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Abstract. An increasing amount of scientists link to their research soft-
ware code implementations in their academic publications in order to
support the reusability of their results. However, research papers usually
contain many code links (e.g., from reused tools or existing compet-
ing efforts) making it challenging to automatically establish clear links
between papers and their corresponding implementations. This paper
presents RepoFromPaper, an approach for automatically extracting the
main code implementation associated with a research paper, based on the
context in which that link is mentioned. Our approach uses fine-tuned
language models to retrieve the top candidate sentences where a code im-
plementation may be found, and uses custom heuristics to link candidate
sentences back to their corresponding URL (footnote, reference or full-
text mention). We evaluated RepoFromPaper on 150 research papers,
obtaining an F1 score of 0.94. We also run our approach on nearly 1800
papers from the CS.AI Arxiv category, discovering 604 paper-repository
links and making them available to the community.

Keywords: Information extraction · Research Software · Software repos-
itory · Open Science.

1 Introduction

Research Software, i.e., the source code files, algorithms, scripts, computational
workflows and executables that were created during the research process [2] is
becoming recognized as a first class citizen in scientific curricula.1 In order to
support the results described in academic publications, scientists often include a
link to a code repository (e.g., GitHub, Gitlab) with their technical implemen-
tations details.

While efforts have been made by the scientific community to establish princi-
ples[16] and formats for software citation [5], detecting the code repository link
associated with a publication has two main challenges. First, authors often cite
research software inconsistently, employing diverse formats and locations such as

1 https://sfdora.org/read/
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full-text repository mentions (cases where the link is written in the paragraphs),
footnotes, or references to refer to a software component [8]. Second, a publi-
cation may contain several code repository links (from tools that are reused, or
competing with the proposed approach) making it challenging to automatically
detect the right code implementation.

This paper introduces a methodology designed to address these challenges by
automatically extracting the software implementation repository link associated
with a research paper, based on the context in which the link is mentioned. The
core contributions of our work include:

1. Training and validation datasets of labeled sentences designed to fine-
tune and evaluate our approach [17]. The training dataset includes 61 re-
search papers related to software engineering available on the PapersWith-
Code2 platform. The validation dataset includes 150 software engineering re-
search articles extracted from Arxiv. Both datasets encompass various types
of implementation mention sentences to cover the diverse ways authors ref-
erence the implementation repository.

2. RepoFromPaper3, a tool to automatically extract the code implementa-
tion repository from a research paper, including PDF-to-Text conversion,
sentence extraction, sentence classification and link search, as well as three
fine-tuned models.

3. The results of the application of our approach on nearly 1800 Arxiv re-
search papers, capturing links between research papers and their software
implementations [20].

The rest of the paper is structured as follows. Section 2 describes related work
efforts, while Section 3 describes the steps followed by RepoFromPaper to detect
implementation links. Section 4 describes the metrics used in our evaluation
and Section 5 presents our assessment results on 150 papers. Next, Section 6
describes how we applied our results to nearly 1800 papers, Section 7 discusses
the limitations of our approach and Section 8 concludes the paper.

2 Related Work

The landscape of research papers mentioning software is vast and continually ex-
panding. Platforms such as PapersWithCode actively promote the citation and
linking of software source code in research papers. The FORCE11 Software Cita-
tion Working Group4 has put forth software citation principles [15], and efforts
from Katz et al. have analysed software citation implementation challenges [9],
software citation in theory and practice [10], as well as provided a software
citation guide [11] for researchers. These initiatives highlight the importance of
proper software citation in research.

2 https://paperswithcode.com/
3 https://github.com/StankovskiA/RepoFromPaper
4 https://force11.org/group/software-citation-working-group/
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Researchers have taken on the challenge of automatically detecting software
mention intent, as exemplified by the work available on GitHub5 which uses data
from SoftCite (Du et al., 2021) [6] and SoMeSci (Schindler et al., 2020) [14]. Their
focus is on classifying software mentions based on intent, categorizing them into
“Creation” (i.e., a tool is proposed in a paper), “Usage” (i.e., a tool is used in
a publication to conduct research), and “Related” (i.e., a tool is mentioned as
a related competitive effort). While this work shares similarities with ours, they
aim to detect software tool mentions and understand their intent. Instead, our
objective is to identify the repository code implementations associated with a
research publication.

Lin et al. [12] present a methodology for automatically extracting software
source code URLs, reporting a high model accuracy of 0.939. However, their
approach has three limitations. First, their methodology does not consider URLs
in references. Second, their approach relies on GROBID,6 a PDF parser that
structures nicely the contents of a paper, but may overlook footnotes. Third,
their reliance on a regex search for sentences containing URLs may overlook
indirect mentions, such as those within references or footnotes.

Finally, our previous work7 [7] focuses on identifying bi-directional URL men-
tions between a paper and a repository, i.e., papers which mention a source
code repository, and the repository reciprocates by mentioning the paper. While
this approach holds the potential for high precision, it falls short in capturing
unidirectional repository mentions (i.e., those publications that refer to a code
repository but without a link back to that paper), which we aim to address in
this work.

3 RepoFromPaper: Methodology

Our approach consists of six steps. Figure 1 provides an overview of the data flow
within the pipeline, starting with an input PDF file and concluding with either
the discovery of a relevant code implementation link or an empty response. We
elaborate on each step of the pipeline below, providing insights into the rationale,
processes, and integration of essential components within our methodology.

3.1 PDF-to-Text Conversion

We start with the conversion of PDFs of research papers into text using the
Apache Tika PDF reader8, known for its speed and accurate extraction of text.
This initial step enables subsequent text-based processing, facilitating the ap-
plication of heuristic rules for sentence extraction and input into the models
for identifying repository implementation mentions. Although alternatives like
GROBID are available, we selected Apache Tika due to its robust performance

5 https://github.com/karacolada/SoftwareImpactHackathon2023 SoftwareCitationIntent
6 https://github.com/kermitt2/grobid/
7 https://github.com/SoftwareUnderstanding/RSEF
8 https://github.com/chrismattmann/tika-python
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Fig. 1: RepoFromPaper Methodology Flowchart

in handling various PDF formats, processing speed, and accurate representation
of footnote content, which is a critical factor in our methodology. The source
code for our package, including the integration with Apache Tika, is available
online under an MIT license9, providing transparency and reproducibility for
our approach.

9 https://github.com/StankovskiA/RepoFromPaper
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3.2 Sentence Extraction

The Sentence Extraction phase preprocesses the input PDF text and extracts
complete sentences for subsequent analysis. Within this phase, various functions
contribute significantly to refining and organizing the PDF text, effectively seg-
menting it into well-formatted sentences (e.g., removing end-of-line dashes) each
ready for input into the fine-tuned models to classify them. The decision to ex-
tract sentences instead of paragraphs is driven by our findings that paragraphs
introduce significant noise, while sentence-level extraction enhances model learn-
ing by focusing on key information.

Text cleaning is crucial for ensuring uniformity and clarity in the extracted
sentences. This involves removing newline characters, word breaks, extra white
space, and inconsistencies in links. Additionally, we extract reference number
- reference text pairs, as well as footnote number - footnote text pairs if the
footnote text is a link. This approach enables us to utilize this information
effectively in the subsequent link search step.

Due to the diverse formats and layouts of research papers, sentences are
frequently split across multiple lines, possibly spanning different pages and en-
countering footnotes in between, oftentimes including hyphenation at the end of
lines as a line break. To address this issue, we consolidate fragmented sentences
by considering factors such as sentence beginning and ending, new line charac-
ters and white spaces, and hyphenation, ensuring the formation of cohesive and
complete sentences from fragmented text.

3.3 Sentence Classification

In this section, we delve into the process of classifying sentences extracted from
research papers in order to identify implementation links. The classification is
performed using fine-tuned BERT, SciBERT and RoBERTa models, chosen for
their effectiveness in processing textual data.

Training Data and Fine-Tuning. We approach the problem of distinguish-
ing between implementation mentions sentences and non-implementation sen-
tences as a text classification problem, more specifically a sentence classification
problem. Based on the context of the sentence, we aim to assess whether it
is proposing an implementation of the paper. For this purpose, we assembled a
training corpus [17] consisting of sentences extracted from 61 research papers re-
lated to software engineering sourced from the PapersWithCode platform. These
sentences encompass various ways of mentioning repositories that authors tend
to use, including full-text mentions, footnotes, and references. Each sentence in
the corpus was annotated with a binary label indicating whether it mentions
an implementation repository (1) or not (0). This annotation process involved
one annotator initially labeling the sentences, followed by a review by another
annotator. Any conflicts about the annotations were resolved through discus-
sion until agreement was reached, particularly regarding whether to include an
implementation mention if it was lacking clear context.
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The models were fine-tuned using a binary sequence classification setup,
where the objective was to classify sentences as either implementation men-
tions or non-implementation sentences. We employed the ’bert-base-uncased’
model for BERT [4], ’allenai/scibert scivocab uncased’ for SciBERT [1] and
the ’roberta-base’ model for RoBERTa [13], initializing them with pre-trained
weights. The fine-tuned BERT10, SciBERT11 and RoBERTa12 models are avail-
able on the HuggingFace platform.13

3.4 Sentence Ranking

Using our fine tuned models, we classify all the sentences available in an input
publication. The models then predict the probability of each sentence belong-
ing to the class of implementation or non-implementation sentences. Based on
these probabilities, the sentences are ranked, allowing us to identify the sentences
which are most likely to contain implementation mentions. We then retrieve the
five sentences with the highest probability as candidates to find implementation
links. Our rationale for selecting the top five sentences is that, while the model
predicts the probability of each sentence belonging to class 1, we observed that
the correct proposal sentence may not consistently have the highest probability.
To mitigate this, we opt for a more inclusive strategy, extracting the top five
sentences based on their probability scores. This increased the chances of cap-
turing the correct proposal sentence from 80% to 94%, accounting for potential
variations in model predictions.

3.5 Repository Link Search

The final step of our methodology aims to link the top ranked sentences with
the corresponding link containing the code implementation. We divide this step
in two stages:

1. Repository link search in top sentences: We use regular expressions
to retrieve any code repository links (GitHub, GitLab) that may be found
within the candidate sentence itself. As described in Howison & Bullard
(2015) [8], inline references are among the common practices for citing soft-
ware in publications. The rationale behind this step is to establish a direct
connection between the predicted proposal sentences and their correspond-
ing repositories. By searching for links within the sentences with the highest
probability of being implementation mentions, we aim to streamline the ex-
traction process and efficiently link research papers to their associated repos-
itories. If multiple repository links are present in the top-ranked sentences,
we return the first identified link.

10 https://huggingface.co/oeg/BERT-Repository-Proposal
11 https://huggingface.co/oeg/SciBERT-Repository-Proposal
12 https://huggingface.co/oeg/RoBERTa-Repository-Proposal
13 https://huggingface.co/
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2. Repository link search in footnotes and references: This step aims
to broaden the search scope by examining the sentences that may contain
relevant numbers or special characters representing footnote or reference
numbers. These characters are indicative of footnote or reference numbers
commonly associated with research papers. The order of appearance of these
numbers is retained to prioritize classified sentences with higher probability.
Once potential footnote or reference numbers are identified, our methodology
proceeds to search for candidate sentences containing these numbers. To
maximize the chances of finding the correct sentence, we consider both the
original appearance of the numbers and variations with or without brackets,
particularly when reference numbers are enclosed in brackets.

4 Evaluation Methods

To assess the performance of our methodology, we employ two main evaluation
methods, each providing valuable insights into the effectiveness of our approach.

4.1 Mean Reciprocal Rank (MRR)

Mean Reciprocal Rank (MRR) [3] serves as a key evaluation metric for gauging
the individual performance of the fine-tuned models. MRR is calculated based
on the position of the correct proposal sentence within the list of the top five
highest ranked sentences. This metric offers an understanding of how well the
models rank the correct proposal sentence relative to other potential candidates.
A higher MRR indicates better model performance in isolating and prioritizing
the most relevant sentences.

The formula for Mean Reciprocal Rank is given by:

MRR =
1

N

N∑
i=1

1

ranki
(1)

where N is the number of instances, and ranki is the position of the correct
proposal sentence in the ranked list for the ith instance.

4.2 Precision, Recall, and F1 Score

To comprehensively evaluate the overall performance of RepoFromPaper, we
employ precision, recall, and F1 score metrics. These metrics are calculated based
on the following definitions:

– True Positive (TP): The pipeline returns a correct repository implemen-
tation link for the target paper.

– False Positive (FP): The pipeline returns an incorrect repository imple-
mentation link for the target paper.

– False Negative (FN): The pipeline fails to identify any repository imple-
mentation link, but one is present.
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– True Negative (TN): The model finds no repository implementation link,
and there is no link present in the paper.

Precision measures the accuracy of the identified repository links, recall as-
sesses the ability of the methodology to capture all relevant links, and the F1
score provides a balanced evaluation considering both precision and recall.

4.3 Training and Testing Corpora

In the training corpus for our models, we included 75 implementation sentences
and approximately 2500 non-implementation sentences from 61 research papers
sourced from the PapersWithCode platform. To evaluate the performance of
our method, we assembled a separate evaluation corpus [19] consisting of 150
software engineering research papers obtained from Arxiv.org. These papers were
carefully selected to ensure heterogeneity and avoid repetitiveness, representing a
diverse range of implementation mention styles, authored by various authors. We
manually tagged these papers to create a validation set specifically for evaluating
our methodology. Importantly, none of the papers included in this validation
set were used for training the models, ensuring the integrity of our evaluation
process.

We utilized the entire text contents of these papers in our evaluation pro-
cess. To ensure merit and diversity of repository implementation types, both
the training corpus and evaluation set are consisted of papers that encompass
the three main mention types: “Full-text” (i.e., inline URLs), “Footnote” and
“Reference” mentions. Figure 2 shows the number of mention types present in
the training and evaluation set, which follow a similar distribution.

Figure 3 shows the frequency distribution of repository links found in the
papers. This distribution sheds light on the challenges associated with auto-
matically identifying and extracting the correct implementation repository links
from research papers, as a nearly half of the papers have two or more code links.

Finally, papers that only used hyperlinks to link the implementation repos-
itories were excluded from the set as the link text was not present in the PDF
text.

5 Results

Table 1 describes the results obtained from the evaluation of our methodology
using the Fine-Tuned BERT, SciBERT, and RoBERTa models over our test
set. Our results present an accurate identification of implementation mentions
within research papers (0.94 F1), indicating the efficacy of employing fine-tuned
language models. The SciBERT model exhibits superior learning capabilities,
as reflected in its elevated precision, recall, and F1 score. This implies a more
sophisticated grasp of implementation mentions. The model’s enhanced perfor-
mance is in line with its advanced architecture, emphasizing the significance of
employing state-of-the-art language models for intricate tasks.
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Fig. 2: Distribution of implementation links and their style (within the full text,
as a footnote or in a reference) in training and testing corpora

Table 1: Evaluation results for the fine-tuned models
Model Precision Recall F1 Score MRR

BERT 0.864 0.871 0.867 0.55

RoBERTa 0.942 0.929 0.936 0.753

SciBERT 0.944 0.95 0.947 0.85

These results provide insights into the performance of the fine-tuned mod-
els, as well as the overall methodology, in identifying implementation mentions
within the extracted sentences. To better understand the significance of the re-
sults, we compare our results in the test set against a baseline method achieved
by selecting the most frequent code repository (using a regular expression) in
a publication (the first code repository is returned if all code links appear just
once).

The comparison between the regex baseline and our best performing model
can be seen in Table 2. Our method outperforms the baseline by achieving 15%
higher precision and 6% increase in F1 Score, while having a 5% lower recall.
We consider this an adequate trade off for the problem at hand.
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Fig. 3: Number of code repository links in training and test papers

Table 2: Comparison with baseline performance
Model Precision Recall F1 Score

Regex Baseline 0.793 1 0.88

SciBERT 0.944 0.95 0.947

6 A Corpus of Papers and their Corresponding
Implementations

We packaged our method into RepoFromPaper14 [21] and applied it on nearly
1800 research papers submitted in the years 2022 and 2023 found on the Artificial
Intelligence section on Arxiv.org.15 We applied our method both with the fine-
tuned RoBERTa and SciBERT models over the papers. The leading performance
of the SciBERT model approach was once again confirmed as it led to detec-
tion and extraction of 604 implementation repository links, while the RoBERTa
model approach detected 585. We make the outcomes of this application of our
method public [20].

Finally, we compared our approach using the SciBERT model against a
method that detects bi-directional links between papers and code repositories [7]
on 150 research papers from the Software Engineering category on Arxiv.org16.
These 150 articles were selected randomly, from the year 2023 (selected papers
may or may not include a code implementation link). In summary, the number
of implementation links found only by the bi-directional approach was 4, the

14 RepoFromPaper is available at https://github.com/StankovskiA/RepoFromPaper
15 https://arxiv.org/list/cs.AI/recent
16 https://arxiv.org/list/cs.SE/recent
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number of implementation links found only by RepoFromPaper was 41 and the
number of implementation links found by both approaches was 16. In 89 publi-
cations none of the approaches found an implementation link. The results of the
comparison are available online [18].

Our findings show that our approach is able to extract 25% more imple-
mentation repository links when compared to the bi-directional approach. Fur-
thermore, we observe an expected overlap in the extracted links between both
approaches, i.e., both approaches successfully extract the same implementation
link. However, we also observe unique links extracted by each method. The rea-
son for this divergence is twofold. On the one hand, while our approach is able
to detect uni-directional links between a research paper and a repository, the
bi-directional approach requires the repository to also point back to the paper,
therefore missing these links. On the other hand, the bi-directional approach
is able to return multiple confirmed links (many authors separate code imple-
mentation and evaluation results in different repositories) whereas our approach
currently returns only one implementation repository link. The ability of both
approaches to detect unique links suggests that they can complement each other,
aiming to extract as many correct implementation repository links from the re-
search paper as possible.

7 Discussion

Our approach produces high evaluation results, presents several limitations.
Firstly, the model training dataset was limited to the 75 implementation men-
tion sentences present in 61 research papers, which may restrict its ability to
generalize in other domains. Additionally, when the proposal link was not found
in the top-ranked sentences, our methodology searched for footnote or reference
mentions, but the abundance of numbers in some sentences introduced potential
noise. Moreover, the order of sentences containing footnote/reference numbers
posed complexity, occasionally leading to false positive links. Another limita-
tion is that our methodology currently returns only one implementation link,
even when multiple correct links may exist in a publication. Our approach also
does not extract links embedded as hyperlinks, defined in tables or present in
metadata. Despite these challenges and limitations, our methodology demon-
strates robust performance by effectively detecting and extracting implementa-
tion repository links from PDFs of research papers, irrespective of their formats
or the diverse ways in which implementation repositories are mentioned.

8 Conclusions and Future Work

In this paper we introduced RepoFromPaper, a methodology and tool for the
automatic extraction of implementation repository links from research papers.
Our evaluation demonstrates promising results, showcasing the efficacy of using
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fine-tuned language models. The achieved precision, recall, and F1 scores, par-
ticularly with the SciBERT model, signify a considerable success in identifying
implementation mentions within research papers.

However, while our approach has shown good performance, there remain ar-
eas for improvement, particularly in the pre-processing step of converting PDFs
to text. Enhancements in this phase may lead to more accurate sentence extrac-
tion, reducing noise and further refining the pipeline’s effectiveness.

Moving forward, there are several avenues for future work and improvements.
First, expanding the training dataset and fine-tuning the models with a more
extensive range of proposal mention variations may enhance their ability to
recognize diverse ways of mentioning repositories. Second, investigating more
advanced PDF-to-Text conversion techniques may contribute to better sentence
extraction, overcoming challenges posed by varied PDF formats. Finally, apply-
ing our method on research papers from different domains will help us general-
izing our approach, gaining better insights into the current practices regarding
code and data repository mentions in disciplines other than Computer Science,
ranging from Astronomy to Geology or Computational Biology.
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