with CUDA 12 support: ‘pip install -U ~jax[
cudal2_pipl==0.4.23" -f https://storage.googleapis.com/jax-releases/
jax_cuda_releases.html™",

"4. Install the required packages: “pip install -r requirements.
txt ™"

1,

Listing 1.3: Demonstration id: 14 - Error Type. 2 (Mixture of steps from code
commands and notes)

AW e

oo

-

10

11
12
13
14
15

16
17
18

19
20

21
22
23

24

26
27
28

30
31
32

34

35
36

40
41

42
43
44

20 Carlos Utrilla Guerrero, Oscar Corcho, and Daniel Garijo

Question: PROMPT201
Correct Answer:

nign: |
"Container": [
"First, install Docker on your machine. Then move to the original
directory “learning_to_fly~ and build the Docker image:",

"If desired you can also build the container for building the
firmware:

"After that you can run it using

"Navigate to [https://0.0.0.0: 8000]%https //0.0.0.0:8000) with
your browser, and you should see something like in the screenshot above (
after startlng the tralnlng)

"Navigate to [https: //O 0.0.0:6006] (https: //0 0.0.0:6006) with
your browser to investigate the Tensorboard logs.

"Source": [

"Clone this repository:

"Then instantiate the RLtools submodule:",

"Then instantiate some dependencies of “RLtools" (for
conveniences like checkpointing, Tensorboard logging, testing, etc.):"

"#### Install dependencies on Ubuntu",

"#### Install dependencies on mac0S",

"Going back to the main dlrectory ("learning_to_fly‘), we can now

configure the build of the code:"

"Finally, we can build the targets

"After successfully building the targets, we can run the code (in

the orlglnal directory ~learning_ to_fly'):"
"If not already installed:

"Then from the original directory ~learning_to_fl "

"To run the training with the UI, we download the JavaScrlpt
dependencies in the form of the two files “three.module.js and ~
OrbitControls.js ™ :",

"After that we can execute the UI binary from the root folder:

"Now you should be able to navigate to [http://0.0.0.0: 8000](http
://0.040.0:8000) in your browser and start the training."

1,
LLAMA Answer
lll {
"Container"
"Step 1: Install Docker on your machine."
"Step 2: Move to the original directory ~learning_to_fly~ and
build the Docker image: “docker build -t arpllab/learning_to_fly . ",
"Step 3: Run the container u51ng “docker run -it --rm -p
8000: 8000 arpllab/learning_to_fly ™.
"Step 4: Navigate to [https: /70.0.0.0: 8000](https //0.0.0.0:8000)
with your browser to access the training program.

"Source": [
"Step 1: Clone the repository: “git clome https://github.com/
arplaboratory/learnlng to-f1l
"Step 2: Instantiate the “RLtools® submodule: “git submodule

update --init -- external/rl_tools .",
"Step 3: Instantiate some dependencies of “RLtools" gi
submodule update --init -- extermnal/clil external/highfive external/json/

external/tensorboard tests/lib/googletest/"

"Step 4: Install dependencies on Ubuntu or mac0S."

"Step 5: Configure the build: ~cmake .. -DCMAKE BUILD_TYPE=
Release -DRL_TOOLS_BACKEND ENABLE_OPENBLAS:BOOL=0N" (for Ubuntu +
OpenBLAS) or “cmake .. -DCMAKE_BUILD_TYPE=Release -

DRL_TOOLS_BACKEND_ENABLE_MKL :BOOL=0N" (for Ubuntu + MKL) or ~cmake .. -
DCMAKE_BUILD TYPE=Release ™ (for macOS).

"Step 6: Build the targets: “cmake --build . -j8".

"Step 7: Run the code: “cd .. /bulld/src/tralnlng headless L

"Step 8: To run the training with the UI, download the JavaScript
dependencies and execute the UI binary: “cd src/ui ./get_dependencies.sh

and “cd ../../ ./build/src/ui 0.0.0.0 8000°.
"Step 9: Nav1gate to [http://0.0.0.0: 8000](http //0.0.0.0:8000)
in your browser to access the training program.

1,

Listing 1.4: Demonstration id: 13 - Error Type. O (correct sequential order but
llm split and invented sentences)

Title Suppressed Due to Excessive Length

Detailed Tables:

21

— Figure 4 illustrates the distribution of total length of readme instructions

for each study subject in our corpus.

— Figure 5 aggregates the study subjects per distinct Plan type and its tech-

nology properties.

Total Length of readme instructions for each ID (in tokens) - Plan Type:

of the
research

Fig.4: Length
README for
software

(Tokens)
each 7id”

package manager Binary Source

Container

Count of IDs per Unique Type and Technology

3 1 o 1 o o o o
1 1 1 o 1 o o o o
1 1 o o 1 4 2 1 1
o o o E 0 o o o o

lnux Windows Docker Mac PP conda TestPyPiserver Juiia

Fig.5: Heatmap of our corpus

— Plots where each bar represents an ID research software, and within each
bar, different colored segments represent the ratio of system-detected steps
to reference steps for each method . Ratio of LLM Detected steps to Anno-
tations steps. A value around 1 indicates a good match between LLM and

Annotations

Ratio of LLM Detected Steps to Reference Steps (Evaluation/Rouge/post-grog-responses-llama2.json)

101020104050 60 0 80 1D 12 13 10 1815 15 15 18
Ratio (LM Detected / Reference)

PEEARDREPDEHD DR

Fig.6: LLM LLAMA2

Ratio of LLM Detected Steps to Reference Steps (Evaluation/Rouge/post-grog-responses- MISTRAL.

D102 D4 D@ O DN R D EID BB
Ratio (LLM Detected | Reference)

PHRRDREDLDEHY AR

Fig.7: LLM MIXTRAL

json)

