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ABSTRACT
The adoption of Knowledge Graphs (KGs) by public and private organizations to integrate
lish data has increased in recent years. Ontologies play a crucial role in providing the str
KGs, but are usually disregarded when designing Application Programming Interfaces (AP
able browsing KGs in a developer-friendly manner. In this paper we provide a systematic
the state of the art on existing approaches to ease access to ontology-based KG data by a
developers. We propose two comparison frameworks to understand specifications, technol
tools responsible for providing APIs for KGs. Our results reveal several limitations on exis
based specifications, technologies and tools for KG consumption, which outline exciting
challenges including automatic API generation, API resource path prediction, ontology-b
versioning, and API validation and testing.

oduction
ledge Graphs (KGs) have become a crucial asset
turing data and factual knowledge in private and
ganizations. Several prominent KGs have been gen-
er the years to improve search capabilities, empower
analytics, ease decision making, etc. [48]. Indus-
have been created by companies like Google, Mi-
acebook, eBay, or IBM tomake their services "smar-
add value to users [73]. Open KGs such as DBpe-
cover a wide variety of domains, and crowdsourced
Wikidata [100] are actively maintained by an in-
al community of curators. Domain-specific KGs
n used to open data by public administrations of
ountries (e.g. national administrations: US [46],
, and local administrations: Zaragoza in Spain [27],
in Italy [16]); by libraries (e.g. by the Spanish

itish [22], and French [89] National Libraries); by
ciences community (e.g., the Monarch initiative to
data of genes, diseases, phenotypes, variants, and
s across species [88], and DisGeNET [79] to de-
ata about genes and variants associated to human
); among others.
ite their adoption, KGs are still challenging to con-
application developers. On the one hand, devel-
e a production-consumption challenge: there is a
een the ontology engineers who design a KG and
ication developers who want to consume its con-
]. KGs are commonly organized by ontologies [91],
e used to structure data without ambiguities, pro-
red meaning and infer new knowledge. Ontologies
lly developed following well defined methodologies
esponding author
spinoza@fi.upm.es (P. Espinoza-Arias); dgarijo@isi.edu (D.
orcho@fi.upm.es (O. Corcho)
D(s): 0000-0002-3938-2064 (P. Espinoza-Arias);
0454-7145 (D. Garijo); 0000-0002-9260-0753 (O. Corcho)

[15, 37, 56, 59], which identify use cases and com
questions that drive their design. However, ontolog
become complex, and the resources used in their d
ment (use cases, requirements, discussion logs, etc.)
ten not made available to developers. As a result, dev
usually need to duplicate some of the effort already
ontology engineers when they were understanding
main, interacting with domain experts, taking mode
cisions, etc.

On the other hand, application developers face a
cal challenge: many of them are not familiar with
tic Web standards such as OWL [69] and SPARQ
and hence KGs based on SemanticWeb technologies
hardly accessible to them [98]. Developers (and in
lar web developers) are mostly used to data repres
formats like JSON [6]; and Application Programmin
faces (APIs) for accessing their data. APIs allow th
munication and interaction between services withou
to provide details about how they are implemented.
facto architectural style for building APIs is the scala
resource-oriented REpresentational State Transfer
architectural style [33].

In order to address both data representation an
nical challenges, multiple approaches have been p
in recent years by the Semantic Web community,
from Semantic RESTful APIs [83] compatible with
tic Web and REST; to tools to create Web APIs on
SPARQL endpoints [41, 20, 70, 84]. Outside the S
Web community, approaches like GraphQL [35] are
traction among developers due to their flexibility t
and retrieve data from public endpoints. However
best of our knowledge there is no framework to com
capabilities and differences of these existing efforts.

The contribution of this paper is a systematic li
review to analyze and compare existing API-based
cations and tools for 1) making KG data more acces
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plication developers in KG consumption. In our
we introduce two comparison frameworks for an-
existing specifications, technologies and tools de-
address any of these points; and outline their lim-
nd remaining research challenges. Our effort goes
xisting guidelines for building Semantic RESTful
gies [13], as we discuss the features of nine differ-
fications and nineteen technologies and tools rather
mmending one of them based on a series of require-
rest of the paper is structured as follows. Section
es three typical examples that highlight the chal-
troduced above and motivate the research questions
d in our survey. Section 3 follows with an explana-
e methodology used in our literature review. Sec-
scribes the different specifications, technologies and
nd; and Section 5 compares their features and capa-
Finally, we answer our research questions and dis-
n research challenges in Section 6, and conclude the
Section 7.

ivating Examples and Research
stions
der to illustrate the challenges described in the pre-
ction, we use one of the many open data projects
rried out in Spain. Ciudades Abiertas,1 (i.e., Open
a project where several Spanish cities (A Coruña,
Santiago de Compostela and Zaragoza) are working
to create a shared set of ontologies to provide ho-
us data access in their open data portals and APIs.
f eleven ontologies have been created in several do-
ke local business census, inhabitant demographics,
etc.
ks to this initiative, city councils, industry and citi-
e been able to use open data to develop applications
isplay the empty retail units in a specific city area,
ase the education level of the inhabitants of a city
g a specific year, district, sex or age range; etc.
cessing and manipulating KG data
ur first example we will focus on an ontology for
ting data about local businesses (see Appendix C.1
erview diagram).2 This ontology is easy to follow
tology engineer, as it consists of four main concepts
siness, opening license, terrace, shopping area), some
and object properties (economic activity type, oper-
me period, area, capacity, etc.), and SKOS concepts
present thesauri terms (e.g. thesaurus of the situa-
of local businesses3). However, developers who
build an application with data described accord-
is ontology may not consider it so simple. These
rs may have several questions prior to consuming
://ciudadesabiertas.es/

//vocab.ciudadesabiertas.es/def/comercio/tejido-comercial

//vocab.linkeddata.es/datosabiertos/kos/comercio/

cion

data, such as how to retrieve common data patterns
for their applications (e.g. empty retail units)?; or
operate with the semantic data serializations resulti
query execution (in a format like JSON)?
2.2. Understanding complex ontology-based

For our second example (see Appendix C.2 to
overview diagram), let us consider an ontology fo
senting the census of inhabitants of an area,4 whic
certain degree of complexity even for experienced o
engineers. The ontology reuses the RDF Data Cube
ulary [19], which represents multidimensional data
official statistics. The ontology also involves unders
a large amount of concepts (dimensions, measures
etc.), properties and lists of concepts that may be ch
ing for application developers who are not used to t
of representation.

In this scenario, the ontology engineers who d
the open data KG may be concerned on how to expo
represented with this ontology in a developer-friend
ner through an API. Therefore, they may have sever
tions like the classes that should be exposed to en
ability; the API paths should be provided to ease da
access; or whether dimensions, measures, etc. shoul
cluded in those API paths.
2.3. Dynamic data needs

Some city councils are implementing an open-d
default policy, which usually implies that they are
themain consumers of their own open data [27]. App
developers inside the city council will thus not only
read operations on the data, but will also need to
changes.

Developers may also have some additional quest
cause data usually exposed through APIs (e.g. a reso
a list of resources) may not enough for their needs.
fore, these developers may need to know how to defi
calls or queries to handle specific data for their appl
(e.g. to get local businesses in active situation tha
terrace with an annual operating period).
2.4. Research questions

The examples described above showcase three
scenarios that ontology engineers and application d
ers face often. Similar scenarios may occur when d
ers need to consume KG data structured following a
ogy or an ontology network (i.e., ontology-based K
Each of the three examples contributes tomotivate a r
question (RQ), as described below.

RQ1: How can KG consumption by applicatio
opers be facilitated?5

• RQ1.1: Are there any API-basedmethodologie
ods / processes to ease KG consumption by a
tion developers?

4http://vocab.ciudadesabiertas.es/def/demografia/
cubo-padron-municipal

5Methods and their corresponding implementations (tools
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za-Arias et al.: Preprint submitted to Elsevier Page 2 of 24



Crossing the Chasm Between Ontology Engineering and Application Development

• RQ
ma
me

RQ2
APIs tha

• RQ
ce
ea

• RQ
ma
ce
ea

RQ3
creating

3. Sur
In th

tify appr
used to e
ology is
Charters
These g
phases n
view.
3.1. Pla

The
review h
should b
selection
and (d)
tions hav
tion elab
3.1.1. S

We u
reviewed
specializ
vey such

• Jo
ab
tic
W

• Pr
W
en
(E
gi
ot

We q
lowing q
lated art

graph")
ogy OR
cientific
related
ns, and
unity:

g in the
ditional
ork. As
:

ts (RA-

]

IC) cri-
llows:

method
Linked

ils about

resents
ethod /

of APIs.

P Espino

Journal Pre-proof
1.2: Are there any technologies that ease / auto-
te the execution of the API-based methodologies /
thods / processes to consume KGs?

: How can ontology engineers be guided to create
t ease ontology-based KG consumption?

2.1: Are there any methodologies / methods / pro-
sses to help ontology engineers creating APIs that
se ontology-based KG consumption?

2.2: Are there any technologies that ease / auto-
te the execution of methodologies / methods / pro-
sses to help ontology engineers creating APIs that
se ontology-based KG consumption?

: Are there any tools to help application developers
APIs on demand?

vey Methodology
is section we describe the process followed to iden-
oaches and associated technologies that have been
xpose ontology-basedKGdata asAPIs. Ourmethod-
based on the guidelines defined by Kitchenham and
[58] for conducting systematic literature reviews.
uidelines define a process which consists of three
amely planning, conducting and reporting the re-

nning the review
main objective of this phase is to describe how the
as been carried out. To do so, the following points
e addressed: (a) the research questions; (b) the source
and search; (c) the inclusion and exclusion criteria;
the selection procedure. Since the research ques-
e already been defined in subsection 2.4, this sec-
orates points (b)-(d).
ource selection and search
sed Scopus [24], a well-known database of peer-
literature, to perform our review. Scopus contains
ed journals and venues that are relevant for our sur-
as:
urnals: SemanticWeb Journal: Interoperability, Us-
ility, Applicability (SWJ), Journal of Web Seman-
s: Science, Services and Agents on the World Wide
eb (JWS), among others.
oceedings of Conferences: International Semantic
eb Conference (ISWC), World Wide Web Confer-
ce (WWW), Extended Semantic Web Conference
SWC), SEMANTiCS, Conference on Software En-
neering andKnowledge Engineering (SEKE), among
hers.
ueried Scopus for potential candidates using the fol-
uery to search in titles, abstracts and keywords of re-

"linked data" OR "semantic data" OR "knowledge
AND (API OR "web API") AND (tool OR technol
method OR methodology OR process))).

To avoid systematic bias [58], we included non-s
literature describing relevant work in this area such as
W3C Recommendations and Technical Specificatio
existing tools developed by the Semantic Web comm

• Linked Data Platform (LDP) [2]
• Linked Data API specification (LDA) [39]
• Solid [5]
• Pubby [18]
• Puelia [40]
• ELDA [25]
• Linked Data Templates [54]
We also contacted experts and researchers workin

area and asked them whether they knew of any ad
efforts, including unpublished results or ongoing w
a result we collected the following additional efforts

• Linked Open Data Inspector (LODI) [32]
• AtomGraph Processor [55]
• RESTful-API for RDF data (R4R) [3]
• Restful API Manager Over SPARQL Endpoin

MOSE) [21]
• OWL2OAS Converter [44]
• Ontology Based APIs Framework (OBA) [38
• Community Solid Server [96]
• Walder [47]
• LDflex [97]

3.1.2. Exclusion and inclusion criteria
The standardized exclusion (EC) and inclusion (

teria for scientific literature review was defined as fo
• EC1: articles not written in English.
• EC2: articles not describing a methodology /

/ process for API generation from ontologies /
Data / Knowledge Graphs.

• EC3: the full-text of articles does not give deta
the methodology / method / process.

• EC4: articles with an extended version that p
more details about the same methodology / m
process.

• EC5: articles referring to semantic annotation
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6: articles which reuse a methodology / method /
ocess but do not make any changes to it.
7: duplicated articles (when retrieved from the data-
se).
8: articles describing programming APIs for han-

ing RDF.
1: articles including open source code or free-access
mo (if a software tool is presented in the article).
xclusion and inclusion criteria for selection of non-
literature, unpublished, or ongoing work were:
9: works not written in English
10: works not describing themethodology /method
rocess followed tomake availableKnowledgeGraph
ta represented with ontologies as APIs.
2: works providing the source code or a demo with
e access (if software is described or included in a
rk).
election procedure
process was carried out by one of the authors and
dated by the rest. The validation consisted on sev-
tings where the authors discussed the findings and
any potential differences.
iterature selection was manually performed in three
al phases described below. It should be noted that
sion and inclusion criteria was applied on each phase
rvey.
ase 1: screening titles and abstracts that are rele-
nt for our study
ase 2: diagonal reading (i.e., reading the introduc-
n and conclusions, and looking for tables or images
roughout the study that highlight and provide rele-
nt information) of selected articles from the previ-
s phase.
ase 3: full text reading on the remaining articles
m the previous phase. As a result, the final set of
ticles for our survey was retrieved.
lly, for the selection process of non-scientific liter-
published, or ongoing work, we manually applied
fic exclusion and inclusion criteria (EC0, EC10, and
eview theW3CRecommendations, Technical Spec-
s, and existing efforts suggested by the experts and
ers we contacted.
view process
search in Scopus retrieved 845 publications [28].
a shows the phases of the literature selection pro-
the number of articles resulting after applying the
n and inclusion criteria in each phase. As a result,
ture review process resulted in 13 articles, summa-
Appendix A.

Figure 1b illustrates the process followed to sele
scientific literature, unpublished, or ongoing work.
authors of this survey) suggested 7 relevant works t
cluded and the experts and researchers we contact
gested an additional 9 works. As a result of this sec
view, 15 works were selected after applying the ex
and inclusion criteria (EC9, EC10, and IC2).

While performing Phases 2 and 3 of the literatur
tion process, we found several articles describing on
based applications developed with well-known API l
for managing RDF such as rdflib,6 Apache Jena [11
API [49], Sesame API (now RDF4J) [7], or JOPA [
discarded these libraries, according to EC8, as they
manage RDF data and ontologies from a specific p
ming language (Python, Java, etc.). Rather, we focus
APIs that allow application developers to directly acc
without having to rely on a specific programming la
queries, or transformation of the results obtained
endpoint. A further comparison on API libraries for
ing RDF is presented in [63].

Similarly, we excluded LDflex [97] from our fi
lection, as despite providing front-end developers
abstraction to RDF data and SPARQL queries, it is a
for a specific programming language (JavaScript), an
out of the scope of this manuscript.

4. Approaches for APIs generation
In this section we present our findings in two ma

gories: 1) specifications, i.e., set of rules and descrip
how to define and implement APIs, and 2) technolog
tools, i.e., systems that have been developed to im
specifications or provide solutions for KG consump
4.1. Specifications

In our study, we found several descriptions of
sign and details on how to implement APIs. In the fo
subsections we begin by presenting a summary of th
have been defined in the Semantic Web community.
4.1.1. SPARQL Protocol

The SPARQL Protocol and RDF Query Langua
describes the means for conveying SPARQL queries
dates to a SPARQL processing service and returning
sults via HTTP to the entity that requested them. It
first standard to provide access to RDF data. Therefo
of the projects that had published RDF data use thi
col through a server implementation. The latest ve
the SPARQL 1.1 Protocol [31].
4.1.2. SPARQL 1.1 Graph Store Protocol (GSP)

Protocol [74] that describes HTTP operations for
ing a collection of RDF graphs from a SPARQL trip
To this end, GSP describes a mapping between HTT
ods and SPARQL queries. This protocol can be view

6https://github.com/RDFLib/rdflib
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: a) Literature selection process includes reviewing the articles from Scopus in three phases: Phase 1) Screeni
racts, Phase 2) Diagonal reading, Phase 3) Full text reading. The exclusion and inclusion criteria defined for s
were applied in each phase; as a result 13 articles were retrieved. b) Non-scientific literature, unpublished, or
ction process includes reviewing works suggested by the authors of this survey and the experts contacted. After
sion and inclusion criteria, 15 works were obtained. Summarizing, a total of 28 works resulted from the selection

ht alternative to the SPARQL 1.1 protocol in com-
with the full SPARQL 1.1 Query and SPARQL 1.1
anguages.
inked Data API (LDA)
ification that defines a configurable API layer in-
support the creation of simple RESTful APIs over
lestores [39] . This configuration must be provided
s of an RDF file that follows a specific vocabulary
essing model to describe the SPARQL endpoint,
, pagination, queries and all the details needed for
generation.
ydra Vocabulary
tweight vocabulary designed to create hypermedia-
eb APIs [60]. Hydra defines a set of common con-
create generic APIs; enabling servers to advertise
te transitions to a client. Clients can use this in-
n to construct HTTP requests to achieve a goal by
g the state of the server.
inked Data Platform (LDP)
ification that defines a set of rules for HTTP oper-
web resources to provide an architecture for read-
ked Data on the Web [2]. LDP provides details on
onfigure HTTP access to manage resources (HTTP
s) and containers (collections of resources). Resour-
e RDF sources and non-RDF sources (e.g. binary
ocuments). Containers are defined only for RDF re-
and they can be Basic, Direct, and Indirect. Basic
rs contain triples of arbitrary resources, and must
ibed by a fixed structure using and a specific vocab-
irect containers specialize Basic containers by in-

g membership triples which allows the subject and

predicate of the triple to be configured using the co
definition. Indirect containers are similar to Direct c
ers but they also are capable of having members wh
jects have any URI.
4.1.6. Linked Data Templates (LDT)

Protocol that specifies how to read-write Link
based on operations backed by SPARQL 1.1 [54]. L
fines an ontology with the core concepts and prope
quired to describe applications. The ontologymust b
to design application ontologies that contain API pa
erations, SPARQL queries, and state change instruct
the desired application. State changes intend to cove
permedia definition provided in the REST architectu
which states that web resources should specify th
state.
4.1.7. Social Linked Data specification (Solid)

Specification [5] that describes implementation
lines for servers and client applications to enable dec
data from services. Solid provides support for a de
ized Web where users can store their personal data o
compliant servers and choose which applications can
such data. Likewise, Solid-compliant applications al
aging any user’s data stored on the aforementioned
This specification extends the Linked Data Platform
vide a REST API for read and write operations on re
and containers. Solid also provides a WebSocket-ba
with a publish/subscribemechanism to notify clients
ges affecting a given source in real time.

In addition, during the review process we foun
specifications defined by the Software Developme
munity and that are relevant for our study since t
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penAPI Specification (OAS)
erly known as the Swagger Specification, OAS [50]
ow to describe REST APIs in a programming lan-
nostic interface in order to allow humans and ma-
discover and understand the details of a service.
become the choice of reference by many develop-
its community support and the amount of available
creating API documentation, server and client gen-
nd testing.
raphQL
ification [35] that uses a declarative query language
clients accessing the data they need on demand.
QL, queries define the available entry points for
a GraphQL service. GraphQL has become popular
e developer community as an alternative to REST-
terfaces, as it presents a flexible model rather than
PI. However, developers must be familiar with the
sed to represent the queried data.
chnologies and Tools
state of the art describes several technologies and
generating APIs to enable KG consumption. In the
g subsections we present a brief description of each

G stores
ral graph databases (e.g. Neo4j [71]) and triple-
.g. Fuseki [1], Blazegraph [92], GraphDB [75]) can
or KG storage. As a representative example (result-
our literature review) we include OpenLink Virtu-
, a hybrid data store and application server support-
PARQL 1.1 Protocol that has been widely used in
antic Web community. Virtuoso can be configured
plementation backend on some of the specifications
d in the previous section, e.g., as a Linked Data Plat-
nt and server.
ubby
ed Data compliant server that adds a simple HTML
and dereferenceable URIs on top of SPARQL end-
8]. Thanks to Pubby, users can navigate the con-
an endpoint interactively in their browser, without
o issue any SPARQL queries. Pubby handles con-
otiation and includes an extension to describe the
ce of each request made to the server [45].
uelia
implementation of the LinkedDataAPI [40]. Puelia
andling incoming requests by reading a configura-
and executing the corresponding SPARQL queries
n such file. The RDF data retrieved from the SPAR-
oint is returned to the client in several formats (e.g.
SON, etc.).

4.2.4. Epimorphics Linked Data API Implemen
(ELDA)

Java implementation of the LinkedDataAPI [25]
provides a way to create APIs to access RDF dat
RESTful URLs; as well as a mechanism to create re
specific views for browsing these data. As with Pu
ELDA all URLs are translated into SPARQL querie
data from a target SPARQL endpoint.
4.2.5. Linked Open Data Inspector (LODI)

Linked Data server that provides HTML views a
tent negotiation of resources on a SPARQL endpoi
LODI was inspired by Pubby, but it includes extra fu
alities such as more detailed and customizable views
velopers, map-based location graphs in case resourc
tain geospatial attributes, automatic detection and di
image files, and custom configuration for host port
mation.
4.2.6. Apache Marmotta

Linked Data server [36] compliant with the S
Protocol 1.1 (providing a SPARQL endpoint). M
was one of the first ools which implemented the Link
Platform specification, with support for LDP Basic C
ers and content negotiation. Moreover, Marmotta is a
Data development environment which includes sever
ules and libraries for building Linked Data applicati
4.2.7. Building Apis SImpLy (BASIL)

Framework designed for building Web APIs on
SPARQL endpoints [20]. In BASIL, a set of SPARQ
ries and their related endpoints must be defined.
ton, API parameters can be included according to a S
variable naming convention. This convention allow
parameters in configurable templates to parametrize S
as an API. Then, BASIL generates the API paths to
the data and the Swagger specification documentatio
API.
4.2.8. Git repository linked data API constructo

(GRLC)
Server implementation that takes SPARQL que

translates them to LinkedDataWebAPIs [70]. These
can be stored in GitHub repositories, local filesys
listed as online available URLs into a YAML file.
dition, these queries must include SPARQL decorat
tags) to add metadata and comments, e.g. to define
cific HTTP method to be executed, the query-speci
point, pagination, among others. Then, GRLC tak
query and translates it into one API operation and ge
a JSON Swagger-compliant specification and a Swa
to provide the interactive API documentation. In a
GRLChas recently included amechanism (provided
RQL Transformer [65]) to translate a JSON struct
fined according to specific rules, into a SPARQL que
mechanism allows transforming SPARQL query res

8https://github.com/CLARIAH/grlc/tree/dev#decorator-synta
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serialization.
tomGraph Procesor
edData processor and server for SPARQL endpoints
lier known as Graphity [53]). AtomGraph uses an
for HTTP request matching and response building.
logy contains LinkedData Templates that mapURI
s to the SPARQL queries needed to request match-
response building. The SPARQL queries are in-
to the application ontology using the SPIN-SPARQL
odel.9

JSON-QB API
face for developers that reuses statistical data stored
Data cubes [103] [90]. JSON-QB only works for
esented with the W3C RDF Data Cube vocabulary,
volved into CubiQL,10 aGraphQL service for query-
idimensional Linked Data Cubes.
Open Semantic Framework (OSF)
ework designed to create and manage domain spe-
logies; and tomaintain, curate and access the stored
. Data access is enabled through a REST API based
bricated SPARQL query templates.
Trellis
ed Data server which supports high scalability, large
s of data, data redundancy and high server loads
llis follows the Linked Data Platform specification
rce management and has several extensions11 im-
ng persistence layers and service components e.g.
assandra for distributed storage. Trellis has been
in the Solid Project12 Test Suite.13

Ontology-Based APIs (OBA)
ework designed to generate an OpenAPI specifi-
om an ontology or ontology network (specified in
8]. Once a target OpenAPI specification is gener-
A also provides the means to create a REST API
handle requests, deliver the resulting data in JSON
following the ontology structure) and validate the
inst an existing KG. OBA automatically generates
templates for common operations from the source
; but also accepts custom queries needed by users.
queries are specified following the conventions es-
by GRLC and Basil.
RESTful-API for RDF data (R4R)
plate-based framework that creates RESTful APIs
RQL endpoints using customized queries [3]. R4R
server and a working environment: once started,
s a web service that can be updated when new re-
are added without having to restart the server. The
://spinrdf.org/sp.html

://github.com/Swirrl/cubiql

://github.com/trellis-ldp/trellis-extensions

://solidproject.org/

://github.com/solid/test-suite

workspace in R4R defines all available resources to
vice, and contains the SPARQL queries and the te
required for managing input queries and resources o
from a target endpoint.
4.2.15. OWL2OAS

Converter designed for translating OWL ontolog
OpenAPI Specification documents [44]. This tool ge
API paths for the concepts of the ontology and their s
In addition, OWL2OAS provides JSON-LD contex
aforementioned schemas which is based on the ob
data properties defined in the ontology.
4.2.16. Ontology2GraphQL

Web application that generates a GraphQL sche
its corresponding GraphQL service from a given R
tology [30]. To this end, the ontology for data re
tation must be manually annotated with a GraphQL
model (GQL), which includes several classes repre
the GraphQL types that compose a GraphQL schem
object, list, enumeration, among others). Therefo
ontology class is mapped to an instance of GQLObje
Object and datatype properties are defined as insta
GQL ObjectField and ScalarField classes respectiv
nally, there are several GQL properties required to
more details on properties, for example, the GQL h
ifier property can be used to define that an object p
will manage an array of the elements.
4.2.17. Restful API Manager Over SPARQL

Endpoints (RAMOSE)
Framework designed to create RESTAPIs over S

endpoints through the creation of textual configurat
[21]. Such files enable querying SPARQL endpo
Web RESTful API calls that return either JSON o
formatted data. To provide this configuration, a hash
syntax14 based on a simplified version of Markdow
quired.
4.2.18. Community Solid Server

Server implementation of the Solid specificatio
It aims to provide support for data pods, which allows
personal data in an accessible manner. Solid make
sible to decouple personal data storage from servic
therefore users are free to decide which applications
cess to their pods. As a result, users can keep total
of their data.
4.2.19. Walder

Framework that allows configuring awebsite orW
on top of Knowledge Graphs (e.g. SPARQL endpoin
pod, etc.) [47]. To this end, users must define a c
ration file with the details of the data source, paths
tions, etc. allowed for the API. Walder reuses the Co
framework [93], more precisely the graphql-ld-comu

14https://github.com/opencitations/ramose#
Hashformat-configuration-file
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execute the queries needed to get the required data.
ses GraphQL-LD [94], a query language which al-
ending GraphQL queries with a JSON-LD context.
a then takes the GraphQL queries and translates
sed on the JSON-LD context, into SPARQL queries
e the desired data.

lysis of specifications, technologies and
s for API definition and generation
is section we introduce the frameworks designed
rm a systematic comparison of the specifications,
gies and tools described in Section 4. We also dis-
results obtained when applying these frameworks
are the specifications, technologies and tools con-
n this survey.
iteria for comparing API specifications
e 1 summarizes the set of criteria defined in the frame-
compare the existing specifications. These criteria
t relevant information to help us to answer the re-
uestions outlined in Section 2.4 and to describe the
challenges discussed in Section 6. We are inter-
the year when specifications were created in order
stand their evolution over time. We want to know if
tions are officially recognized by an authority (i.e.,
they are a standard or not) or if they have just been
by a community without going through a standard-
rocess. We also consider relevant the endpoints sup-
y specifications, since this allows detecting the dif-
data sources (e.g. RDF data dump, SPARQL end-
ong others). We also consider configuration for-
they give us an idea of details needed to implement
pecification.
dition, we evaluate if specifications support con-
queries, which indicate the degree of freedom of-
a specification to manage specific data needs of an
on. We analyze the file formats (media types) that
rs must expect when using such specification, and
specifications consider developer-friendly formats
e assess the operations for resource management
by a specification, i.e., create, read, update, delete
(CRUD16). We also take into account the authen-
techniques proposed by the specifications, since it
es how the specification manages the access to the
hods.
onsider the versioning support to understand whe-
ecification manages KGs that evolve over time, both
of their contents and schema (ontology). We ana-
status codes, since they provide information of the
suggested by the specification in order to properly
details to clients about the execution of API calls.
ine the resources supported by the specification, as
us to understand if the specification manages single
://github.com/rubensworks/graphql-ld-comunica.js

is work, CRUD is understood as the HTTP POST, GET, PUT,
TE operations.

Table 1
Comparison criteria for specifications

Criteria Description
Year Year the specification was made ava
Standard Specification recognition type
Endpoint Type of point where resources are

able and requests are submitted
Configuration
format

The file format to be provided wit
details of the specification

Configurable
queries

Support for customized queries

Media types File formats supported for data
change

Operations Allowed methods for managing reso
Authentication Allowed methods to verify the ident

a user or process
Versioning Support for version management
Status codes Type of response messages to a c

request
Resources Type of resources allowed such as s

collection, or nested resources
Reference The provenance of the specificatio

tails.

resource, a collection of resources, or nested resourc
if a resource contains a subcollection of resources).
reference provides information about the origin of th
ification details provided in this comparison for pro
purposes.
5.2. API specification comparison

Table 2 shows the comparison between the specifi
according to each criterion defined in subsection 5
symbol "-" indicates that the criterion is not describe
tailed in the specification source.

Specifications began to appear in the year 2008
the SPARQL protocol 1.0 [95] was defined; and sp
2019, when the latest Solid specification draft has bee
available. Three of the analyzed specifications areW
ommendations (SPARQL 1.1 Protocol, Graph Stor
col, and Linked Data Platform) and three are not
mendations but were defined in W3C Community
LinkedData Templates by theDeclarative LinkedDa
group,17 Hydra by the Hydra group,18 and Solid by t
Community group.19 OpenAPI and GraphQL are n
sidered de facto specifications, as despite not being o
recognized by a standardization body, they are wide
by the developer community [80].

17https://www.w3.org/community/declarative-apps/
18https://www.w3.org/community/hydra/
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Table 2
Analysis of API Sp

Specification Ye eference

SPARQL
Protocol

20 tps://www.

.org/TR/

arql11-protocol

Linked Data
API

20 tps://github.

m/UKGovLD/

nked-data-api

OpenAPI
Specification

20 tps:

github.com/OAI/

enAPI-Specification

SPARQL 1.1
Graph Store
Protocol

20 tps://www.

.org/TR/

arql11-http-rdf-update

Hydra 20 tp://www.

dra-cg.com/

ec/latest/core

Linked Data
Platform

20 tps://www.w3.org/

/ldp

GRAPHQL
Spec

20 tps://spec.

aphql.org/June2018

Linked Data
Templates

20 tps://atomgraph.

thub.io/

nked-Data-Templates

Solid 20 tps://github.com/

lid/specification
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ecifications according to our comparison framework.

ar Standard Endpoint Configuration
format

Configurable
queries

Media types Operations Authentication Versioning Status codes Resources R

08 W3C
Recom-
menda-
tion

SPARQL
Endpoint

- Yes RDF formats and
XML, JSON, or
CSV/TSV

GET and
POST

HTTP authenti-
cation

- HTTP Sta-
tus codes
[RFC2616
specification]

Single
SPARQL
URL
endpoint

ht

w3

sp

10 De facto SPARQL
Endpoint

RDF format Yes HTML, Turtle,
JSON, RDF+XML,
XML and XSLT

GET - - - Single,
multiple

ht

co

li

11 De facto Any JSON and
YAML

Yes Any in compliance
with RFC6838 spec-
ification (the most
common is JSON)

CRUD,
HEAD, OP-
TIONS,
PATCH, and
TRACE

HTTP authenti-
cation, OAuth2,
API key, and
OpenID Connect
Discovery

Yes HTTP Status
Codes

Single,
multiple,
nested

ht

//

Op

13 W3C
Recom-
menda-
tion

SPARQL
Endpoint

- Yes Turtle, RDF/XML
or N-Triples

CRUD HTTP authenti-
cation

- HTTP Sta-
tus codes
[RFC2616
specification]

Single
SPARQL
URL
endpoint

ht

w3

sp

13 No - JSON-LD - JSON-LD CRUD - - HTTP Status
Codes

Single,
multiple

ht

hy

sp

15 W3C
Recom-
menda-
tion

Linked
Data
server

- Yes RDF (Turtle is re-
quired) and non-
RDF formats like
HTML and JSON

CRUD,
HEAD, OP-
TIONS, and
PATCH

HTTP authenti-
cation

- HTTP Status
Codes

Single,
multiple,
nested

ht

TR

15 De facto Any GRAPHQL
Schema

Yes Any serialization for-
mat (the most com-
mon is JSON)

Query, muta-
tion, and sub-
scription

- Not
needed

- Single
URL
endpoint

ht

gr

16 No SPARQL
Endpoint

RDF format Yes RDF format CRUD - - HTTP Status
Codes

Single,
multiple

ht

gi

Li

19 No RDF data - Yes Any in compliance
with IANA media
types

CRUD,
HEAD, OP-
TIONS, and
PATCH

TLS connec-
tions, HTTP/1.1
Authentication,
and Web Access
Control

- HTTP Status
Codes

Single,
multiple,
nested

ht

so
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t of the analyzed specifications from the Semantic
munity support SPARQL endpoints. Solid goes

further, aiming to support any RDF data source such
ata dumps and Linked Data documents in addition
QL endpoints. OpenAPI and GraphQL allows spec-
y given endpoint, leaving to the implementations
ort for query languages.
ification settings are usually provided in different
ation formats. LDA and LDT must be configured
F file which contains the URI templates required
PI and the required SPARQL queries. OpenAPI
hQL are configured in JSON, a developer-friendly
86], [82], but OpenAPI also supports YAML. In
, the OpenAPI configuration file must contain the
and the API paths that will be implemented, and the
configuration must define the GraphQL schemas
scribes the data sources and the GraphQL queries
e the available entry points for querying aGraphQL
Finally, Hydra requires a JSON-LD [57] configura-
Such format aims to represent LinkedData as JSON
imal changes, thus it intends to be an alternative for
rs interested in semantic data. The Hydra config-
le must contain several details of the API such as
of the endpoint, supported schemas, allowed oper-
mong others.
pecifications, depending on the operations and re-
supported, allow configurable queries. For LDA,
LDT, such queries must be written in the SPARQL

nguage. GraphQL requires queries written in the
query language; and OpenAPI supports multiple

s, e.g. SQL, since it doesn’t restrict the type of end-
s for query execution, the specifications provide data
several media types. SPARQL 1.1 Graph Store

, Hydra, and LDT specifications only provide results
formats (e.g. Turtle, JSON-LD, etc.), while the re-
specifications also support non-RDF formats (e.g.
CSV, JSON, among others).
rding allowed operations, the most limited specifi-
Linked Data API since it only supports reading data
he SPARQL Protocol initially supported GET and
perations, but after the SPARQL 1.1 Graph Store
was introduced, its support was expanded to full
ydra and Linked Data Templates support the con-

n of CRUD methods, while Linked Data Platform,
d OpenAPI, in addition to CRUD, also support HE-
sk for information about resources), OPTIONS (to
the communication options of a resource), and PA-
partially update resources)methods. Moreover, Ope-
pports the TRACE method, which allows to follow
that a HTTP request follows to the server and it is
used for diagnostic purposes. GraphQL supports

ns with different names but that may be equated to
ethods: query implements a GET, mutation imple-
OST, and subscription implements a PUT, PATCH,
TE.
t specifications support HTTP authentication. Solid
ws TLS connections for data pods through the https

URI scheme, HTTP/1.1 authentication and it must c
to the Web Access Control specification. Solid clien
support HTTP/1.1 Authentication. OpenAPI allows
uring other authenticationmechanisms likeAPI key,
among others. In order to control the changes in t
onlyOpenAPI provides an specific attribute to define
sioning, by following a Semantic Versioning 2.0.020
tion. In GraphQL it is not needed to specify versio
the specification strongly encourages the provision
to allow for the evolution of APIs. To this end, G
tools must allow API providers to specify that a giv
field, or input field has been deprecated and will disa
some point in time; thus they must notify clients by
ample, message responses detailing on changes. Th
GraphQL systems may allow for the execution of
which at some point were known to be free of any va
errors, and have not changed since. The remaining
cations leave versioning up to the implementations.

TheOpenAPI, LDP, and Solid specifications supp
gle, collection, and nested resources since they led
menters to freely define them. LDA, Hydra and LD
port single and collection of resources only. In the
the SPARQL Protocol and SPARQL 1.1 Graph Sto
tocol both support a single URL referring to the S
endpoint. In a similar manner, GraphQL only requir
gle URL. Finally, almost all specifications support
the status codes defined by the HTTP protocol.21 Th
implementers may provide relevant messages when
with clients such as successful requests (2xx), bad
(4xx), etc. LDA and GraphQL do not provide detai
responsemessages; however, as technologies that im
such specifications are served over HTTP they ma
HTTP status codes.
5.3. Criteria for comparing API generation

technologies and tools for KG consumpt
Table 3 describes the criteria proposed in the fra

to compare API generation technologies and tools
some of these criteria are the same as those defined f
paring specifications in subsection 5.1, we presen
only the new criteria that we included to compare te
gies and tools.

The first new criterion considered is the Interf
scription Language which outlines which conventio
lowed by a technology or tool to define APIs. We
sess what is the input required by the technology or
generating APIs, e.g., an ontology, queries, etc; and
pected result (output) after executing a given techno
tool (e.g., data formats, API specification file, a serv
In addition, we analyze whether technologies or to
vide control over the JSON structure as it helps u
tect which ones allow users to manage such files. A
source is only an informative column that indicate
the technology or tool code, demo, or repository is a

20https://semver.org/
21https://www.ietf.org/assignments/http-status-codes/

http-status-codes.xml

Jo
ur

na
l P

re
-p

ro
of
za-Arias et al.: Preprint submitted to Elsevier Page 10 of 24



Crossing the Chasm Between Ontology Engineering and Application Development

Table 3
Comparis

Criteria
Year

Interfac
tion La
Input
Output

Operat

Configu
mat
Configu
queries
Authen

Resour

Version
Contro
JSON s
Source

Last re

Langua

for a tec
last relea
order to
are inter
of the te
there is a
5.4. Re

tec
Tabl

gies and
tion 5.3.
describe

One
the year
and man
peared o
interface
tage of th
our surv
ating AP
an effort

Mos
terface D
sented in
other AP
API requ
specifica

use of a
mpliant
at con-
bby and
HTML
quire as
PARQL
ods, but
r needs.
ned in-
llow the
es to be
requires
ture de-
uch on-
eries to
JSON-

PARQL
to han-
nd pro-
have a

DF sour-
xample,
s input,
BA also
t gener-
s users
nal API
AS re-
oolean
be taken
QL ap-
raphQL
oso in-
,Walder
a docu-
aphQL-
ired for

P Espino

Journal Pre-proof
on criteria for technologies and tools

Definition
Year when the technology or tool was
made available

e Descrip-
nguage

Specification to document functional
and non-functional aspects of the API
Files needed for the API generation
Result of the technology or tool exe-
cution

ions Allowed methods for managing re-
sources

ration for- The file format to be provided with
the details of the technology or tool

rable Support for customized queries

tication Allowed methods to verify the iden-
tity of a user or process

ces Type of resources allowed such as sin-
gle, collection, or nested resources

ing Support for version management
l over the
tructure

Support for JSON management

The source code / repository of the
technology or tool

lease Year when the last version of the
technology or tool was released

ge Programming language used for cre-
ate the technology or tool

hnology or tool. Moreover, we are interested in the
se date when a technology or tool was updated in
know whether it is still maintained. Finally, we also
ested in the language selected for the development
chnology or tool as it may help us to understand if
preferred option to implement them.
sults of comparison of API generation
hnologies and tools for KG consumption
e 4 presents the comparison between the technolo-
tools according to the criteria described in subsec-
The symbol "-" indicates that the criterion is not

d or detailed in the technology or tool source.
of the first tool to appear was OpenLink Virtuoso, in
2008, which became a popular technology to store
age RDF data. Since then, several alternatives ap-
ver the years to ease data consumption by providing
s based on the REST paradigm and taking advan-
e HTTP protocol. The most recent tool reported in
ey is Walder, released in 2020, which allows gener-
Is for consuming RDF data from several sources, in
to integrate decentralized endpoints.
t of the assessed technologies and tools use as In-
escription Languages (IDL) the specifications pre-
subsection 4.1. However, some of them support
I description blueprints. For example, JSON-QB
ires users to define the API following an ad-hoc
tion (JSON-qbAPI specification). R4R allows users

tomanually describe the API but does not restrict the
specific IDL (e.g. users can provide an OpenAPI-co
file). RAMOSE requires users to define a hash-form
figuration file that contains the details of the API. Pu
LODI do not require any IDL as they only provide
views of resources.

In general, all included technologies and tools re
input the URL of the SPARQL endpoint and the S
queries needed to implement the allowed API meth
some technologies and tools differ slightly in thei
The R4R framework, in addition to the aforementio
puts, requires users to define JSON templates that a
responses of SPARQL queries or requested resourc
translated into JSON. The AtomGraph Processor
an application ontology that must follow the struc
scribed in the Linked Data Templates protocol. S
tology must define the API details, the SPARQL qu
request matching, and the application behavior. The
QB-API technology only requires the URL of the S
endpoint, as SPARQL queries are generic (designed
dle data described with the Data Cube vocabulary) a
vided automatically. Apache Marmotta and Trellis
similar input configuration as both only require the R
ce (e.g. an RDF data dump).

Other tools start from OWL ontologies. For e
OBA and OWL2OAS require an OWL ontology a
which they convert to an OpenAPI specification. O
accepts the URL of a target SPARQL endpoint, as i
ates a server to handle the client requests. OBA allow
to specify which classes should be excluded in the fi
by using a YAML configuration file, while OWL2O
quires the ontology to be annotated with an ad-hoc B
property to definewhich classes or properties should
into account or not in the API. The Ontology2Graph
plication needs an ontology annotated with the G
meta model; this ontology must be stored in a Virtu
stancewhichmust also contain the RDF data. Finally
supports any RDF source (RDF dump, Linked Dat
ments, SPARQL endpoint) as input, as well as the Gr
LD queries and the specific JSON-LD contexts requ
the execution of API operations.
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OpenLink
Virtuoso

2008 S
P
L

2018 C

Pubby 2008 N 2011 Java

Puelia 2010 L 2010 PHP

ELDA 2011 L 2018 Java

Apache
Marmotta

2013 L 2018 Java

BASIL 2015 S 2021 Java

GRLC 2016 S 2020 Python

AtomGraph
Processor

2016 L 2021 Java

LODI 2017 N 2018 Node.js
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QB API

2017 J
A
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- Java

OSF 2017 - 2017 PHP
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Table 4: Analysis of API generation technologies and tools for KG consumption according to our comparison framework.

nterface
escription
anguage

Input Output Operations Configurable
queries

Configuration Authentication Resources Versioning Control
over
JSON

Source

PARQL
rotocol and
DP

SPARQL
Queries

RDF or non-RDF CRUD Yes LDP must be acti-
vated in the Web-
DAV content sec-
tion

OAUth, WebID
and Digest Au-
thentication via
SQL Accounts.

Single - - http://vos.

openlinksw.com/owiki/

wiki/VOS/VirtLDP

one SPARQL
Endpoint

HTML, Turtle and
RDF/XML

GET No Turtle file - Single - - https://github.com/

cygri/pubby

DA SPARQL
Endpoint and
SPARQL
Queries

Turtle, RDF/XML,
JSON and XML

GET Yes RDF/Turtle files - Single,
multiple,
nested

- - https://code.google.

com/archive/p/

puelia-php/

DA SPARQL
Endpoint and
SPARQL
Queries

HTML, XML,
JSON, RDF/XML,
and Turtle

GET Yes RDF format,
typically writen in
Turttle

- Single,
multiple,
nested

- - https://github.com/

epimorphics/elda

DP RDF source RDF and non-RDF CRUD No LDP module must
be included in the
pom.xml file

Custom authen-
tication and
authorization
mechanism

Single,
multiple

Yes - http://marmotta.

apache.org/platform/

ldp-module.html

wagger SPARQL
Endpoint and
SPARQL
Queries

Swagger-
compliant API,
data results in
XML, JSON, CSV
and RDF

GET and
POST

Yes A file with the
connection pa-
rameters to the
database

HTTP basic au-
thentication

Single,
multiple

- - https://github.com/

the-open-university/

basil

wagger SPARQL
Endpoint and
SPARQL
Queries

JSON Swagger-
compliant specifi-
cation, Swagger-
UI, data results
in CSV, JSON,
Turtle, and HTML

GET and
POST

Yes List of queries
in .rq format or
as URLs into a
YAML file

User and pass-
word to the
SPARQL end-
point (if required),
and an access
token to com-
municate with
GitHub API.

Single,
multiple

- Yes https://github.com/

CLARIAH/grlc

DT Application
ontology

RDF serializations CRUD Yes A Turtle file with
the application
ontology

HTTP basic au-
thentication

Single - - https://github.com/

AtomGraph/Processor

one SPARQL
Endpoint and
SPARQL
queries

HTML and N3 GET No Turtle file - Single - - https://github.com/

marfersel/LODI

SON-qb
PI specifi-
ation

SPARQL
Endpoint

JSON GET No - - Single,
multiple

Yes - https://github.com/

OpenGovIntelligence/

json-qb-api-implementati

ontology and
SPARQL
Endpoint

JSON CRUD Yes - - - - - https://github.com/

structureddynamics/

OSF-Web-Services

Jo
ur

na
l P

re
-p

ro
of



C
rossing

the
C
hasm

B
etw

een
O
ntology

E
ngineering

and
A
pplication

D
evelopm

ent

Technology
or Tool

Year I
D
L

Last
release

Language

Trellis 2017 L 2021 Java

Ontology2
GraphQL

2019 G
s

- Java

R4R 2019 S
m
g

2020 Java

OBA 2020 O
very/

2021 Java

OWL2OAS 2020 O 2020 C#

RAMOSE 2020 A
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Solid
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2020 S 2021 Typescript
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Table 4: Analysis of API generation technologies and tools for KG consumption according to our comparison framework.

nterface
escription
anguage

Input Output Operations Configurable
queries

Configuration Authentication Resources Versioning Control
over
JSON

Source

DP RDF source RDF serializations
and HTML

CRUD,
PATCH,
HEAD and
OPTIONS

No A YAML file with
the application
configuration

Basic and token-
based

Single,
multiple,
nested

Yes - https://github.com/

trellis-ldp/trellis

RAPHQL
chema

Ontology
annotated
with the GQL
meta model

GraphQL schema
and a ready-to-
deploy GraphQL
service implemen-
tation

GET Yes RDF data and
the annotated
ontology stored in
the same Virtuoso
triplestore

- Single
API
endpoint

- Yes https://github.

com/genesis-upc/

Ontology2GraphQL

tatic HTML
anually
enerated

SPARQL
Endpoint,
SPARQL
Queries,
and JSON
templates

Swagger-
compliant RESTful
API, and requested
data in JSON

GET Yes The resources
configured in
the workspace
containing the
SPARQL queries
and JSON (Veloc-
ity) templates

HTTP basic au-
thentication

Single,
multiple,
nested

- Yes https://github.com/

oeg-upm/r4r

penAPI OWL on-
tology and
SPARQL
Endpoint

YAML OpenAPI-
compliant specifi-
cation, SPARQL
templates, a server,
and requested data
in JSON

CRUD Yes YAML file OAUth2.0 Single,
multiple,
nested

Yes - https://github.com/

KnowledgeCaptureAndDisco

OBA

penAPI OWL ontol-
ogy

OpenAPI specifi-
cation in YAML or
JSON

GET - Not required - Single Yes - https://github.

com/RealEstateCore/

OWL2OAS

hash-
ormat file

SPARQL
Endpoint and
SPARQL
queries

HTML documen-
tation of the API, a
dashboard for the
API monitoring,
and data requested
in CSV or JSON

GET and
POST

Yes Hash-format file - Single,
multiple

Yes Yes https://github.com/

opencitations/ramose

olid - - CRUD,
PATCH,
HEAD and
OPTIONS

- - - - - - https://github.

com/solid/

community-server

penAPI RDF source,
and the
GraphQL-LD
queries +
JSON-LD
context

Data requested in
RDF serializations
and HTML

GET Yes YAML OpenAPI-
compliant file
with Walder-
specific exten-
sions

- Single,
multiple,
nested

Yes Yes https://github.com/

KNowledgeOnWebScale/

walder
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Data management levels offered by API generation technologies and tools for KG consumption.

n executing the analyzed technologies and tools, dif-
es of outputs are generated. Virtuoso, Pubby, Puelia,
pacheMarmotta, AtomGraph Processor, LODI, Tre-
Walder provide data results in RDF and non-RDF
tions. Tools such as BASIL, GRLC, OWL2OAS,
generate OpenAPI-compliant APIs, and provide

sted data in JSON format. BASIL and GRLC also
data in other formats such as CSV, XML, and RDF.
, JSON is the output format for JSON-QB-API, R4R,
results. OBA and OWL2OAS generate the API
and paths from an OWL ontology, but OBA is the
l which generates, without human intervention, the
ARQL query templates needed to handle the KG
n executing the API methods. Ontology2GraphQL
s the annotated ontology into a GraphQL schema
ides a GraphQL service implementation; however,
tation process must be performedmanually. Finally,
E generates an HTMLwith the API documentation,
ard for monitoring the API, and provides data re-
SV or JSON files.
valuated technologies and tools also allow different
ns to be carried out. Figure 2 shows the data man-
levels that such technologies and tools offer on a
m full query access to a read only query level. Data
ent levels depend on the allowed operations, thus
gies and tools that support read-only operations pro-
freedom than those that allow query execution at
oint level. Trellis and the Solid Community Server
w HEAD (to ask for information about resources),
S (to describe the communication options of a re-
and PATCH (to partially update resources) opera-
technologies and tools provide details on how to
user authentication. This depends on the allowed
ns, since, in general, reading operations do not need
nticate users. Virtuoso and Marmotta allow com-
edom for data management, and thus provide more
n their authentication methods (OAuth for Virtuoso,

ad-hoc authentication and authorizationmechanisms
motta22). Among those technologies and tools allowi
ing operations such as update or delete, some of th
vide support for authentication mechanisms. For e
basic HTTP authentication is supported by AtomGra
cessor, Trellis, BASIL, and R4R; whereas GRLC
an access token to communicate with the GitHub A
the user and password of the SPARQL endpoint, if r
OBA supports OAuth2.0 by default, but authentica
be extended to other methods (which need to be con
by hand).

As for configurable queries, almost all technolog
tools define their own mechanisms to allow users d
custom queries. For example, Basil, GRLC, and O
ad-hoc decorators in queries to parametrize them an
them to their exposed APIs; while Ontology2Graph
Walder accept GraphQL queries. The analyzed techn
and tools also use different configuration formats.
the most common choice, but Trellis, OBA, and Wa
YAML configuration files. Technologies like Marm
Virtuoso, which support LDP, require to activate t
mode by providing specific configuration settings ap
a java file (Project Object Model file) and to its config
utility (Conductor) respectively. BASIL requires a c
ration file (.ini) with connection parameters to the d
that must be configured with some required database
together with a MySQL server. R4R requires to co
the SPARQLqueries (.sparql) and JSON templates (.
both stored into the specific directory that will be t
the source for the resource path generation. GRLC
to specify a collection of SPARQL queries (.rq fil
a GitHub repository, but it also allows users to provi
queries as aYAMLfile containing a list of URLs of S
queries online available. RAMOSE requires a hash
(.hf) file described according to a simplified version o
down syntax.

All the assessed technologies and tools manag
22
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s. Marmotta, BASIL, GRLC, JSON-QB-API, and
E also provide collection of resources Besides sin-
collection, Puelia, ELDA, Trellis, OBA, R4R, and
rovide nested resources. Therefore, these last tools
fining more specific paths for data consumption.
r versioning, tools like JSON-QB-API, OBA, R4R,
AS, and RAMOSE allow users to specify the API
in the API documentation, but they do not imple-
ntrol over different versions. In contrast, Apache
a and Trellis manage data versioning through the
o protocol23 a variant on content negotiation which
accessing a resource version that existed around a
datetime. Ontology2GraphQL and Walder assume
server must manage data versioning, and hence do
ort versioning.
five tools provide control over the JSON structure.
llows developers to pose queries as a JSON object
fying what data will be retrieved from the endpoint
t shape the results should follow. R4R allows con-
JSON templates that map the SPARQL query re-
ompose the desired JSON output. RAMOSE also
sers transforming each key-value pair of the final
sult according to the rule specified in the call URL.
sformations rules can be used to convert the output
rray or into a JSON object. Lastly, since Ontol-
phQL and Walder use GraphQL, both allow man-
ON according to the developer needs. This gives
xibility to developers issuing queries to KGs, but at
time forces them to be familiar with the ontology
epresent the information in detail.
t of the analyzed technologies and tools show changes
r last release compared towhen they first weremade
. Early technologies and tools likeVirtuoso, ELDA,
motta have evolved over time in contrast to Puelia,
ows no change. As for Ontology2GraphQL and
B API, they do not have any release in their source
ies. Since the latest changes observed in the repos-
f both tools date from the same year in which they
de available, they may not be currently maintained.
ent tools have recent releases, which may mean that
evolving as people begin to use them and new re-
ts and enhancements are implemented. Finally, re-
the programming languages for the development of
gies and tools, Java is the preferred option (used by
mentations), followed by PHP, and Python (each se-
2 implementations), and lastly C, C#, JavaScript,
and TypeScript (each chosen by 1 implemetation).
ecification, technology and tool evolution
r the years
rationale for the appearance and evolution of the
tions, technologies and tools included in our survey
tter understood by looking at them in chronological
gure 3 shows a timeline illustrating existing specifi-
and technologies and tools over the years. SPARQL
s were the first and the most common means to pro-

vide access to data represented with ontologies. S
endpoints offer access to RDF data using the SPARQ
tocol and RDF Query Language, which was official
dardized in 2008. Thanks to the SPARQL 1.1 Grap
Protocol (which became a W3C recommendation in
many SPARQL endpoints also provide update and
RDF data via mechanisms of the HTTP protocol.
hundreds of SPARQL endpoints have been made a
on the web to expose over one thousand public datas

For illustration purposes, let us assume that we
KG with local business census data, accessible th
SPARQL endpoint. Let us also assume that we wa
trieve data of the business "CortField" which has th
tifier "CortFieldID". With a SPARQL endpoint, dev
have to issue SPARQL queries to obtain data they ne
the query provided in Appendix B.1 to get data of t
ness "CortField". As a result of the SPARQL query
tion, data will be obtained in a RDF serialization.

In order to ease access and navigation over S
Web resources in SPARQL endpoints, a new gener
technologies and tools emerged to provide HTML a
RDF data by dereferencing URI resources. The fi
most popular technology providing such features was
released in 2008, and the latest technology was LOD
ched in 2017. In our example, Pubby or LODI can
ecuted on top of the SPARQL endpoint so develop
resolve the URI of "CortField" without having to
SPARQL query, e.g. by browsing "http://example.

source/LocalComercial/CortFieldID" in a browser.
Several efforts followed by taking advantage of th

principles to provide developers with a well-known i
for RDF data consumption. The Linked Data API
specificationwas proposed in 2010 to define read-onl
ful APIs over RDF triplestores. The most popular to
plementing LDA are Puelia and ELDA, released in 2
2011 respectively. Thanks to these tools, develop
configure API paths to be translated into SPARQL
that select resources or define views with the spe
source attributes they need. For example, to get dat
local business "CortField" developers may issue a re
"http://example.org/doc/localbusiness/CortFieldID

will trigger a query similar to the one specified in A
B.1 and return the corresponding results.

In 2013, Hydra was defined as a vocabulary to c
REST with Linked Data principles focused on de
APIs using JSON-LD. Two years later, the Seman
community proposed the Linked Data Platform (LD
ification to address the read-only limitations of the
Data API specification. LDP became a W3C recom
tion in 2015, defining a protocol for full read-write
Data. Several technologies and tools included sup
LDP like Virtuoso, Apache Marmotta,24 or Trellis
were released between 2008 and 2017. In our examp
business data could be handled in Apache Marmotta

24Marmotta was released before 2015, but in this study we m
year when the first version (3.3.0) compliant with the LDP specific
launched.
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API specifications and API generation technologies and tools timeline. Above the line, specifications are listed a
ar they appeared. Below the timeline, technologies and tools are listed according to the year when they were re

into a Basic Container (e.g. "http://example.org/ldp/
inesses" container). Therefore, developers may re-
ms from this container by invoking the get method
PI path of the desired item. For instance, develop-
ccess item "CortField" by requesting the API path
example.org/ldp/localbusinesses/CortField" in the
DF serialization.
her relevant REST-based approach is the LinkedDa-
lates (LDT) protocol, presented in 2016. LDT al-
rs to read-write RDF data based on details that must
fied in an application ontology. Unlike the LDP
tion, LDT allows users to define the next state of
s needed for the desired application. This protocol
implemented in 2016 by the AtomGraph Processor
gy. Going back to our example, ontology engineers
ve to configure AtomGraph’s application ontology
details of the desired resource, for instance, the lo-
ess item template (ldt:Template) including the API
:match "/localbusiness/{id}"), and the SPARQL
dt:Query) to perform the supported operations (e.g.
evelopers would request the method and path "GET

siness/CortFieldID" and retrieve data of local busi-
tField" in RDF.
next generation of technologies and tools relied on
s to make it easier for non-Semantic Web develop-
teract with KGs in their “native” languages (JSON
face Description Languages). To this end, some of
hnologies and tools reused the OpenAPI specifica-
ased in 2011, due to its wide adoption by applica-
elopers. Most of the initial efforts focused on pro-
pport for GET, but some of them have evolved into
r full CRUD. In this regard, the first effort provid-
ger-compliant APIs was BASIL, released in 2015,
by tools such as GRLC, OWL2OAS, and OBA that

that, from 2017 to 2020, tools like JSON-QB API, R
RAMOSE have also been proposed to generate dev
friendly APIs, but they follow other specifications t
them.

To illustrate these efforts, let us consider we use
with a GitHub repository where we define and store t
RQL queries needed for data consumption. As a resu
ecuting GRLC, it generates an API path for each que
JSON Swagger-compliant specification. The path s
conforms to the GitHub repository structure. For i
if the query file to select data of local businesses is
"localbusinesses.rq" (this example query is provide
pendix B.3), stored in the repository "examplereposi

the "GitHubUser" account, then the corresponding A
would be "http://api/GitHubUser/examplerepository
businesses", where api corresponds to the servicewh
LC runs. By requesting this API path developers wil
cal business data in formats supported by the SPARQ
point. For example, results can be retrieved in JSON,
resulting format includes irrelevant metadata that co
with the query structure (e.g. the header metadat
contains the list of fields of the query results) rath
just providing data according to the structure of th
ogy that describes them. To get results into a friendl
format users can provide queries in JSON using S
Transformer [65].

A new generation of technologies and tools wa
oped in parallel to these efforts after the GraphQL
cation (originally developed at Facebook in 2012),
leased openly in 2015. GraphQL proposed a flexi
to define APIs under the principle that what you
exactly what you get, and has been adopted in effo
Ontology2GraphQL and Walder, released in 2019 a
respectively. Unlike Ontology2GraphQL, Walder
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ecessary queries in GraphQL plus a JSON-LD con-
r instance consider we use Walder to consume the
iness census data. Ontology engineers would need
ure an OAS file which includes the URL of the
ce (e.g. our SPARQL endpoint), API paths (e.g.
usiness/{value}"), required parameters (e.g. "value"
lows providing the identifier of the specific local
to be requested), the allowed operations (e.g. "get");
raphQL queries and JSON-LD context required to
nt the operations (an example query and JSON-LD
re provided in Appendix B.2). By doing so, devel-
y request, for example, "/localbusiness/CortFieldID"
in data of the business "CortField" as HTML, RDF,
-LD.
recently, other approaches are beginning to emerge
aim of exploiting the knowledge contained in on-
(those used to describe KGs data) and facilitate the
developers. The goal is to generate specifications
s from ontologies, with minimal human interven-
e most representative solution from this is OBA,
for the first time in 2020. In our example, users
rovide OBA with the local business census ontol-
d the YAML configuration file which contains the
the SPARQL endpoint, the list of classes to be in-
n the API (e.g. local business represented by the
mercial" class ), and the allowed methods (e.g. "get
r executing OBA, developers would get the OAS
t with the schemas and API paths, the SPARQL
or implementing the methods, and a server. As a re-
elopers may request, for instance, "/localescomercia
FieldID" and get back data of local business "Cort

JSON format which follows the ontology structure.
last generation of technologies and tools is focused
ding APIs to ease decentralizing the Web. To this
s require to handle their personal data in servers un-
control, applications require consuming data from
DF sources (data dump, SPARQL endpoints, etc.),
ith different authorizationmechanisms, among oth-
Solid specification appeared in 2019, and still con-
an ongoing draft, as a set of guidelines to implement
nd clients to support the aforementioned features for
alizedWeb. The Community Solid Server is the of-
a implementation of such specification, released by
of 2020. In our example, developers can use the
rver to get the local business data invoking, e.g.,
albusinessCortFieldID.ttl" path to retrieve data of
ld" in Turtle format.

ussion and Research Challenges
is section we discuss our findings by addressing the
questions defined in subsection 2.4. Based on this
n we outline a set of open research challenges that
der necessary to ease KG consumption by applica-
lopers.
//vocab.ciudadesabiertas.es/def/comercio/tejido-comercial

6.1. Answering research questions
RQ1.1: Are there API-based methodologies / m

/ processes to ease KG consumption by application
opers?

Our findings highlight that several specificatio
been proposed to provide details on how to define and
ment APIs to ease KG consumption. Most of these sp
tions have been proposed by the Semantic Web com
and they are aligned with the REST principles. LD
dra, LDP, LDT, and Solid specifications allow defini
only, read-write, and full CRUD APIs on single, co
or nested resources, which are retrieved in several f
In addition, we found that two specifications from t
ware Engineering field (OpenAPI and GraphQL) ha
adopted to provide developers with a well-known i
to consume data from KGs. Unlike OpenAPI, the G
spec does not follow the REST paradigm but a more
strategy for data consumption over a single endpoi
HTTP.

Almost all the analyzed specifications (LDA, LD
Hydra, and Solid) require SPARQL queries, and th
assume that a Semantic Web expert familiar with th
ogy used for modeling the data in a KG is involved
figuring its corresponding API. Similarly, GraphQL
quires developers to know the data structure (ontolo
fore defining the schema needed for data querying.

RQ1.2: Are there technologies that ease / autom
execution of the API-based methodologies / method
cesses to consume KGs?

Our survey indicates that there are several techn
to automate the API generation to provide developer
friendly interface for KG consumption. Most of the
nologies implement the API specifications describe
review. We also detected that almost all technologies
input the queries required to retrieve the desired resou
the API generation. However, there are technologies
Graph Processor, OSF, Ontology2GraphQL) which
as input an ontology annotated with specific details
erate the API. In contrast, OBA and OWL2OAS g
the API specification from the OWL ontology that h
developed to describe and organize the KG data. M
OBA also generates automatically the SPARQL quer
ded to execute general CRUD operations. All the a
technologies provide developers with APIs that must
erated by experts in Semantic Web technologies.

RQ2.1: Are there methodologies / methods / pr
to help ontology engineers creatingAPIs that ease o
based KG consumption?

Our review revealed that there is no evidence o
mally defined methodology, method, or process to h
tology engineers generate APIs to ease for applica
velopers the ontology-based data consumption. A
efforts are focused on API specifications for KG co
tion; but most of them do not consider ontologies a
class citizen for designing APIs. Found efforts also
take into account the experience that the ontology e
has gained on the target domain; or the artefacts ge
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e ontology development process.
.2: Are there technologies that ease / automate the
n of methodologies / methods / processes to help
engineers creating APIs that ease ontology-based
umption?
ound two technologies (OBA and OWL2OAS) that
account the OWL ontology to generate the APIs.
, in both technologies the authors are focused on the
gical support to automatically generate basic APIs
the methodology for designing them. In addition,

y2GraphQL allows generating a GraphQL schema
ntology; however it requires users to learn themeta-
ecessary to manually annotate such ontology. This
gy also needs users to define the queries needed for
the KG data.
thodological approach and a technology which im-
it are still missing. Both must be focused on help-

logy engineers to actively participate in the API de-
implementation from the beginning of the ontology
ent process in such a manner that at the end of this
ther resulting artefact will be the API.
: Are there tools to help application developers to
PIs on demand?
eyed studies revealed that themost recent approaches
C, R4R, RAMOSE, OBA and Walder allow appli-
evelopers configuring APIs to fulfill their applica-
irements. However, not all of them allow config-
ll CRUD operations or handling nested resources,
mpers the flexibility developers require for building
lications. In addition, in terms of usability, most
tools require developers to know the ontology be-
KG to design the API, and the query language to
required queries to implement the desired methods.
nce, in Walder developers are required to learn the
-LD language (in addition to the ontology) to de-
GraphQL schemas. GRLC has recently included a
ality to allow users to pose queries in JSON, but it re-
velopers to learn the notation needed to define such
nd also to know the ontology behind the KG data.
the reviewed technologies allow doing queries on
using GraphQL or SPARQL requiring developers to
se query languages. In summary, the heterogeneity
ing curve of the technologies included in this sur-
be challenging for non Semantic Web experts to
PIs over existing KGs on demand.
en research challenges
systematic review uncovers major research challen-
deserve further investigation. We describe these
es below:
mated API generation. Our review showed sev-
ifications and technologies to generate APIs from
tologies and SPARQL queries. However, it is im-
o consider other inputs that could be reused/added
I generation process.
I generation from ontology engineering artefacts.
a lack of investigations or implementations regard-

ing the use of the artefacts that are generated during
tology development process. These artefacts could
cases, user stories, or competency questions (defin
functional ontology requirements as proposed in [4
signed to motivate and assess an ontology. For e
the competency question defined for the local busine
tology: "What are the local business located in dist
could be used to automatically generate the required
answer it and, as a result, to ease the KG consumptio
application developers. Experiments should be cond
order to test if these artefacts could help application d
ers to understand the ontology and as a result support
configuring the custom APIs needed for their applic

- API generation from application requirements
cation developers may want to consume KG data
poses that are different to those proposed or motivate
the ontology to represent such data was developed.
fore, it is necessary to investigate alternatives to pro
velopers with the mechanisms to generate ad-hoc
consume the data that they need for their applicatio
alternative could be to allow developers reuse app
use cases, requirements, types of users involved, etc
der to generate the API paths and methods that are r
for the application implementation. Several initiativ
posed to transform natural language into knowled
queries [23] can be used/adapted to generate the quer
ed for implementing the ad-hoc API methods. Also,
an opportunity to explore how language models (e.g
3 [8]) can be used in the translation of uses cases i
paths.

API version management. None of the surve
proaches address how changes to an ontology may a
corresponding KG and API. In some cases like Gr
the specification claims to not require managing A
sions, since it assumes that the server must handle th
ensure backward compatibility. However, this result
sion management having to be handled by API pr
Technologies like ApacheMarmotta and Trellis offer
ce versioning since they implement the Memento p
However, both technologies do not detail how chan
managed in terms of ontology evolution. Therefo
techniques are needed to detect ontology changes an
agate them into their corresponding APIs, ensuring
plications will not crash when the underlying ontolog
dated. Existing work in ontology evolution [102, 76,
be reused and extended to help meet this challenge.

API simplification through lightweight ontolog
plex ontologies make the API generation process mo
cult, since they contain axioms and restrictions that w
defining abstract classes and properties to represen
level or domain knowledge, but that are not prac
ontology-based application development. We can i
this problem with the SOSA/SSN ontology [43], a W
ommendation which allows users to represent sens
Although this ontology provides several ontology m
intended to supply a lightweight ontology version
users who do not need extensive axiomatization n
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ed entities, it still contains complex representations.
ple, to represent the time interval when a sensor ob-
was measured, users can employ the sosa:Obser-

lass and sosa:phenomenomTime property. Such prop-
the time:TemporalEntity class as range which is reu-
the W3C Time ontology [17]. This class has a

erval subclass which can be related (using the time:
ning and time:hasEnding properties) to two instants
time:Instant). The first instant represents the start
terval and the second represents its end, each in-
ust be represented by the time:Instant class which
several datatype properties describing the tempo-
ion of the interval (e.g. time:inXSDDateTimeStamp).
, simple applications that require just the start and
n observation do not require such a verbose mech-
d could be simplified by creating API abstractions
f the standard representation.
y W3C recommendations and well-known ontolo-
complex mechanisms to describe data. Therefore,

g mechanisms to automatically translate a heavy-
ntology into a lightweight version requires to be in-
d (e.g., following existing work for identifying the
vant ontology concepts [78]; or methods for graph
zation [81, 12]) . This translation would be useful to
the API generation and also to provide developers
duced version of the ontology prior to consuming
ata.
resource path prediction. Some of the analyzed
gies allow automatically defining basic API paths,
hers allow their customization. We consider that
lenge is the prediction of relevant paths based on
available in a KG. This would help automatically
g the most relevant resources in a KG, based on
r number of connections, frequency or other metrics
ph theory and network analysis [29] e.g. centrality,
vity, community detection etc. [48]. In this predic-
ario, using the ontology is relevant since data need
the structure defined by it. Automatically generat-
ueries necessary to implement the methods of each
API path is also a challenge that still needs to be

d.
validation and testing. Following a Test Driven
ment (TDD) [4] approach is a common practice in
icationDevelopment field. Therefore, applying such
pproach toAPIs helps ensuring that APIs are aligned
ir functional requirements, allowing developers to
the permissions granted to users when executing
perations. TDD allows developers creating test re-
defining the API resource paths together with their
operations. Users can then implement the missing
ality and run the API tests until they pass, refining
ratively in case of errors. One initial effort in this
has been proposed in OBA, allowing users to pro-
perform automated unit tests to evaluate the API
t are automatically generated. However, these tests
and they only support GET requests.

7. Conclusions
The growing number of Knowledge Graphs on t

reaffirms the great importance they have within the b
strategies of public and private organizations. Eas
consumption by application developers is a big ch
since most developers are not sufficiently aware of
tic technologies and find it difficult to develop appl
for which KG data can be exploited.

This article contributed with a systematic litera
view concerning API-based solutions for KGs consu
We proposed two comparison frameworks to analyze
isting specifications, technologies and tools which
ment them. We presented, compared and discussed a
to ease KG consumption through APIs; and we fou
most of the existing research works focus on API gen
from queries whereas recently some tools have been
ing how to generate APIs from OWL ontologies.

Our results indicate the need for improvements in
search field. To this end, the challenges we outlined
some ideas to alleviate some of the limitations we f
this work. We believe that it is necessary for the S
Web community to discuss these challenges and joi
to propose other alternatives that could ease the wor
velopers when generating applications with ontolog
data. Many developers today are not familiar with S
Web technologies and, as a consequence, the great p
of the semantic representations and data has not be
exploited. Therefore, as a community it becomes cru
we prioritize application developers as the key user
KGs and find new solutions that allow bridging the
tween developers and Semantic Web experts.
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Table 5
Studies resulting from the literature review process

Title Technology / Tool / Spe

., Varga J. and Almar R. [30] GraphQL Schema Generation for Data-
Intensive Web APIs

Ontology2GraphQL

G. et al. [52] DRAS-TIC linked data: Evenly distributing
the past

Trellis LDP

D. et al. [103] Facilitating the exploitation of Linked open
Statistical data: JSON-QB API requirements
and design criteria

JSON-QB API

. et al. [67] An Open Semantic Framework for the Indus-
trial Internet of Things

OSF

-Peñuela A. and Hoekstra R. [70] grlc makes GitHub taste like linked data APIs GRLC and Swagger
nd Liu Y. [101] Using Linked Data in a heterogeneous Sensor

Web: challenges, experiments and lessons
learned

ELDA and LDA

. [10] A method and example system for managing
provenance information in a heterogeneous
process environment-a provenance architec-
ture containing the Provenance Management
System (PROMS)

ELDA and LDA

., Panziera L. and Pedrinaci C. [20] A BASILar approach for building web APIs
on top of SPARQL endpoints

BASIL and Swagger

i A.C. et al. [9] ICyrus: A semantic framework for biomedical
image discovery

Virtuoso and Pubby

. and Luís Oliveira J. [66] COEUS: "semantic web in a box" for
biomedical applications

Pubby

ler M. and Gütl C. [60] Hydra: A vocabulary for hypermedia-driven
web APIs

Hydra

et al. [61] Identification and utilization of components
for a linked open data platform

Virtuoso and SPARQL P

z N. and Piedra N [72] A Linked Data approach to guarantee the se-
mantic interoperability and integrity of uni-
versity academic data

Apache Marmotta

dix
erature results
e 5 presents the studies resulting from the literature
rocess together with the authors and the resulting
gies, tools, or specifications that we analyzed in this

ery Examples
ARQL example
1 presents the SPARQL query to get the instance of
iness "CortField".

Listing 1: SPARQL query example
escom:< h t t p : / / vocab . c i u d a d e s a b i e r t a s . e s / d e f / comer
o −come r c i a l #>
c :< h t t p : / / p u r l . o rg / dc / e l emen t s / 1 . 1 / >
l o c a l B u s i n e s s

a l B u s i n e s s a escom : Loca lComerc i a l .
a l B u s i n e s s dc : i d e n t i f i e r " Co r t F i e l d ID "

alder example
2 shows an excerpt of the OAS configuration, us-

query and JSON-LD context that allows getting th
and capacity of a local business.

Listing 2: Query example in Walder
x−walder −query :

g r aphq l −query : >
{
name @single
c a p a c i t y @single
( i d : $ i d )

}
j son −ld−c o n t e x t : >
{

" escom " : " h t t p : / / vocab . c i u d a d e s a b i e r t a s . e s /
merc io / t e j i d o −come r c i a l # " ,
" dc " : " h t t p : / / p u r l . o rg / dc / e l emen t s / 1 . 1 / " ,
" name " : " escom : nombreComerc ia l " ,
" c a p a c i t y " : " escom : a f o r o " ,
" i d " : " dc : i d e n t i f i e r "

}

B.3. GRLC example
List 3 shows the "localbusineess.rq" query an

with the SPARQL notation to describe the operation
mented by the query, the URL of the SPARQL endpo
a summary of the operation.
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: Diagram of the ontology for the representation of data from the census of local business premises and terr
eir associated economic activities and activity licenses. Elements in blue correspond to the new classes defined

Listing 3: GRLC query example
ry : Re t u r n s t h e i n s t a n c e o f " C o r t F i e l d " l o c a l b u s i
i n t : h t t p : / / example . com / s p a r q l
d : GET
escom:< h t t p : / / vocab . c i u d a d e s a b i e r t a s . e s / d e f / comer
o −come r c i a l #>
c :< h t t p : / / p u r l . o rg / dc / e l emen t s / 1 . 1 / >
l o c a l B u s i n e s s

a l B u s i n e s s a escom : Loca lComerc i a l .
a l B u s i n e s s dc : i d e n t i f i e r " Co r t F i e l d ID "

tology Diagrams
agram of the ontology for the census of
cal businesses
re 4 shows the diagram of the ontology mentioned
otivating example presented in subsection 2.1. For
ty purposes, the class and property names in both
s correspond with the English values of the ontology
’ labels. However, the naming strategy followed in
logy uses Spanish terms. The English version of the

ontology documentation is available on the Web.26

C.2. Diagram of the ontology for the data cu
representation of census of inhabitants

Figure 5 shows the diagram of shows the Popula
Age data cube represented by the ontology mentione
motivating example of subsection 2.2. The diagram
remaining six data cubes defined in this ontology ar
able in its HTML documentation.27 For readability p
we translated to English the original names of the da
instances (ex:DSD_PopulationByAge and ex:DS_Populat

and the measure employed to represent the number
sons (espad-medida:persons-number). However, the
strategy followed in this ontology uses Spanish term

26http://vocab.ciudadesabiertas.es/def/comercio/tejido-com
index-en.html

27http://vocab.ciudadesabiertas.es/def/demografia/
cubo-padron-municipal/index-en.html
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