Journal Pre-proof

JOURNAL OF

Crossing the chasm between ontology engineering and application e scnantics
development: A survey SCIENCE

SERVICES &

AGENTS ON
Paola Espinoza-Arias, Daniel Garijo, Oscar Corcho WORLD WIDE WEB

PII: S1570-8268(21)00030-5

DOI: https://doi.org/10.1016/j.websem.2021.100655
Reference: WEBSEM 100655

To appear in: ~ Web Semantics: Science, Services and Agents on

the World Wide Web

Received date: 14 January 2021
Revised date: 26 March 2021
Accepted date: 2 June 2021

Please cite this article as: P. Espinoza-Arias, D. Garijo and O. Corcho, Crossing the chasm between
ontology engineering and application development: A survey, Web Semantics: Science, Services
and Agents on the World Wide Web (2021), doi: https://doi.org/10.1016/j.websem.2021.100655.

This is a PDF file of an article that has undergone enhancements after acceptance, such as the
addition of a cover page and metadata, and formatting for readability, but it is not yet the definitive
version of record. This version will undergo additional copyediting, typesetting and review before it
is published in its final form, but we are providing this version to give early visibility of the article.
Please note that, during the production process, errors may be discovered which could affect the
content, and all legal disclaimers that apply to the journal pertain.

© 2021 Published by Elsevier B.V.

https://doi.org/10.1016/j.websem.2021.100655
https://doi.org/10.1016/j.websem.2021.100655

Crossing the Chasm Between Ontology Engineering and Application

Development: A Survey

Paola Espinoza-Arias®*, Daniel Garijo® and Oscar Corcho?

“Ontology Engineering Group, Universidad Politécnica de Madrid, MAD, Spain

b Information Sciences Institute, University of Southern California, CA, United States

ARTICLE INFO ABSTRACT

Keywords:

Ontology

OWL

Ontology Engineering
Web API

Application Development
Knowledge Graph

The adoption of Knowledge Graphs (KGs) by public and private organizations to integrate and pub-
lish data has increased in recent years. Ontologies play a crucial role in providing the structure for
KGs, but are usually disregarded when designing Application Programming Interfaces (APIs) to en-
able browsing KGs in a developer-friendly manner. In this paper we provide a systematic review of
the state of the art on existing approaches to ease access to ontology-based KG data by application
developers. We propose two comparison frameworks to understand specifications, technologies and
tools responsible for providing APIs for KGs. Our results reveal several limitations on existing API-

based specifications, technologies and tools for KG consumption, which outline exciting research
challenges including automatic API generation, API resource path prediction, ontology-based API
versioning, and API validation and testing.

1. Introduction

Knowledge Graphs (KGs) have become a crucial asset
for structuring data and factual knowledge in private and
public organizations. Several prominent KGs have been gen-
erated over the years to improve search capabilities, empower
business analytics, ease decision making, etc. [48]. Indus-
try KGs have been created by companies like Google, Mi-
crosoft, Facebook, eBay, or IBM to make their services "smar-
ter" and add value to users [73]. Open KGs such as DBpe-
dia [64] cover a wide variety of domains, and crowdsourced
KGs like Wikidata [100] are actively maintained by an in-
ternational community of curators. Domain-specific KGs
have been used to open data by public administrations of
several countries (e.g. national administrations: US [46],
UK [87], and local administrations: Zaragoza in Spain [27],
Bologna in Italy [16]); by libraries (e.g. by the Spanish
[99], British [22], and French [89] National Libraries); by
the life sciences community (e.g., the Monarch initiative to
integrate data of genes, diseases, phenotypes, variants, and
genotypes across species [88], and DisGeNET [79] to de-
scribe data about genes and variants associated to human
diseases); among others.

Despite their adoption, KGs are still challenging to con-
sume by application developers. On the one hand, devel-
opers face a production-consumption challenge: there is a
gap between the ontology engineers who design a KG and
the application developers who want to consume its con-
tents [34]. KGs are commonly organized by ontologies [91],
which are used to structure data without ambiguities, pro-
vide shared meaning and infer new knowledge. Ontologies
are usually developed following well defined methodologies

*Corresponding author
[pespinoza@fi.upm.es (P. Espinoza-Arias); dgarijo@isi.edu (D.
Garijo); ocorcho@fi.upm.es (O. Corcho)
ORCID(S): 0000-0002-3938-2064 (P. Espinoza-Arias);
0000-0003-0454-7145 (D. Garijo); 0000-0002-9260-0753 (O. Corcho)

[15, 37, 56, 59], which identify use cases and competency
questions that drive their design. However, ontologies can
become complex, and the resources used in their develop-
ment (use cases, requirements, discussion logs, etc.) are of-
ten not made available to developers. As a result, developers
usually need to duplicate some of the effort already done by
ontology engineers when they were understanding the do-
main, interacting with domain experts, taking modeling de-
cisions, etc.

On the other hand, application developers face a techni-
cal challenge: many of them are not familiar with Seman-
tic Web standards such as OWL [69] and SPARQL [85],
and hence KGs based on Semantic Web technologies remain
hardly accessible to them [98]. Developers (and in particu-
lar web developers) are mostly used to data representation
formats like JSON [6]; and Application Programming Inter-
faces (APIs) for accessing their data. APIs allow the com-
munication and interaction between services without having
to provide details about how they are implemented. The de
facto architectural style for building APIs is the scalable and
resource-oriented REpresentational State Transfer (REST)
architectural style [33].

In order to address both data representation and tech-
nical challenges, multiple approaches have been proposed
in recent years by the Semantic Web community, ranging
from Semantic RESTful APIs [83] compatible with Seman-
tic Web and REST; to tools to create Web APIs on top of
SPARQL endpoints [41, 20, 70, 84]. Outside the Semantic
Web community, approaches like GraphQL [35] are gaining
traction among developers due to their flexibility to query
and retrieve data from public endpoints. However, to the
best of our knowledge there is no framework to compare the
capabilities and differences of these existing efforts.

The contribution of this paper is a systematic literature
review to analyze and compare existing API-based specifi-
cations and tools for 1) making KG data more accessible to
application developers, and 2) helping ontology engineers

P Espinoza-Arias et al.: Preprint submitted to Elsevier

Page 1 of 24

Crossing the Chasm Between Ontology Engineering and Application Development

guide application developers in KG consumption. In our
review, we introduce two comparison frameworks for an-
alyzing existing specifications, technologies and tools de-
signed to address any of these points; and outline their lim-
itations and remaining research challenges. Our effort goes
beyond existing guidelines for building Semantic RESTful
Technologies [13], as we discuss the features of nine differ-
ent specifications and nineteen technologies and tools rather
than recommending one of them based on a series of require-
ments.

The rest of the paper is structured as follows. Section
2 describes three typical examples that highlight the chal-
lenges introduced above and motivate the research questions
addressed in our survey. Section 3 follows with an explana-
tion of the methodology used in our literature review. Sec-
tion 4 describes the different specifications, technologies and
tools found; and Section 5 compares their features and capa-
bilities. Finally, we answer our research questions and dis-
cuss open research challenges in Section 6, and conclude the
paper in Section 7.

2. Motivating Examples and Research
Questions

In order to illustrate the challenges described in the pre-
vious section, we use one of the many open data projects
being carried out in Spain. Ciudades Abiertas,' (i.e., Open
Cities) is a project where several Spanish cities (A Coruiia,
Madrid, Santiago de Compostela and Zaragoza) are working
together to create a shared set of ontologies to provide ho-
mogeneous data access in their open data portals and APIs.
A total of eleven ontologies have been created in several do-
mains, like local business census, inhabitant demographics,
budgets, etc.

Thanks to this initiative, city councils, industry and citi-
zens have been able to use open data to develop applications
e.g., to display the empty retail units in a specific city area,
to showcase the education level of the inhabitants of a city
regarding a specific year, district, sex or age range; etc.

2.1. Accessing and manipulating KG data

For our first example we will focus on an ontology for
representing data about local businesses (see Appendix C.1
for an overview diagram).” This ontology is easy to follow
by an ontology engineer, as it consists of four main concepts
(local business, opening license, terrace, shopping area), some
datatype and object properties (economic activity type, oper-
ational time period, area, capacity, etc.), and SKOS concepts
which represent thesauri terms (e.g. thesaurus of the situa-
tion type of local businesses®). However, developers who
intend to build an application with data described accord-
ing to this ontology may not consider it so simple. These
developers may have several questions prior to consuming

1https://ciudadesabiertas.es/

2http://vocab.ciudadesabiertas.es/def/comercio/tejido—comercial

3http://vocab.limkeddata,es/datosabiertos/kos/comercio/
tipo-situacion

data, such as how to retrieve common data patterns needed
for their applications (e.g. empty retail units)?; or how to
operate with the semantic data serializations resulting from
query execution (in a format like JSON)?

2.2. Understanding complex ontology-based data

For our second example (see Appendix C.2 to see an
overview diagram), let us consider an ontology for repre-
senting the census of inhabitants of an area,* which has a
certain degree of complexity even for experienced ontology
engineers. The ontology reuses the RDF Data Cube Vocab-
ulary [19], which represents multidimensional data such as
official statistics. The ontology also involves understanding
a large amount of concepts (dimensions, measures, slices,
etc.), properties and lists of concepts that may be challeng-
ing for application developers who are not used to this type
of representation.

In this scenario, the ontology engineers who designed
the open data KG may be concerned on how to expose data
represented with this ontology in a developer-friendly man-
ner through an API. Therefore, they may have several ques-
tions like the classes that should be exposed to ensure us-
ability; the API paths should be provided to ease data cube
access; or whether dimensions, measures, etc. should be in-
cluded in those API paths.

2.3. Dynamic data needs

Some city councils are implementing an open-data-by-
default policy, which usually implies that they are already
the main consumers of their own open data [27]. Application
developers inside the city council will thus not only perform
read operations on the data, but will also need to perform
changes.

Developers may also have some additional questions be-
cause data usually exposed through APIs (e.g. a resource or
a list of resources) may not enough for their needs. There-
fore, these developers may need to know how to define API
calls or queries to handle specific data for their applications
(e.g. to get local businesses in active situation that have a
terrace with an annual operating period).

2.4. Research questions

The examples described above showcase three typical
scenarios that ontology engineers and application develop-
ers face often. Similar scenarios may occur when develop-
ers need to consume KG data structured following an ontol-
ogy or an ontology network (i.e., ontology-based KG data).
Each of the three examples contributes to motivate a research
question (RQ), as described below.

RQI: How can KG consumption by application devel-
opers be facilitated ?°

e RQI.1: Arethere any API-based methodologies/meth-
ods / processes to ease KG consumption by applica-
tion developers?

4http://vocab.ciudadesabiertas.es/def/demografia/
cubo-padron-municipal

SMethods and their corresponding implementations (tools/technolo-
gies) have been separated into two sub-research questions for clarity.

P Espinoza-Arias et al.: Preprint submitted to Elsevier

Page 2 of 24

Crossing the Chasm Between Ontology Engineering and Application Development

e RQI.2: Are there any technologies that ease / auto-
mate the execution of the API-based methodologies /
methods / processes to consume KGs?

RQ2: How can ontology engineers be guided to create
APIs that ease ontology-based KG consumption?

e RQ2.1: Are there any methodologies / methods / pro-
cesses to help ontology engineers creating APIs that
ease ontology-based KG consumption?

e R(Q2.2: Are there any technologies that ease / auto-
mate the execution of methodologies / methods / pro-
cesses to help ontology engineers creating APIs that
ease ontology-based KG consumption?

RQ3: Are there any tools to help application developers
creating APIs on demand?

3. Survey Methodology

In this section we describe the process followed to iden-
tify approaches and associated technologies that have been
used to expose ontology-based KG data as APIs. Our method-
ology is based on the guidelines defined by Kitchenham and
Charters [58] for conducting systematic literature reviews.
These guidelines define a process which consists of three
phases namely planning, conducting and reporting the re-
view.

3.1. Planning the review

The main objective of this phase is to describe how the
review has been carried out. To do so, the following points
should be addressed: (a) the research questions; (b) the source
selection and search; (c) the inclusion and exclusion criteria;
and (d) the selection procedure. Since the research ques-
tions have already been defined in subsection 2.4, this sec-
tion elaborates points (b)-(d).

3.1.1. Source selection and search

We used Scopus [24], a well-known database of peer-
reviewed literature, to perform our review. Scopus contains
specialized journals and venues that are relevant for our sur-
vey such as:

e Journals: Semantic Web Journal: Interoperability, Us-
ability, Applicability (SWJ), Journal of Web Seman-
tics: Science, Services and Agents on the World Wide
Web (JWS), among others.

e Proceedings of Conferences: International Semantic
Web Conference (ISWC), World Wide Web Confer-
ence (WWW), Extended Semantic Web Conference
(ESWC), SEMANTICS, Conference on Software En-
gineering and Knowledge Engineering (SEKE), among
others.

We queried Scopus for potential candidates using the fol-
lowing query to search in titles, abstracts and keywords of re-
lated articles: (TITLE-ABS-KEY ((ontology OR OWL OR

"linked data" OR "semantic data" OR "knowledge graph")
AND (API OR "web API") AND (tool OR technology OR
method OR methodology OR process))).

To avoid systematic bias [58], we included non-scientific
literature describing relevant work in this area such as related
W3C Recommendations and Technical Specifications, and
existing tools developed by the Semantic Web community:

e Linked Data Platform (LDP) [2]

e Linked Data API specification (LDA) [39]
e Solid [5]

e Pubby [18]

e Puelia [40]

e ELDA [25]

e Linked Data Templates [54]

We also contacted experts and researchers working in the
area and asked them whether they knew of any additional
efforts, including unpublished results or ongoing work. As
aresult we collected the following additional efforts:

e Linked Open Data Inspector (LODI) [32]
e AtomGraph Processor [55]
e RESTful-API for RDF data (R4R) [3]

o Restful API Manager Over SPARQL Endpoints (RA-
MOSE) [21]

o OWL20OAS Converter [44]

e Ontology Based APIs Framework (OBA) [38]
e Community Solid Server [96]

e Walder [47]

e LDflex [97]

3.1.2. Exclusion and inclusion criteria
The standardized exclusion (EC) and inclusion (IC) cri-
teria for scientific literature review was defined as follows:

e ECI1: articles not written in English.

e EC2: articles not describing a methodology / method
/ process for API generation from ontologies / Linked
Data / Knowledge Graphs.

e EC3: the full-text of articles does not give details about
the methodology / method / process.

e EC4: articles with an extended version that presents
more details about the same methodology / method /
process.

e ECS5: articles referring to semantic annotation of APIs.

P Espinoza-Arias et al.: Preprint submitted to Elsevier

Page 3 of 24

Crossing the Chasm Between Ontology Engineering and Application Development

e EC6: articles which reuse a methodology / method /
process but do not make any changes to it.

e EC7: duplicated articles (when retrieved from the data-
base).

e EC8: articles describing programming APIs for han-
dling RDF.

e ICI: articles including open source code or free-access
demo (if a software tool is presented in the article).

The exclusion and inclusion criteria for selection of non-
scientific literature, unpublished, or ongoing work were:

e EC9: works not written in English

e EC10: works not describing the methodology / method
/ process followed to make available Knowledge Graph
data represented with ontologies as APIs.

e IC2: works providing the source code or a demo with
free access (if software is described or included in a
work).

3.1.3. Selection procedure

This process was carried out by one of the authors and
was validated by the rest. The validation consisted on sev-
eral meetings where the authors discussed the findings and
resolved any potential differences.

The literature selection was manually performed in three
sequential phases described below. It should be noted that
the exclusion and inclusion criteria was applied on each phase
of our survey.

1. Phase 1: screening titles and abstracts that are rele-
vant for our study

2. Phase 2: diagonal reading (i.e., reading the introduc-
tion and conclusions, and looking for tables or images
throughout the study that highlight and provide rele-
vant information) of selected articles from the previ-
ous phase.

3. Phase 3: full text reading on the remaining articles
from the previous phase. As a result, the final set of
articles for our survey was retrieved.

Finally, for the selection process of non-scientific liter-
ature, unpublished, or ongoing work, we manually applied
the specific exclusion and inclusion criteria (EC0, EC10, and
1C2) to review the W3C Recommendations, Technical Spec-
ifications, and existing efforts suggested by the experts and
researchers we contacted.

3.2. Review process

Our search in Scopus retrieved 845 publications [28].
Figure la shows the phases of the literature selection pro-
cess and the number of articles resulting after applying the
exclusion and inclusion criteria in each phase. As a result,
our literature review process resulted in 13 articles, summa-
rized in Appendix A.

Figure 1b illustrates the process followed to select non-
scientific literature, unpublished, or ongoing work. We (the
authors of this survey) suggested 7 relevant works to be in-
cluded and the experts and researchers we contacted sug-
gested an additional 9 works. As a result of this second re-
view, 15 works were selected after applying the exclusion
and inclusion criteria (EC9, EC10, and IC2).

While performing Phases 2 and 3 of the literature selec-
tion process, we found several articles describing ontology-
based applications developed with well-known API libraries
for managing RDF such as rdflib,® Apache Jena [11], OWL
API [49], Sesame API (now RDF4J) [7], or JOPA [62]. We
discarded these libraries, according to EC8, as they aim to
manage RDF data and ontologies from a specific program-
ming language (Python, Java, etc.). Rather, we focus on Web
APIs that allow application developers to directly access data
without having to rely on a specific programming language,
queries, or transformation of the results obtained from an
endpoint. A further comparison on API libraries for manag-
ing RDF is presented in [63].

Similarly, we excluded LDflex [97] from our final se-
lection, as despite providing front-end developers with an
abstraction to RDF data and SPARQL queries, it is a library
for a specific programming language (JavaScript), and hence
out of the scope of this manuscript.

4. Approaches for APIs generation

In this section we present our findings in two main cate-
gories: 1) specifications, i.e., set of rules and descriptions on
how to define and implement APIs, and 2) technologies and
tools, i.e., systems that have been developed to implement
specifications or provide solutions for KG consumption.

4.1. Specifications

In our study, we found several descriptions of the de-
sign and details on how to implement APIs. In the following
subsections we begin by presenting a summary of those that
have been defined in the Semantic Web community.

4.1.1. SPARQL Protocol

The SPARQL Protocol and RDF Query Language [14]
describes the means for conveying SPARQL queries and up-
dates to a SPARQL processing service and returning the re-
sults via HTTP to the entity that requested them. It was the
first standard to provide access to RDF data. Therefore, most
of the projects that had published RDF data use this proto-
col through a server implementation. The latest version is
the SPARQL 1.1 Protocol [31].

4.1.2. SPARQL 1.1 Graph Store Protocol (GSP)
Protocol [74] that describes HTTP operations for manag-
ing a collection of RDF graphs from a SPARQL triplestore.
To this end, GSP describes a mapping between HTTP meth-
ods and SPARQL queries. This protocol can be viewed as a

6https ://github.com/RDFLib/rdflib

P Espinoza-Arias et al.: Preprint submitted to Elsevier

Page 4 of 24

Crossing the Chasm Between Ontology Engineering and Application Development

a) Literature selection process

b) Non-scientific literature, unpublished, or ongoing work
selection process

{

Scopus

NN

Authors

Experts and
Researchers

Figure 1: a) Literature selection process includes reviewing the articles from Scopus in three phases: Phase 1) Screening titles
and abstracts, Phase 2) Diagonal reading, Phase 3) Full text reading. The exclusion and inclusion criteria defined for scientific
literature were applied in each phase; as a result 13 articles were retrieved. b) Non-scientific literature, unpublished, or ongoing
work selection process includes reviewing works suggested by the authors of this survey and the experts contacted. After applying
the exclusion and inclusion criteria, 15 works were obtained. Summarizing, a total of 28 works resulted from the selection process.

lightweight alternative to the SPARQL 1.1 protocol in com-
bination with the full SPARQL 1.1 Query and SPARQL 1.1
Update languages.

4.1.3. Linked Data API (LDA)

Specification that defines a configurable API layer in-
tended to support the creation of simple RESTful APIs over
RDF triplestores [39] . This configuration must be provided
by means of an RDF file that follows a specific vocabulary
and processing model to describe the SPARQL endpoint,
variables, pagination, queries and all the details needed for
the API generation.

4.1.4. Hydra Vocabulary

Lightweight vocabulary designed to create hypermedia-
driven Web APIs [60]. Hydra defines a set of common con-
cepts to create generic APIs; enabling servers to advertise
valid state transitions to a client. Clients can use this in-
formation to construct HTTP requests to achieve a goal by
modifying the state of the server.

4.1.5. Linked Data Platform (LDP)

Specification that defines a set of rules for HTTP oper-
ations on web resources to provide an architecture for read-
write Linked Data on the Web [2]. LDP provides details on
how to configure HTTP access to manage resources (HTTP
resources) and containers (collections of resources). Resour-
ces can be RDF sources and non-RDF sources (e.g. binary
or text documents). Containers are defined only for RDF re-
sources and they can be Basic, Direct, and Indirect. Basic
containers contain triples of arbitrary resources, and must
be described by a fixed structure using and a specific vocab-
ulary.” Direct containers specialize Basic containers by in-
troducing membership triples which allows the subject and

7https ://www.w3.org/ns/ldp#

predicate of the triple to be configured using the container
definition. Indirect containers are similar to Direct contain-
ers but they also are capable of having members whose ob-
jects have any URL

4.1.6. Linked Data Templates (LDT)

Protocol that specifies how to read-write Linked Data
based on operations backed by SPARQL 1.1 [54]. LDT de-
fines an ontology with the core concepts and properties re-
quired to describe applications. The ontology must be reused
to design application ontologies that contain API paths, op-
erations, SPARQL queries, and state change instructions for
the desired application. State changes intend to cover the hy-
permedia definition provided in the REST architecture [33],
which states that web resources should specify their next
state.

4.1.7. Social Linked Data specification (Solid)

Specification [5] that describes implementation guide-
lines for servers and client applications to enable decoupling
data from services. Solid provides support for a decentral-
ized Web where users can store their personal data on Solid-
compliant servers and choose which applications can access
such data. Likewise, Solid-compliant applications allow man-
aging any user’s data stored on the aforementioned servers.
This specification extends the Linked Data Platform to pro-
vide a REST API for read and write operations on resources
and containers. Solid also provides a WebSocket-based API
with a publish/subscribe mechanism to notify clients of chan-
ges affecting a given source in real time.

In addition, during the review process we found other
specifications defined by the Software Development com-
munity and that are relevant for our study since they are
reused in solutions proposed by the Semantic Web commu-

P Espinoza-Arias et al.: Preprint submitted to Elsevier

Page 5 of 24

Crossing the Chasm Between Ontology Engineering and Application Development

nity.

4.1.8. OpenAPI Specification (OAS)

Formerly known as the Swagger Specification, OAS [50]
defines how to describe REST APIs in a programming lan-
guage-agnostic interface in order to allow humans and ma-
chines to discover and understand the details of a service.
OAS has become the choice of reference by many develop-
ers due to its community support and the amount of available
tools for creating API documentation, server and client gen-
eration and testing.

4.1.9. GraphQL

Specification [35] that uses a declarative query language
to allow clients accessing the data they need on demand.
In GraphQL, queries define the available entry points for
querying a GraphQL service. GraphQL has become popular
among the developer community as an alternative to REST-
based interfaces, as it presents a flexible model rather than
a static API. However, developers must be familiar with the
schema used to represent the queried data.

4.2. Technologies and Tools

The state of the art describes several technologies and
tools for generating APIs to enable KG consumption. In the
following subsections we present a brief description of each
solution.

4.2.1. KG stores

Several graph databases (e.g. Neo4j [71]) and triple-
stores (e.g. Fuseki [1], Blazegraph [92], GraphDB [75]) can
be used for KG storage. As a representative example (result-
ing from our literature review) we include OpenLink Virtu-
0s0 [26], a hybrid data store and application server support-
ing the SPARQL 1.1 Protocol that has been widely used in
the Semantic Web community. Virtuoso can be configured
as an implementation backend on some of the specifications
presented in the previous section, e.g., as a Linked Data Plat-
form client and server.

4.2.2. Pubby

Linked Data compliant server that adds a simple HTML
interface and dereferenceable URIs on top of SPARQL end-
points [18]. Thanks to Pubby, users can navigate the con-
tents of an endpoint interactively in their browser, without
having to issue any SPARQL queries. Pubby handles con-
tent negotiation and includes an extension to describe the
provenance of each request made to the server [45].

4.2.3. Puelia

PHP implementation of the Linked Data API [40]. Puelia
allows handling incoming requests by reading a configura-
tion file and executing the corresponding SPARQL queries
defined in such file. The RDF data retrieved from the SPAR-
QL endpoint is returned to the client in several formats (e.g.
Turtle, JSON, etc.).

4.2.4. Epimorphics Linked Data API Implementation
(ELDA)

Javaimplementation of the Linked Data API [25]. ELDA
provides a way to create APIs to access RDF data using
RESTful URLSs; as well as a mechanism to create resource-
specific views for browsing these data. As with Puelia, in
ELDA all URLs are translated into SPARQL queries to get
data from a target SPARQL endpoint.

4.2.5. Linked Open Data Inspector (LODI)

Linked Data server that provides HTML views and con-
tent negotiation of resources on a SPARQL endpoint [32].
LODI was inspired by Pubby, but it includes extra function-
alities such as more detailed and customizable views for de-
velopers, map-based location graphs in case resources con-
tain geospatial attributes, automatic detection and display of
image files, and custom configuration for host portal infor-
mation.

4.2.6. Apache Marmotta

Linked Data server [36] compliant with the SPARQL
Protocol 1.1 (providing a SPARQL endpoint). Marmotta
was one of the first ools which implemented the Linked Data
Platform specification, with support for LDP Basic Contain-
ers and content negotiation. Moreover, Marmotta is a Linked
Data development environment which includes several mod-
ules and libraries for building Linked Data applications.

4.2.7. Building Apis SImpLy (BASIL)

Framework designed for building Web APIs on top of
SPARQL endpoints [20]. In BASIL, a set of SPARQL que-
ries and their related endpoints must be defined. In addi-
ton, API parameters can be included according to a SPARQL
variable naming convention. This convention allows using
parameters in configurable templates to parametrize SPARQL
as an APIL. Then, BASIL generates the API paths to retrieve
the data and the Swagger specification documentation of the
APIL.

4.2.8. Git repository linked data API constructor
(GRLC)

Server implementation that takes SPARQL queries and
translates them to Linked Data Web APIs [70]. These queries
can be stored in GitHub repositories, local filesystem, or
listed as online available URLs into a YAML file. In ad-
dition, these queries must include SPARQL decorators® (or
tags) to add metadata and comments, e.g. to define the spe-
cific HTTP method to be executed, the query-specific end-
point, pagination, among others. Then, GRLC takes each
query and translates it into one API operation and generates
a JSON Swagger-compliant specification and a Swagger-UI
to provide the interactive API documentation. In addition,
GRLC has recently included a mechanism (provided by SPA-
RQL Transformer [65]) to translate a JSON structure, de-
fined according to specific rules, into a SPARQL query. This
mechanism allows transforming SPARQL query results into

8https ://github.com/CLARIAH/grlc/tree/dev#decorator-syntax

P Espinoza-Arias et al.: Preprint submitted to Elsevier

Page 6 of 24

Crossing the Chasm Between Ontology Engineering and Application Development

a JSON serialization.

4.2.9. AtomGraph Procesor

Linked Data processor and server for SPARQL endpoints
[55] (earlier known as Graphity [53]). AtomGraph uses an
ontology for HTTP request matching and response building.
This ontology contains Linked Data Templates that map URI
templates to the SPARQL queries needed to request match-
ing and response building. The SPARQL queries are in-
cluded into the application ontology using the SPIN-SPARQL
Syntax model.’

4.2.10. JSON-QB API

Interface for developers that reuses statistical data stored
as RDF Data cubes [103] [90]. JSON-QB only works for
data represented with the W3C RDF Data Cube vocabulary,
and has evolved into CubiQL,'? a GraphQL service for query-
ing multidimensional Linked Data Cubes.

4.2.11. Open Semantic Framework (OSF)

Framework designed to create and manage domain spe-
cific ontologies; and to maintain, curate and access the stored
data [67]. Data access is enabled through a REST API based
on prefabricated SPARQL query templates.

4.2.12. Trellis

Linked Data server which supports high scalability, large
quantities of data, data redundancy and high server loads
[51]. Trellis follows the Linked Data Platform specification
for resource management and has several extensions'! im-
plementing persistence layers and service components e.g.
Trellis-Cassandra for distributed storage. Trellis has been

included in the Solid Project'? Test Suite.!?

4.2.13. Ontology-Based APIs (OBA)

Framework designed to generate an OpenAPI specifi-
cation from an ontology or ontology network (specified in
OWL) [38]. Once a target OpenAPI specification is gener-
ated, OBA also provides the means to create a REST API
server to handle requests, deliver the resulting data in JSON
format (following the ontology structure) and validate the
API against an existing KG. OBA automatically generates
SPARQL templates for common operations from the source
ontology; but also accepts custom queries needed by users.
Custom queries are specified following the conventions es-
tablished by GRLC and Basil.

4.2.14. RESTful-API for RDF data (R4R)
Template-based framework that creates RESTful APIs
over SPARQL endpoints using customized queries [3]. R4R
is both a server and a working environment: once started,
R4R runs a web service that can be updated when new re-
sources are added without having to restart the server. The

9https ://spinrdf.org/sp.html
10https://github.com/Swirrl/cubiql
11https://github.com/trellis—ldp/trellis—extensions
12https://solidproject.org/
13https://github.com/solid/test—suite

workspace in R4R defines all available resources to its ser-
vice, and contains the SPARQL queries and the templates
required for managing input queries and resources obtained
from a target endpoint.

4.2.15. OWL20AS

Converter designed for translating OWL ontologies into
OpenAPI Specification documents [44]. This tool generates
API paths for the concepts of the ontology and their schemas.
In addition, OWL20AS provides JSON-LD context for the
aforementioned schemas which is based on the object and
data properties defined in the ontology.

4.2.16. Ontology2GraphQL

Web application that generates a GraphQL schema and
its corresponding GraphQL service from a given RDF On-
tology [30]. To this end, the ontology for data represen-
tation must be manually annotated with a GraphQL Meta-
model (GQL), which includes several classes representing
the GraphQL types that compose a GraphQL schema (e.g.
object, list, enumeration, among others). Therefore, each
ontology class is mapped to an instance of GQL Object class.
Object and datatype properties are defined as instances of
GQL ObjectField and ScalarField classes respectively. Fi-
nally, there are several GQL properties required to specify
more details on properties, for example, the GQL hasMod-
ifier property can be used to define that an object property
will manage an array of the elements.

4.2.17. Restful API Manager Over SPARQL
Endpoints (RAMOSE)

Framework designed to create REST APIs over SPARQL
endpoints through the creation of textual configuration files
[21]. Such files enable querying SPARQL endpoints via
Web RESTful API calls that return either JSON or CSV-
formatted data. To provide this configuration, a hash-format
syntax'* based on a simplified version of Markdown is re-
quired.

4.2.18. Community Solid Server

Server implementation of the Solid specifications [96].
It aims to provide support for data pods, which allows storing
personal data in an accessible manner. Solid makes it pos-
sible to decouple personal data storage from services, and
therefore users are free to decide which applications can ac-
cess to their pods. As a result, users can keep total control
of their data.

4.2.19. Walder

Framework that allows configuring a website or Web API
on top of Knowledge Graphs (e.g. SPARQL endpoint, Solid
pod, etc.) [47]. To this end, users must define a configu-
ration file with the details of the data source, paths, opera-
tions, etc. allowed for the API. Walder reuses the Comunica
framework [93], more precisely the graphql-ld-comunica en-

]4https://github.com/opencitations/ramose#
Hashformat-configuration-file

P Espinoza-Arias et al.: Preprint submitted to Elsevier

Page 7 of 24

Crossing the Chasm Between Ontology Engineering and Application Development

gine, ' to execute the queries needed to get the required data.
Walder uses GraphQL-LD [94], a query language which al-
lows extending GraphQL queries with a JSON-LD context.
Comunica then takes the GraphQL queries and translates
them, based on the JSON-LD context, into SPARQL queries
to retrieve the desired data.

5. Analysis of specifications, technologies and
tools for API definition and generation

In this section we introduce the frameworks designed
to perform a systematic comparison of the specifications,
technologies and tools described in Section 4. We also dis-
cuss the results obtained when applying these frameworks
to compare the specifications, technologies and tools con-
sidered in this survey.

5.1. Criteria for comparing API specifications

Table 1 summarizes the set of criteria defined in the frame-

work to compare the existing specifications. These criteria
highlight relevant information to help us to answer the re-
search questions outlined in Section 2.4 and to describe the
research challenges discussed in Section 6. We are inter-
ested in the year when specifications were created in order
to understand their evolution over time. We want to know if
specifications are officially recognized by an authority (i.e.,
whether they are a standard or not) or if they have just been
adopted by a community without going through a standard-
ization process. We also consider relevant the endpoints sup-
ported by specifications, since this allows detecting the dif-
ferent KG data sources (e.g. RDF data dump, SPARQL end-
point, among others). We also consider configuration for-
mats, as they give us an idea of details needed to implement
a target specification.

In addition, we evaluate if specifications support con-
figurable queries, which indicate the degree of freedom of-
fered by a specification to manage specific data needs of an
application. We analyze the file formats (media types) that
developers must expect when using such specification, and
whether specifications consider developer-friendly formats
or not. We assess the operations for resource management
provided by a specification, i.e., create, read, update, delete
support (CRUD'®). We also take into account the authen-
tication techniques proposed by the specifications, since it
determines how the specification manages the access to the
API methods.

We consider the versioning support to understand whe-
ther a specification manages KGs that evolve over time, both
in terms of their contents and schema (ontology). We ana-
lyze the status codes, since they provide information of the
methods suggested by the specification in order to properly
provide details to clients about the execution of API calls.
We examine the resources supported by the specification, as
it allows us to understand if the specification manages single

15https://githubAcom/rubensworks/graphql-ld-comunica4js
161n this work, CRUD is understood as the HTTP POST, GET, PUT,
and DELETE operations.

Table 1
Comparison criteria for specifications
Criteria Description
Year Year the specification was made available
Standard Specification recognition type
Endpoint Type of point where resources are avail-

able and requests are submitted

Configuration The file format to be provided with the

format details of the specification

Configurable Support for customized queries

queries

Media types File formats supported for data inter-
change

Operations Allowed methods for managing resources

Authentication Allowed methods to verify the identity of
a user or process

Support for version management

Type of response messages to a client's
request

Versioning
Status codes

Resources Type of resources allowed such as single,
collection, or nested resources
Reference The provenance of the specification de-

tails.

resource, a collection of resources, or nested resources (i.e.,
if a resource contains a subcollection of resources). Finally,
reference provides information about the origin of the spec-
ification details provided in this comparison for provenance
purposes.

5.2. API specification comparison

Table 2 shows the comparison between the specifications
according to each criterion defined in subsection 5.1. The
symbol "-" indicates that the criterion is not described or de-
tailed in the specification source.

Specifications began to appear in the year 2008, when
the SPARQL protocol 1.0 [95] was defined; and span until
2019, when the latest Solid specification draft has been made
available. Three of the analyzed specifications are W3C Rec-
ommendations (SPARQL 1.1 Protocol, Graph Store Proto-
col, and Linked Data Platform) and three are not recom-
mendations but were defined in W3C Community groups:
Linked Data Templates by the Declarative Linked Data Apps
group,'” Hydra by the Hydra group,'® and Solid by the Solid
Community group.'® OpenAPI and GraphQL are now con-
sidered de facto specifications, as despite not being officially
recognized by a standardization body, they are widely used
by the developer community [80].

17https://www.w3.org/community/declarative—apps/
18https://www.w3.org/community/hydra/
19https://www.w3.org/community/solid/

P Espinoza-Arias et al.: Preprint submitted to Elsevier

Page 8 of 24

’|e 19 seuy-ezouidsy ¢

42142S]5 0} pannugns Jutidag

¥T 40 6 98ed

Table 2
Analysis of API Specifications according to our comparison framework.
Specification Year Standard End Confi ion Configurable Media types Operations Authentication Versioning Status codes Resources Reference
format queries
SPARQL 2008 W3C SPARQL - Yes RDF formats and GET and HTTP authenti- - HTTP Sta- Single https://www
Protocol Recom- Endpoint XML, JSON, or POST cation tus codes SPARQL w3.org/TR/
menda- CSV/TSV [RFC2616 URL sparql11-protocol
tion specification] endpoint
Linked Data 2010 De facto SPARQL RDF format Yes HTML, Turtle, GET - - - Single, https://github.
API Endpoint JSON, RDF+XML, multiple com/UKGovLD/
XML and XSLT linked-data-api
OpenAPI 2011 De facto Any JSON and Yes Any in compliance CRUD, HTTP authenti- Yes HTTP Status Single, https
Specification YAML with RFC6838 spec- HEAD, OP- cation, OAuth2, Codes multiple, //github.com/OAl/
ification (the most TIONS, APl key, and nested OpenAPI-Specification
common is JSON) PATCH, and OpenIlD Connect
TRACE Discovery
SPARQL 1.1 2013 W3C SPARQL - Yes Turtle, RDF/XML CRUD HTTP authenti- - HTTP Sta- Single https://www.
Graph Store Recom- Endpoint or N-Triples cation tus codes SPARQL w3.org/TR/
Protocol menda- [RFC2616 URL sparql11-http-rdf-update
tion specification] endpoint
Hydra 2013 No - JSON-LD - JSON-LD CRUD - - HTTP Status Single, hEEp: / /v
Codes multiple hydra-cg. com/
spec/latest/core
Linked Data 2015 W3C Linked - Yes RDF (Turtle is re- CRUD, HTTP authenti- - HTTP Status Single, https://www.w3.org/
Platform Recom- Data quired) and non- HEAD, OP- cation Codes multiple, TR/1dp
menda- server RDF formats like TIONS, and nested
tion HTML and JSON PATCH
GRAPHQL 2015 De facto Any GRAPHQL Yes Any serialization for- Query, muta- - Not - Single https://spec
Spec Schema mat (the most com- tion, and sub- needed URL graphql.org/June2018
mon is JSON) scription endpoint
Linked Data 2016 No SPARQL RDF format Yes RDF format CRUD - - HTTP Status Single, https://atomgraph.
Templates Endpoint Codes multiple github.io/
Linked-Data-Templates
Solid 2019 No RDF data - Yes Any in compliance CRUD, TLS connec- - HTTP Status Single, https://github.com/
with |IANA media HEAD, OP- tions, HTTP/1.1 Codes multiple, solid/specification
types TIONS, and Authentication, nested
PATCH and Web Access

Control

1uswdojans uonedijddy pue SuussuiSug ASojojuQ usamiag wseyd) ay1 Suissol)

Crossing the Chasm Between Ontology Engineering and Application Development

Most of the analyzed specifications from the Semantic
Web community support SPARQL endpoints. Solid goes
one step further, aiming to support any RDF data source such
as RDF data dumps and Linked Data documents in addition
to SPARQL endpoints. OpenAPI and GraphQL allows spec-
ifying any given endpoint, leaving to the implementations
the support for query languages.

Specification settings are usually provided in different
configuration formats. LDA and LDT must be configured
in an RDF file which contains the URI templates required
for the API and the required SPARQL queries. OpenAPI
and GraphQL are configured in JSON, a developer-friendly
format [86], [82], but OpenAPI also supports YAML. In
summary, the OpenAPI configuration file must contain the
schemas and the API paths that will be implemented, and the
GraphQL configuration must define the GraphQL schemas
which describes the data sources and the GraphQL queries
that define the available entry points for querying a GraphQL
service. Finally, Hydra requires a JSON-LD [57] configura-
tion file. Such format aims to represent Linked Data as JSON
with minimal changes, thus it intends to be an alternative for
developers interested in semantic data. The Hydra config-
uration file must contain several details of the API such as
the URL of the endpoint, supported schemas, allowed oper-
ations, among others.

All specifications, depending on the operations and re-
sources supported, allow configurable queries. For LDA,
LDP, and LDT, such queries must be written in the SPARQL
query language. GraphQL requires queries written in the
GraphQL query language; and OpenAPI supports multiple
languages, e.g. SQL, since it doesn’t restrict the type of end-
point. As for query execution, the specifications provide data
results in several media types. SPARQL 1.1 Graph Store
Protocol, Hydra, and LDT specifications only provide results
in RDF formats (e.g. Turtle, JSON-LD, etc.), while the re-
maining specifications also support non-RDF formats (e.g.
HTML, CSV, JSON, among others).

Regarding allowed operations, the most limited specifi-
cation is Linked Data API since it only supports reading data
(GET). The SPARQL Protocol initially supported GET and
POST operations, but after the SPARQL 1.1 Graph Store
Protocol was introduced, its support was expanded to full
CRUD. Hydra and Linked Data Templates support the con-
figuration of CRUD methods, while Linked Data Platform,
Solid and OpenAPI, in addition to CRUD, also support HE-
AD (to ask for information about resources), OPTIONS (to
describe the communication options of a resource), and PA-
TCH (to partially update resources) methods. Moreover, Ope-
nAPI supports the TRACE method, which allows to follow
the path that a HTTP request follows to the server and it is
generally used for diagnostic purposes. GraphQL supports
operations with different names but that may be equated to
HTTP methods: query implements a GET, mutation imple-
ments a POST, and subscription implements a PUT, PATCH,
or DELETE.

Most specifications support HTTP authentication. Solid
also allows TLS connections for data pods through the https

URI scheme, HTTP/1.1 authentication and it must conform
to the Web Access Control specification. Solid clients must
support HTTP/1.1 Authentication. OpenAPI allows config-
uring other authentication mechanisms like API key, OAuth2,
among others. In order to control the changes in the API,
only OpenAPI provides an specific attribute to define the ver-
sioning, by following a Semantic Versioning 2.0.0%° conven-
tion. In GraphQL it is not needed to specify versions since
the specification strongly encourages the provision of tools
to allow for the evolution of APIs. To this end, GraphQL
tools must allow API providers to specify that a given type,
field, or input field has been deprecated and will disappear at
some point in time; thus they must notify clients by, for ex-
ample, message responses detailing on changes. Therefore,
GraphQL systems may allow for the execution of requests
which at some point were known to be free of any validation
errors, and have not changed since. The remaining specifi-
cations leave versioning up to the implementations.

The OpenAPI, LDP, and Solid specifications support sin-
gle, collection, and nested resources since they led imple-
menters to freely define them. LDA, Hydra and LDT sup-
port single and collection of resources only. In the case of
the SPARQL Protocol and SPARQL 1.1 Graph Store Pro-
tocol both support a single URL referring to the SPARQL
endpoint. In a similar manner, GraphQL only requires a sin-
gle URL. Finally, almost all specifications support reusing
the status codes defined by the HTTP protocol.?! Therefore,
implementers may provide relevant messages when dealing
with clients such as successful requests (2xx), bad requests
(4xx), etc. LDA and GraphQL do not provide details about
response messages; however, as technologies that implement
such specifications are served over HTTP they may reuse
HTTP status codes.

5.3. Criteria for comparing API generation
technologies and tools for KG consumption

Table 3 describes the criteria proposed in the framework
to compare API generation technologies and tools. Since
some of these criteria are the same as those defined for com-
paring specifications in subsection 5.1, we present below
only the new criteria that we included to compare technolo-
gies and tools.

The first new criterion considered is the Interface De-
scription Language which outlines which convention is fol-
lowed by a technology or tool to define APIs. We also as-
sess what is the input required by the technology or tool for
generating APIs, e.g., an ontology, queries, etc; and the ex-
pected result (output) after executing a given technology or
tool (e.g., data formats, API specification file, a server, etc.).
In addition, we analyze whether technologies or tools pro-
vide control over the JSON structure as it helps us to de-
tect which ones allow users to manage such files. As for the
source is only an informative column that indicates where
the technology or tool code, demo, or repository is available

20https ://semver.org/
21 https://www.ietf.org/assignments/http-status-codes/
http-status-codes.xml

P Espinoza-Arias et al.: Preprint submitted to Elsevier

Page 10 of 24

Crossing the Chasm Between Ontology Engineering and Application Development

Table 3
Comparison criteria for technologies and tools
Criteria Definition
Year Year when the technology or tool was

Interface Descrip-
tion Language
Input

Output

Operations

Configuration for-
mat

Configurable
queries
Authentication

Resources

Versioning
Control over the

made available

Specification to document functional
and non-functional aspects of the API
Files needed for the API generation
Result of the technology or tool exe-
cution

Allowed methods for managing re-
sources

The file format to be provided with
the details of the technology or tool
Support for customized queries

Allowed methods to verify the iden-
tity of a user or process

Type of resources allowed such as sin-
gle, collection, or nested resources
Support for version management
Support for JSON management

JSON structure
Source The source code / repository of the
technology or tool

Year when the last version of the
technology or tool was released
Programming language used for cre-

ate the technology or tool

Last release

Language

for a technology or tool. Moreover, we are interested in the
last release date when a technology or tool was updated in
order to know whether it is still maintained. Finally, we also
are interested in the language selected for the development
of the technology or tool as it may help us to understand if
there is a preferred option to implement them.

5.4. Results of comparison of API generation
technologies and tools for KG consumption

Table 4 presents the comparison between the technolo-
gies and tools according to the criteria described in subsec-
tion 5.3. The symbol "-" indicates that the criterion is not
described or detailed in the technology or tool source.

One of the first tool to appear was OpenLink Virtuoso, in
the year 2008, which became a popular technology to store
and manage RDF data. Since then, several alternatives ap-
peared over the years to ease data consumption by providing
interfaces based on the REST paradigm and taking advan-
tage of the HTTP protocol. The most recent tool reported in
our survey is Walder, released in 2020, which allows gener-
ating APIs for consuming RDF data from several sources, in
an effort to integrate decentralized endpoints.

Most of the assessed technologies and tools use as In-
terface Description Languages (IDL) the specifications pre-
sented in subsection 4.1. However, some of them support
other API description blueprints. For example, JSON-QB
API requires users to define the API following an ad-hoc
specification (JSON-gb API specification). R4R allows users

to manually describe the API but does not restrict the use of a
specific IDL (e.g. users can provide an OpenAPI-compliant
file). RAMOSE requires users to define a hash-format con-
figuration file that contains the details of the API. Pubby and
LODI do not require any IDL as they only provide HTML
views of resources.

In general, all included technologies and tools require as
input the URL of the SPARQL endpoint and the SPARQL
queries needed to implement the allowed API methods, but
some technologies and tools differ slightly in their needs.
The R4R framework, in addition to the aforementioned in-
puts, requires users to define JSON templates that allow the
responses of SPARQL queries or requested resources to be
translated into JSON. The AtomGraph Processor requires
an application ontology that must follow the structure de-
scribed in the Linked Data Templates protocol. Such on-
tology must define the API details, the SPARQL queries to
request matching, and the application behavior. The JSON-
QB-API technology only requires the URL of the SPARQL
endpoint, as SPARQL queries are generic (designed to han-
dle data described with the Data Cube vocabulary) and pro-
vided automatically. Apache Marmotta and Trellis have a
similar input configuration as both only require the RDF sour-
ce (e.g. an RDF data dump).

Other tools start from OWL ontologies. For example,
OBA and OWL20AS require an OWL ontology as input,
which they convert to an OpenAPI specification. OBA also
accepts the URL of a target SPARQL endpoint, as it gener-
ates a server to handle the client requests. OBA allows users
to specify which classes should be excluded in the final API
by using a YAML configuration file, while OWL20OAS re-
quires the ontology to be annotated with an ad-hoc Boolean
property to define which classes or properties should be taken
into account or not in the API. The Ontology2GraphQL ap-
plication needs an ontology annotated with the GraphQL
meta model; this ontology must be stored in a Virtuoso in-
stance which must also contain the RDF data. Finally, Walder
supports any RDF source (RDF dump, Linked Data docu-
ments, SPARQL endpoint) as input, as well as the GraphQL-
LD queries and the specific JSON-LD contexts required for
the execution of API operations.

P Espinoza-Arias et al.: Preprint submitted to Elsevier

Page 11 of 24

’|e 19 seuy-ezouidsy ¢

42142S]5 0} panugns jutidalg

¥T 4o T 38ed

Table 4: Analysis of API generation technologies and tools for KG consumption according to our comparison framework.

Technology Year Interface Input Output Operations Configurable Configuration Authentication Resources Versioning Control Source Last Language
or Tool Description queries over release
Language JSON
OpenLink 2008 SPARQL SPARQL RDF or non-RDF CRUD Yes LDP must be acti- ~ OAUth, WebID Single - - http://vos 2018 C
Virtuoso Protocol and Queries vated in the Web- and Digest Au- openlinksw.com/owiki/
LDP DAV content sec- thentication ~ via wiki/VOS/VirtLDP
tion SQL Accounts.
Pubby 2008 None SPARQL HTML, Turtle and GET No Turtle file - Single - - https://github.com/ 2011 Java
Endpoint RDF/XML cygri/pubby
Puelia 2010 LDA SPARQL Turtle, RDF/XML, GET Yes RDF/Turtle files - Single, - - https://code.google 2010 PHP
Endpoint and JSON and XML multiple, com/archive/p/
SPARQL nested puelia-php/
Queries
ELDA 2011 LDA SPARQL HTML, XML, GET Yes RDF format, - Single, - - https://github.com/ 2018 Java
Endpoint and ~ JSON, RDF/XML, typically writen in multiple, epimorphics/elda
SPARQL and Turtle Turttle nested
Queries
Apache 2013 LDP RDF source RDF and non-RDF CRUD No LDP module must Custom authen- Single, Yes - http://marmotta. 2018 Java
Marmotta be included in the tication and multiple apache.org/platform/
pom.xml file authorization 1dp-module. html
mechanism
BASIL 2015 Swagger SPARQL Swagger- GET and Yes A file with the HTTP basic au- Single, - - https://github.com/ 2021 Java
Endpoint and compliant API, POST connection pa- thentication multiple the-open-university/
SPARQL data results in rameters to the basil
Queries XML, JSON, CSV database
and RDF
GRLC 2016 Swagger SPARQL JSON Swagger- GET and Yes List of queries User and pass- Single, - Yes https://github.com/ 2020 Python
Endpoint and compliant specifi- ~ POST in .rq format or word to the multiple CLARTAH/grlc
SPARQL cation, Swagger- as URLs into a SPARQL end-
Queries Ul, data results YAML file point (if required),
in CSV, JSON, and an access
Turtle, and HTML token to com-
municate with
GitHub APL
AtomGraph 2016 LDT Application RDF serializations CRUD Yes A Turtle file with HTTP basic au- Single - - https://github.com/ 2021 Java
Processor ontology the application thentication AtomGraph/Processor
ontology
LODI 2017 None SPARQL HTML and N3 GET No Turtle file - Single - - https://github.com/ 2018 Node.js
Endpoint and marfersel/LODI
SPARQL
queries
JSON- 2017 JSON-gb SPARQL JSON GET No - - Single, Yes - https://github.com/ - Java
QB APL API specifi- Endpoint multiple OpenGovIntelligence/
cation json-gb-api-implementation
OSF 2017 - ontology and JSON CRUD Yes - - - - - https://github.com/ 2017 PHP

SPARQL
Endpoint

structureddynamics/
0SF-Web-Services

1uswdojans uonedijddy pue SuussuiSug ASojojuQ usamiag wseyd) ay1 Suissol)

’|e 19 seuy-ezouidsy ¢

42142S]5 0} panugns jutidalg

¥T 4o €T 38ed

Table 4: Analysis of API generation technologies and tools for KG consumption according to our comparison framework.

Technology Year Interface Input Output Operations Configurable Configuration Authentication Resources Versioning Control Source Last Language
or Tool Description queries over release
Language JSON
Trellis 2017 LDP RDF source RDF serializations CRUD, No A YAML file with Basic and token- Single, Yes - https://github.com/ 2021 Java
and HTML PATCH, the application based multiple, trellis-1ldp/trellis
HEAD and configuration nested
OPTIONS
Ontology2 2019 GRAPHQL Ontology GraphQL schema GET Yes RDF data and - Single - Yes https://github. - Java
GraphQL schema annotated and a ready-to- the annotated API com/genesis-upc/
with the GQL deploy ~ GraphQL ontology stored in endpoint Ontology2GraphQL
meta model service implemen- the same Virtuoso
tation triplestore
R4R 2019 Static HTML SPARQL Swagger- GET Yes The resources HTTP basic au- Single, - Yes https://github.com/ 2020 Java
manually Endpoint, compliant RESTful configured in thentication multiple, oeg-upm/r4r
generated SPARQL API, and requested the workspace nested
Queries, data in JSON containing the
and JSON SPARQL queries
templates and JSON (Veloc-
ity) templates
OBA 2020 OpenAPI OWL on- YAML OpenAPI- CRUD Yes YAML file OAUth2.0 Single, Yes - https://github.com/ 2021 Java
tology and compliant specifi- multiple, KnowledgeCaptureAndDiscovery/
SPARQL cation, SPARQL nested OBA
Endpoint templates, a server,
and requested data
in JSON
OWL20AS 2020 OpenAPI OWL ontol- OpenAPI specifi- GET - Not required - Single Yes - https://github. 2020 C#
ogy cation in YAML or com/RealEstateCore/
JSON OWL20AS
RAMOSE 2020 A hash- SPARQL HTML documen- GET and Yes Hash-format file - Single, Yes Yes https://github.com/ 2021 Python
format file Endpoint and tation of the API,a POST multiple opencitations/ramose
SPARQL dashboard for the
queries APl monitoring,
and data requested
in CSV or JSON
Community 2020 Solid - - CRUD, - - - - - - https://github. 2021 Typescript
Solid PATCH, com/solid/
Server HEAD and communi ty-server
OPTIONS
Walder 2020 OpenAPI RDF source, Data requested in GET Yes YAML OpenAPI- - Single, Yes Yes https://github.com/ 2020 JavaScript
and the RDF serializations compliant file multiple, KNowledgeOnWebScale/
GraphQL-LD ~ and HTML with Walder- nested walder
queries + specific exten-
JSON-LD sions
context

1uswdojans uonedijddy pue SuussuiSug ASojojuQ usamiag wseyd) ay1 Suissol)

Crossing the Chasm Between Ontology Engineering and Application Development

Open Semantic Framework

—_—e
AtomGraph Processor
—0 Trellis
Community Solid Server

OpenLink Virttuoso
Apache Marmotta

OBA

Total freedom for
data management

Endpoint

query access operations

Read-write-update Read-write
operations

Ontology2GRAPHQL

OWL20AS

BASIL
RAMOSE
Pubby
Puelida
ELDA

—® GRLC

Partial freedom for
data management

Read-only
operations

Figure 2: Data management levels offered by API generation technologies and tools for KG consumption.

When executing the analyzed technologies and tools, dif-
ferent types of outputs are generated. Virtuoso, Pubby, Puelia,
ELDA, Apache Marmotta, AtomGraph Processor, LODI, Tre-
llis, and Walder provide data results in RDF and non-RDF
serializations. Tools such as BASIL, GRLC, OWL20AS,
and OBA generate OpenAPI-compliant APIs, and provide
the requested data in JSON format. BASIL and GRLC also
provide data in other formats such as CSV, XML, and RDF.
Likewise, JSON is the output format for JSON-QB-API, R4R,
and OSF results. OBA and OWL2OAS generate the API
schemas and paths from an OWL ontology, but OBA is the
only tool which generates, without human intervention, the
basic SPARQL query templates needed to handle the KG
data when executing the API methods. Ontology2GraphQL
translates the annotated ontology into a GraphQL schema
and provides a GraphQL service implementation; however,
the annotation process must be performed manually. Finally,
RAMOSE generates an HTML with the API documentation,
a dashboard for monitoring the API, and provides data re-
sults as CSV or JSON files.

The evaluated technologies and tools also allow different
operations to be carried out. Figure 2 shows the data man-
agement levels that such technologies and tools offer on a
scale from full query access to a read only query level. Data
management levels depend on the allowed operations, thus
technologies and tools that support read-only operations pro-
vide less freedom than those that allow query execution at
the endpoint level. Trellis and the Solid Community Server
also allow HEAD (to ask for information about resources),
OPTIONS (to describe the communication options of a re-
source), and PATCH (to partially update resources) opera-
tions.

Few technologies and tools provide details on how to
manage user authentication. This depends on the allowed
operations, since, in general, reading operations do not need
to authenticate users. Virtuoso and Marmotta allow com-
plete freedom for data management, and thus provide more
details on their authentication methods (OAuth for Virtuoso,

ad-hoc authentication and authorization mechanisms for Mar-
motta®?). Among those technologies and tools allowing writ-
ing operations such as update or delete, some of them pro-

vide support for authentication mechanisms. For example,

basic HT TP authentication is supported by AtomGraph Pro-

cessor, Trellis, BASIL, and R4R; whereas GRLC requires

an access token to communicate with the GitHub API, and

the user and password of the SPARQL endpoint, if required.

OBA supports OAuth2.0 by default, but authentication can

be extended to other methods (which need to be configured

by hand).

As for configurable queries, almost all technologies and
tools define their own mechanisms to allow users defining
custom queries. For example, Basil, GRLC, and OBA use
ad-hoc decorators in queries to parametrize them and align
them to their exposed APIs; while Ontology2GraphQL and
Walder accept GraphQL queries. The analyzed technologies
and tools also use different configuration formats. RDF is
the most common choice, but Trellis, OBA, and Walder use
YAML configuration files. Technologies like Marmotta and
Virtuoso, which support LDP, require to activate the LDP
mode by providing specific configuration settings applied to
ajava file (Project Object Model file) and to its configuration
utility (Conductor) respectively. BASIL requires a configu-
ration file (.ini) with connection parameters to the database
that must be configured with some required database queries
together with a MySQL server. R4R requires to configure
the SPARQL queries (.sparql) and JSON templates (.json.vm)
both stored into the specific directory that will be taken as
the source for the resource path generation. GRLC requires
to specify a collection of SPARQL queries (.rq files) into
a GitHub repository, but it also allows users to provide such
queries as a YAML file containing a list of URLs of SPARQL
queries online available. RAMOSE requires a hash-format
(.hf) file described according to a simplified version of Mark-
down syntax.

All the assessed technologies and tools manage single

22h’ctps ://marmotta.apache.org/platform/security-module.html

P Espinoza-Arias et al.: Preprint submitted to Elsevier

Page 14 of 24

Crossing the Chasm Between Ontology Engineering and Application Development

resources. Marmotta, BASIL, GRLC, JSON-QB-API, and
RAMOSE also provide collection of resources Besides sin-
gle and collection, Puelia, ELDA, Trellis, OBA, R4R, and
Walder provide nested resources. Therefore, these last tools
allow defining more specific paths for data consumption.

As for versioning, tools like JSON-QB-API, OBA, R4R,
OWL20AS, and RAMOSE allow users to specify the API
version in the API documentation, but they do not imple-
ment control over different versions. In contrast, Apache
Marmotta and Trellis manage data versioning through the
Memento protocol? a variant on content negotiation which
enables accessing a resource version that existed around a
specific datetime. Ontology2GraphQL and Walder assume
that the server must manage data versioning, and hence do
not support versioning.

Only five tools provide control over the JSON structure.
GRLC allows developers to pose queries as a JSON object
for specifying what data will be retrieved from the endpoint
and what shape the results should follow. R4R allows con-
figuring JSON templates that map the SPARQL query re-
sults to compose the desired JSON output. RAMOSE also
allows users transforming each key-value pair of the final
JSON result according to the rule specified in the call URL.
Such transformations rules can be used to convert the output
into an array or into a JSON object. Lastly, since Ontol-
ogy2GraphQL and Walder use GraphQL, both allow man-
aging JSON according to the developer needs. This gives
more flexibility to developers issuing queries to KGs, but at
the same time forces them to be familiar with the ontology
used to represent the information in detail.

Most of the analyzed technologies and tools show changes
over their last release compared to when they first were made
available. Early technologies and tools like Virtuoso, ELDA,
and Marmotta have evolved over time in contrast to Puelia,
which shows no change. As for Ontology2GraphQL and
JSON-QB API, they do not have any release in their source
repositories. Since the latest changes observed in the repos-
itories of both tools date from the same year in which they
were made available, they may not be currently maintained.
Most recent tools have recent releases, which may mean that
they are evolving as people begin to use them and new re-
quirements and enhancements are implemented. Finally, re-
garding the programming languages for the development of
technologies and tools, Java is the preferred option (used by
10 implementations), followed by PHP, and Python (each se-
lected by 2 implementations), and lastly C, C#, JavaScript,
Node.js, and TypeScript (each chosen by 1 implemetation).

5.5. Specification, technology and tool evolution
over the years

The rationale for the appearance and evolution of the
specifications, technologies and tools included in our survey
can be better understood by looking at them in chronological
order. Figure 3 shows a timeline illustrating existing specifi-
cations, and technologies and tools over the years. SPARQL
endpoints were the first and the most common means to pro-

23https ://tools.ietf.org/html/rfc7089

vide access to data represented with ontologies. SPARQL
endpoints offer access to RDF data using the SPARQL Pro-
tocol and RDF Query Language, which was officially stan-
dardized in 2008. Thanks to the SPARQL 1.1 Graph Store
Protocol (which became a W3C recommendation in 2013),
many SPARQL endpoints also provide update and fetch of
RDF data via mechanisms of the HTTP protocol. Today,
hundreds of SPARQL endpoints have been made available
on the web to expose over one thousand public datasets [68].

For illustration purposes, let us assume that we have a
KG with local business census data, accessible through a
SPARQL endpoint. Let us also assume that we want to re-
trieve data of the business "CortField” which has the iden-
tifier "CortFieldID”. With a SPARQL endpoint, developers
have to issue SPARQL queries to obtain data they need, like
the query provided in Appendix B.1 to get data of the busi-
ness “CortField”. As a result of the SPARQL query execu-
tion, data will be obtained in a RDF serialization.

In order to ease access and navigation over Semantic
Web resources in SPARQL endpoints, a new generation of
technologies and tools emerged to provide HTML access to
RDF data by dereferencing URI resources. The first and
most popular technology providing such features was Pubby,
released in 2008, and the latest technology was LODI, laun-
ched in 2017. In our example, Pubby or LODI can be ex-
ecuted on top of the SPARQL endpoint so developers can
resolve the URI of "CortField” without having to issue a
SPARQL query, e.g. by browsing "http://example.org/re-
source/LocalComercial/CortFieldID” in a browser.

Several efforts followed by taking advantage of the REST
principles to provide developers with a well-known interface
for RDF data consumption. The Linked Data API (LDA)
specification was proposed in 2010 to define read-only REST-
ful APIs over RDF triplestores. The most popular tools im-
plementing LDA are Puelia and ELDA, released in 2010 and
2011 respectively. Thanks to these tools, developers can
configure API paths to be translated into SPARQL queries
that select resources or define views with the specific re-
source attributes they need. For example, to get data of the
local business "CortField” developers may issue a request to
"http://example.org/doc/localbusiness/CortFieldID"”, which
will trigger a query similar to the one specified in Appendix
B.1 and return the corresponding results.

In 2013, Hydra was defined as a vocabulary to combine
REST with Linked Data principles focused on describing
APIs using JSON-LD. Two years later, the Semantic Web
community proposed the Linked Data Platform (LDP) spec-
ification to address the read-only limitations of the Linked
Data API specification. LDP became a W3C recommenda-
tion in 2015, defining a protocol for full read-write Linked
Data. Several technologies and tools included support for
LDP like Virtuoso, Apache Marmotta,2* or Trellis; which
were released between 2008 and 2017. In our example, local
business data could be handled in Apache Marmotta and or-

24Marmotta was released before 2015, but in this study we mention the
year when the first version (3.3.0) compliant with the LDP specification was
launched.

P Espinoza-Arias et al.: Preprint submitted to Elsevier

Page 15 of 24

Crossing the Chasm Between Ontology Engineering and Application Development

2] SPARQL Protocol LDA LDT
-% SPARQL GSP GraphQL
= 0AS Hydra LDP Solid
h=|
3]
]
=
7]

) *—0) \\J \\JJ e &

2008 2010 2012 2014 2016 2018 | 2020
w
£ ., |
)
s e ELDA BASIL JSON-QB API R4R
% = OSF Ontology2GraphQL
o ° Trellis
H E

LODI
Virtuoso Puelia Marmotta AtomGraph Community Solid Server
Pubby GRLC OBA
OWL20AS
RAMOSE
Walder

Figure 3: API specifications and API generation technologies and tools timeline. Above the line, specifications are listed according
to the year they appeared. Below the timeline, technologies and tools are listed according to the year when they were released.

ganized into a Basic Container (e.g. "http://example.org/ldp/
localbusinesses” container). Therefore, developers may re-
trieve items from this container by invoking the get method
and the API path of the desired item. For instance, develop-
ers can access item "CortField” by requesting the API path
"http:// example.org/ldp/localbusinesses/CortField” in the
desired RDF serialization.

Another relevant REST-based approach is the Linked Da-
ta Templates (LDT) protocol, presented in 2016. LDT al-
lows users to read-write RDF data based on details that must
be specified in an application ontology. Unlike the LDP
specification, LDT allows users to define the next state of
resources needed for the desired application. This protocol
has been implemented in 2016 by the AtomGraph Processor
technology. Going back to our example, ontology engineers
would have to configure AtomGraph’s application ontology
with the details of the desired resource, for instance, the lo-
cal business item template (1dt:Template) including the API
path (1dt:match "/localbusiness/{id}"), and the SPARQL
query (1dt:Query) to perform the supported operations (e.g.
"get"”). Developers would request the method and path "GET
/localbusiness/CortFieldID” and retrieve data of local busi-
ness "CortField” in RDF.

The next generation of technologies and tools relied on
interfaces to make it easier for non-Semantic Web develop-
ers to interact with KGs in their “native” languages (JSON
and Interface Description Languages). To this end, some of
these technologies and tools reused the OpenAPI specifica-
tion, released in 2011, due to its wide adoption by applica-
tion developers. Most of the initial efforts focused on pro-
viding support for GET, but some of them have evolved into
partial or full CRUD. In this regard, the first effort provid-
ing Swagger-compliant APIs was BASIL, released in 2015,
followed by tools such as GRLC, OWL20AS, and OBA that
were introduced in subsequent years. It is worth mentioning

that, from 2017 to 2020, tools like JSON-QB API, R4R, and
RAMOSE have also been proposed to generate developer-
friendly APIs, but they follow other specifications to define
them.

To 1llustrate these efforts, let us consider we use GRLC
with a GitHub repository where we define and store the SPA-
ROQL queries needed for data consumption. As aresult of ex-
ecuting GRLC, it generates an API path for each query and a
JSON Swagger-compliant specification. The path structure
conforms to the GitHub repository structure. For instance,
if the query file to select data of local businesses is named
"localbusinesses.rq” (this example query is provided in Ap-
pendix B.3), stored in the repository "examplerepository” of
the "GitHubUser” account, then the corresponding API path
would be "http://api/GitHubUser/examplerepository/local-
businesses", where api corresponds to the service where GR-
LC runs. By requesting this API path developers will get lo-
cal business data in formats supported by the SPARQL end-
point. For example, results can be retrieved in JSON, but this
resulting format includes irrelevant metadata that conforms
with the query structure (e.g. the header metadata which
contains the list of fields of the query results) rather than
just providing data according to the structure of the ontol-
ogy that describes them. To get results into a friendly JSON
format users can provide queries in JSON using SPARQL
Transformer [65].

A new generation of technologies and tools was devel-
oped in parallel to these efforts after the GraphQL Specifi-
cation (originally developed at Facebook in 2012), was re-
leased openly in 2015. GraphQL proposed a flexible way
to define APIs under the principle that what you need is
exactly what you get, and has been adopted in efforts like
Ontology2GraphQL and Walder, released in 2019 and 2020
respectively. Unlike Ontology2GraphQL, Walder requires
defining an API by reusing the OpenAPI spec and to spec-

P Espinoza-Arias et al.: Preprint submitted to Elsevier

Page 16 of 24

Crossing the Chasm Between Ontology Engineering and Application Development

ify the necessary queries in GraphQL plus a JSON-LD con-
text. For instance consider we use Walder to consume the
local business census data. Ontology engineers would need
to configure an OAS file which includes the URL of the
datasource (e.g. our SPARQL endpoint), API paths (e.g.
"/localbusiness/{value}"), required parameters (e.g. "value”
which allows providing the identifier of the specific local
business to be requested), the allowed operations (e.g. "get");
and the GraphQL queries and JSON-LD context required to
implement the operations (an example query and JSON-LD
context are provided in Appendix B.2). By doing so, devel-
opers may request, for example, "/1localbusiness/CortFieldID”
and obtain data of the business "CortField” as HTML, RDF,
or JSON-LD.

More recently, other approaches are beginning to emerge
with the aim of exploiting the knowledge contained in on-
tologies (those used to describe KGs data) and facilitate the
work of developers. The goal is to generate specifications
and APIs from ontologies, with minimal human interven-
tion. The most representative solution from this is OBA,
released for the first time in 2020. In our example, users
need to provide OBA with the local business census ontol-
ogy? and the YAML configuration file which contains the
URL of the SPARQL endpoint, the list of classes to be in-
cluded in the API (e.g. local business represented by the
"LocalComercial” class), and the allowed methods (e.g. "get
"). After executing OBA, developers would get the OAS
document with the schemas and API paths, the SPARQL
queries for implementing the methods, and a server. As a re-
sult, developers may request, for instance, ”/localescomercia
les/CortFieldID” and get back data of local business "Cort
Field” in JSON format which follows the ontology structure.

The last generation of technologies and tools is focused
on providing APIs to ease decentralizing the Web. To this
end, users require to handle their personal data in servers un-
der their control, applications require consuming data from
several RDF sources (data dump, SPARQL endpoints, etc.),
dealing with different authorization mechanisms, among oth-
ers. The Solid specification appeared in 2019, and still con-
tinues as an ongoing draft, as a set of guidelines to implement
servers and clients to support the aforementioned features for
adecentralized Web. The Community Solid Server is the of-
ficial beta implementation of such specification, released by
the end of 2020. In our example, developers can use the
Solid server to get the local business data invoking, e.g.,
the "/localbusinessCortFieldID.tt1" path to retrieve data of
"CortField” in Turtle format.

6. Discussion and Research Challenges

In this section we discuss our findings by addressing the
research questions defined in subsection 2.4. Based on this
discussion we outline a set of open research challenges that
we consider necessary to ease KG consumption by applica-
tion developers.

25http: //vocab.ciudadesabiertas.es/def/comercio/tejido-comercial

6.1. Answering research questions

RQI1.1: Are there API-based methodologies / methods
/ processes to ease KG consumption by application devel-
opers?

Our findings highlight that several specifications have
been proposed to provide details on how to define and imple-
ment APIs to ease KG consumption. Most of these specifica-
tions have been proposed by the Semantic Web community
and they are aligned with the REST principles. LDA, Hy-
dra, LDP, LDT, and Solid specifications allow defining read-
only, read-write, and full CRUD APIs on single, collection,
or nested resources, which are retrieved in several formats.
In addition, we found that two specifications from the Soft-
ware Engineering field (OpenAPI and GraphQL) have been
adopted to provide developers with a well-known interface
to consume data from KGs. Unlike OpenAPI, the GraphQL
spec does not follow the REST paradigm but a more flexible
strategy for data consumption over a single endpoint using
HTTP.

Almost all the analyzed specifications (LDA, LDP, LDT,
Hydra, and Solid) require SPARQL queries, and therefore
assume that a Semantic Web expert familiar with the ontol-
ogy used for modeling the data in a KG is involved in con-
figuring its corresponding API. Similarly, GraphQL also re-
quires developers to know the data structure (ontology) be-
fore defining the schema needed for data querying.

RQ1.2: Are there technologies that ease / automate the
execution of the API-based methodologies / methods / pro-
cesses to consume KGs?

Our survey indicates that there are several technologies
to automate the API generation to provide developers with a
friendly interface for KG consumption. Most of these tech-
nologies implement the API specifications described in our
review. We also detected that almost all technologies take as
input the queries required to retrieve the desired resources for
the API generation. However, there are technologies (Atom-
Graph Processor, OSF, Ontology2GraphQL) which require
as input an ontology annotated with specific details to gen-
erate the APIL. In contrast, OBA and OWL20AS generate
the API specification from the OWL ontology that has been
developed to describe and organize the KG data. Moreover,
OBA also generates automatically the SPARQL queries nee-
ded to execute general CRUD operations. All the assessed
technologies provide developers with APIs that must be gen-
erated by experts in Semantic Web technologies.

RQ2.1: Are there methodologies / methods / processes
to help ontology engineers creating APIs that ease ontology-
based KG consumption?

Our review revealed that there is no evidence of a for-
mally defined methodology, method, or process to help on-
tology engineers generate APIs to ease for application de-
velopers the ontology-based data consumption. All found
efforts are focused on API specifications for KG consump-
tion; but most of them do not consider ontologies as a first-
class citizen for designing APIs. Found efforts also do not
take into account the experience that the ontology engineer
has gained on the target domain; or the artefacts generated

P Espinoza-Arias et al.: Preprint submitted to Elsevier

Page 17 of 24

Crossing the Chasm Between Ontology Engineering and Application Development

during the ontology development process.

RQ2.2: Are there technologies that ease / automate the
execution of methodologies / methods / processes to help
ontology engineers creating APIs that ease ontology-based
KG consumption?

We found two technologies (OBA and OWL20OAS) that
take into account the OWL ontology to generate the APIs.
However, in both technologies the authors are focused on the
technological support to automatically generate basic APIs
rather on the methodology for designing them. In addition,
Ontology2GraphQL allows generating a GraphQL schema
from an ontology; however it requires users to learn the meta-
model necessary to manually annotate such ontology. This
technology also needs users to define the queries needed for
consume the KG data.

A methodological approach and a technology which im-
plements it are still missing. Both must be focused on help-
ing ontology engineers to actively participate in the API de-
sign and implementation from the beginning of the ontology
development process in such a manner that at the end of this
process other resulting artefact will be the API.

RQ3: Are there tools to help application developers to
create APIs on demand?

Surveyed studies revealed that the most recent approaches
like GRLC, R4R, RAMOSE, OBA and Walder allow appli-
cation developers configuring APIs to fulfill their applica-
tion requirements. However, not all of them allow config-
uring full CRUD operations or handling nested resources,
which hampers the flexibility developers require for building
their applications. In addition, in terms of usability, most
of these tools require developers to know the ontology be-
hind the KG to design the API, and the query language to
pose the required queries to implement the desired methods.
For instance, in Walder developers are required to learn the
GraphQL-LD language (in addition to the ontology) to de-
sign the GraphQL schemas. GRLC has recently included a
functionality to allow users to pose queries in JSON, but it re-
quires developers to learn the notation needed to define such
queries and also to know the ontology behind the KG data.
Many of the reviewed technologies allow doing queries on
demand using GraphQL or SPARQL requiring developers to
learn these query languages. In summary, the heterogeneity
and learning curve of the technologies included in this sur-
vey may be challenging for non Semantic Web experts to
create APIs over existing KGs on demand.

6.2. Open research challenges

Our systematic review uncovers major research challen-
ges that deserve further investigation. We describe these
challenges below:

Automated API generation. Our review showed sev-
eral specifications and technologies to generate APIs from
OWL ontologies and SPARQL queries. However, it is im-
portant to consider other inputs that could be reused/added
to the API generation process.

- API generation from ontology engineering artefacts.
There is a lack of investigations or implementations regard-

ing the use of the artefacts that are generated during the on-
tology development process. These artefacts could be use
cases, user stories, or competency questions (defining the
functional ontology requirements as proposed in [42]), de-
signed to motivate and assess an ontology. For example,
the competency question defined for the local businesses on-
tology: "What are the local business located in district X?"
could be used to automatically generate the required API to
answer it and, as a result, to ease the KG consumption by the
application developers. Experiments should be conducted in
order to test if these artefacts could help application develop-
ers to understand the ontology and as a result support them in
configuring the custom APIs needed for their applications.

- API generation from application requirements. Appli-
cation developers may want to consume KG data for pur-
poses that are different to those proposed or motivated when
the ontology to represent such data was developed. There-
fore, it is necessary to investigate alternatives to provide de-
velopers with the mechanisms to generate ad-hoc APIs to
consume the data that they need for their applications. One
alternative could be to allow developers reuse application
use cases, requirements, types of users involved, etc., in or-
der to generate the API paths and methods that are required
for the application implementation. Several initiatives pro-
posed to transform natural language into knowledge base
queries [23] can be used/adapted to generate the queries need-
ed for implementing the ad-hoc API methods. Also, there is
an opportunity to explore how language models (e.g. GPT-
3 [8]) can be used in the translation of uses cases into API
paths.

API version management. None of the surveyed ap-
proaches address how changes to an ontology may affect its
corresponding KG and API. In some cases like GraphQL,
the specification claims to not require managing API ver-
sions, since it assumes that the server must handle them and
ensure backward compatibility. However, this results in ver-
sion management having to be handled by API providers.
Technologies like Apache Marmotta and Trellis offer resour-
ce versioning since they implement the Memento protocol.
However, both technologies do not detail how changes are
managed in terms of ontology evolution. Therefore, new
techniques are needed to detect ontology changes and prop-
agate them into their corresponding APIs, ensuring that ap-
plications will not crash when the underlying ontology is up-
dated. Existing work in ontology evolution [102, 76, 77] can
be reused and extended to help meet this challenge.

API simplification through lightweight ontologies. Com-
plex ontologies make the API generation process more diffi-
cult, since they contain axioms and restrictions that work for
defining abstract classes and properties to represent upper-
level or domain knowledge, but that are not practical for
ontology-based application development. We can illustrate
this problem with the SOSA/SSN ontology [43], a W3C rec-
ommendation which allows users to represent sensor data.
Although this ontology provides several ontology modules
intended to supply a lightweight ontology version to those
users who do not need extensive axiomatization nor more

P Espinoza-Arias et al.: Preprint submitted to Elsevier

Page 18 of 24

Crossing the Chasm Between Ontology Engineering and Application Development

specialized entities, it still contains complex representations.
For example, to represent the time interval when a sensor ob-
servation was measured, users can employ the sosa:0Obser-
vation class and sosa:phenomenomTime property. Such prop-
erty has the time: TemporalEntity class as range which is reu-
sed from the W3C Time ontology [17]. This class has a
time: Interval subclass which can be related (using the time:
hasBeginning and time:hasEnding properties) to two instants
of time (time:Instant). The first instant represents the start
of the interval and the second represents its end, each in-
terval must be represented by the time:Instant class which
contains several datatype properties describing the tempo-
ral position of the interval (e.g. time:inXSDDateTimeStamp).
However, simple applications that require just the start and
end of an observation do not require such a verbose mech-
anism and could be simplified by creating API abstractions
on top of the standard representation.

Many W3C recommendations and well-known ontolo-
gies have complex mechanisms to describe data. Therefore,
providing mechanisms to automatically translate a heavy-
weight ontology into a lightweight version requires to be in-
vestigated (e.g., following existing work for identifying the
most relevant ontology concepts [78]; or methods for graph
summarization [81, 12]) . This translation would be useful to
simplify the API generation and also to provide developers
with a reduced version of the ontology prior to consuming
the KG data.

API resource path prediction. Some of the analyzed
technologies allow automatically defining basic API paths,
while others allow their customization. We consider that
one challenge is the prediction of relevant paths based on
the data available in a KG. This would help automatically
retrieving the most relevant resources in a KG, based on
e.g., their number of connections, frequency or other metrics
from graph theory and network analysis [29] e.g. centrality,
connectivity, community detection etc. [48]. In this predic-
tion scenario, using the ontology is relevant since data need
to follow the structure defined by it. Automatically generat-
ing the queries necessary to implement the methods of each
predicted API path is also a challenge that still needs to be
addressed.

API validation and testing. Following a Test Driven
Development (TDD) [4] approach is a common practice in
the Application Development field. Therefore, applying such
testing approach to APIs helps ensuring that APIs are aligned
with their functional requirements, allowing developers to
validate the permissions granted to users when executing
certain operations. TDD allows developers creating test re-
quests by defining the API resource paths together with their
required operations. Users can then implement the missing
functionality and run the API tests until they pass, refining
them iteratively in case of errors. One initial effort in this
direction has been proposed in OBA, allowing users to pro-
duce and perform automated unit tests to evaluate the API
paths that are automatically generated. However, these tests
are basic and they only support GET requests.

7. Conclusions

The growing number of Knowledge Graphs on the Web
reaffirms the great importance they have within the business
strategies of public and private organizations. Easing KG
consumption by application developers is a big challenge
since most developers are not sufficiently aware of seman-
tic technologies and find it difficult to develop applications
for which KG data can be exploited.

This article contributed with a systematic literature re-
view concerning API-based solutions for KGs consumption.
We proposed two comparison frameworks to analyze the ex-
isting specifications, technologies and tools which imple-
ment them. We presented, compared and discussed approaches
to ease KG consumption through APIs; and we found that
most of the existing research works focus on API generation
from queries whereas recently some tools have been explor-
ing how to generate APIs from OWL ontologies.

Our results indicate the need for improvements in this re-
search field. To this end, the challenges we outlined provide
some ideas to alleviate some of the limitations we found in
this work. We believe that it is necessary for the Semantic
Web community to discuss these challenges and join forces
to propose other alternatives that could ease the work of de-
velopers when generating applications with ontology-based
data. Many developers today are not familiar with Semantic
Web technologies and, as a consequence, the great potential
of the semantic representations and data has not been fully
exploited. Therefore, as a community it becomes crucial that
we prioritize application developers as the key users of our
KGs and find new solutions that allow bridging the gap be-
tween developers and Semantic Web experts.

CRediT authorship contribution statement

Paola Espinoza-Arias: Conceptualization, Methodol-
ogy, Investigation, Writing - Original Draft. Daniel Garijo:
Conceptualization, Methodology, Validation, Supervision,
Writing - Original Draft. Oscar Corcho: Conceptualiza-
tion, Validation, Supervision, Writing - review & editing.

Declaration of Competing Interest

The authors declare that they have no known competing
financial interests or personal relationships that could have
appeared to influence the work reported in this paper.

Acknowledgments

This work has been funded by a Predoctoral grant from
the [+D+i program of the Universidad Politécnica de Madrid,
the Spanish project DATOS 4.0: RETOS Y SOLUCIONES
(TIN2016-78011-C4-4-R), by the Defense Advanced Resear-
ch Projects Agency (DARPA) with award W911NF-18-1-
0027 and the National Institutes of Health (NIH) with Award
number 1RO1AG059874-01. The authors would like to thank
Carlos Badenes Olmedo and José Luis Redondo Garcia for
all their valuable comments and feedback.

P Espinoza-Arias et al.: Preprint submitted to Elsevier

Page 19 of 24

Crossing the Chasm Between Ontology Engineering and Application Development

Table 5

Studies resulting from the literature review process

Authors

Title

Technology / Tool / Specification

Farre C., Varga J. and Almar R. [30]

Jansen G. et al. [52]

Zeginis D. et al. [103]

Mayer S. et al. [67]
Merofio-Pefiuela A. and Hoekstra R. [70]
Yu L. and Liu Y. [101]

Car N.J. [10]

Daga E., Panziera L. and Pedrinaci C. [20]
Bukhari A.C. et al. [9]

Lopes P. and Luis Oliveira J. [66]
Lanthaler M. and Giitl C. [60]

Lapi E. et al. [61]

Narvaez N. and Piedra N [72]

GraphQL Schema Generation for Data-

Intensive Web APIs
DRAS-TIC linked data: Evenly distributing

the past

Facilitating the exploitation of Linked open
Statistical data: JSON-QB API requirements
and design criteria

An Open Semantic Framework for the Indus-
trial Internet of Things

grlc makes GitHub taste like linked data APls
Using Linked Data in a heterogeneous Sensor
Web: challenges, experiments and lessons

learned ;
A method and example system for managing

provenance information in a heterogeneous
process environment-a provenance architec-
ture containing the Provenance Management
System (PROMS)

A BASILar approach for building web APIs
on top of SPARQL endpoints

ICyrus: A semantic framework for biomedical
image discovery

COEUS: '"semantic web
biomedical applications
Hydra: A vocabulary for hypermedia-driven

web APIs. -
Identification and utilization of components

for a linked open data platform
A Linked Data approach to guarantee the se-

mantic interoperability and integrity of uni-
versity academic data

in a box" for

Ontology2GraphQL

Trellis LDP

JSON-QB API

OSF
GRLC and Swagger
ELDA and LDA

ELDA and LDA

BASIL and Swagger
Virtuoso and Pubby
Pubby

Hydra

Virtuoso and SPARQL Protocol

Apache Marmotta

Appendix

A. Literature results

Table 5 presents the studies resulting from the literature
review process together with the authors and the resulting

query and JSON-LD context that allows getting the name

and capacity of a local business.

x—walder—query :
graphql—query: >

technologies, tools, or specifications that we analyzed in this {

work.

B. Query Examples
B.1. SPARQL example

List 1 presents the SPARQL query to get the instance of

name @single
capacity @single
(id:$id)

}

json—ld—context: >

{

"escom ":

Listing 2: Query example in Walder

"http ://vocab.ciudadesabiertas.es/def/co
mercio/tejido —comercial #",
"http :// purl.org/dc/elements/1.1/",
"escom:nombreComercial ",
"escom:aforo",

local business "CortField”. "de":
"name ":
Tt . "capacity ":
Listing 1: SPARQL query example e e e
PREFIX escom:<http ://vocab.ciudadesabiertas.es/def/comer }

cio/tejido —comercial#>

PREFIX dc:<http ://purl.org/dc/elements/1.1/>

SELECT ?localBusiness
WHERE

B.3. GRLC example

?localBusiness a escom:LocalComercial.
?localBusiness dc:identifier "CortFieldID"

B.2. Walder example
List 2 shows an excerpt of the OAS configuration, us-
ing the Walder-specific extensions, providing the GraphQL

List 3 shows the "localbusineess.rq” query annotated
with the SPARQL notation to describe the operation imple-
mented by the query, the URL of the SPARQL endpoint, and
a summary of the operation.

P Espinoza-Arias et al.: Preprint submitted to Elsevier

Page 20 of 24

Crossing the Chasm Between Ontology Engineering and Application Development

Postal Address | |

Location Pattern |

geospargl:SpatialObject

3

schema:Place

schemastelephone :: xsd:string
schema:url :: xsd:string

schema:specialOpening

I Ischema'P
esdir:PostalAddress

)
i

| | |
geospargl:has H

geosparqgl:Feature Geometry —| geospargl:Geometry H

|

geosparglasWKT :: WKTLiteral

-

schema:LocalBusiness

schema:Openingk

schema:openingHours :: xsd:string

—

schema:validFrom :: xsd:dateTime
schema:validThrough :: xsd:dateTime
schema:opens :: xsd:dateTime
schema:closes :: xsd:dateTime

skos:Concept
<<skosinScheme
escom-kos:access-ype>>

skos:Concept
<<skosinScheme
economic-activities>>

i

accessType:

sign :: xsd:string

comercialName :: xsd:string

ity Typ

authorizesEconomic

skos:Concept capacity : xsd:integer . —hasOpeningLicense (0..n) Activity {1..n)
<<Sms:i.nsche.me) cadastralReference i xsdistring g oo otaame (1.1
-k time-ps situationType
skos:Concept
operationalTimePeriod <<skosinScheme OpeningLicense
escom-kos:situation-types>
requestDate (1.1) = xsd:dateTime
> closingDate (0..1) : xsd:dateTime
Terrace ShoppingArea belongsTo releaseDate (0..1) xsd:dateTime
Local (1.1 i N
area :: xsd-float schema:openingHours :: xsd:string ocal {1.1) hafﬁ:::;ng processingStatus isGrantedTo
numberOiTablesAuthorized :: xsd:integer T
numberOiChairsAuthorize: i i
typeOfShoppingArea
schema:openingHours :: x: ¥ skos; FQ"”EN foaf:Agent
oSG 1 <<skos:inScheme
<¢5cltuz:s§'inoé‘cc:gme escom-kos:processing-status
associatedTo escom-kos type-of-shopping-areas> Ep>>,
hasTerrace (0..1)
L
(Ontology
‘escom: http#vocab.ciudadesabiertas.es/def/comercioftejido-comercial#
Legend:

Reused Class . skos:Concept
skos:hitp:/fwww.w3.0rg/2004/02/skos/core# I Roused Soeg Object Property «EkoEmSCh;‘me
‘escom-kos: http:/ivecab.linkeddata.es/kos/comercio/ A““hl_‘[e of reused class | schemenames>
schema: htp:/ischema.org/ used in ontology
xsd: http:/fiwww.w3.0rg/2001/XMLSchema# Stereotype for taxonomy
foaf: hitp://ixmins.com/foaf/0.1/ Class
esdir: http://vocab.linkeddata iertos/def/oc postal# Attribute subClass of
geospargl: hitp:/fiwww.opengis.netiont/geospargl#

Figure 4: Diagram of the ontology for the representation of data from the census of local business premises and terraces, as
well as their associated economic activities and activity licenses. Elements in blue correspond to the new classes defined for this

ontology.

Listing 3: GRLC query example

#+ summary: Returns the instance of "CortField" local busi
ness
#+ endpoint: http ://example.com/sparql

#+ method: GET

PREFIX escom:<http ://vocab.ciudadesabiertas.es/def/comer
cio/tejido —comercial#>

PREFIX dc:<http :// purl.org/dc/elements/1.1/>

SELECT ?localBusiness

WHERE

?localBusiness a escom:LocalComercial.
?localBusiness dc:identifier "CortFieldID"

C. Ontology Diagrams

C.1. Diagram of the ontology for the census of
local businesses

Figure 4 shows the diagram of the ontology mentioned
in the motivating example presented in subsection 2.1. For
readability purposes, the class and property names in both
diagrams correspond with the English values of the ontology
elements’ labels. However, the naming strategy followed in
this ontology uses Spanish terms. The English version of the

ontology documentation is available on the Web.?°

C.2. Diagram of the ontology for the data cubes
representation of census of inhabitants

Figure 5 shows the diagram of shows the Population By
Age data cube represented by the ontology mentioned in the
motivating example of subsection 2.2. The diagrams of the
remaining six data cubes defined in this ontology are avail-
able in its HTML documentation.?’ For readability purposes
we translated to English the original names of the data cube
instances (ex:DSD_PopulationByAge and ex:DS_PopulationByAge)
and the measure employed to represent the number of per-
sons (espad-medida:persons-number). However, the naming
strategy followed in this ontology uses Spanish terms.

26http://vocab.ciudadesabiertas.es/def/comercio/tejido—comercial/
index-en.html

27http://vocab.ciudadesabiertas.es/def/demografia/
cubo-padron-municipal/index-en.html

P Espinoza-Arias et al.: Preprint submitted to Elsevier

Page 21 of 24

Crossing the Chasm Between Ontology Engineering and Application Development

ab:DataStructureDefinition gb:component

gb:structure

<<rdf'1}fpe>> <<rdf:}vpe:->
P qgb:Dataset |
<<rdf‘iyne:-> qb:dataset H

gb:Observation

gb:ComponentSpecification

qb:d

gb:componentPropert qb:CompenentProperty
qb:DimensionProperty

<<rd1.lypc>>

imensios

ab:MeasureProperty &

3
] 1
| h
3 <<rdftypess>

| |ex:DSD_PopulationByAge

qb:structure

--{ exDS_PopulationByAge

1
; P

espad-medida:persons- H
number |eceooooooon '

Data Cube Instance

ex: hitp:/fvocab.ciudadesabiertas. es/recurso/demografia/padron-municipal/

Referenced ontologies

qb: hitp:/purl.orglinked-data/cubed

rdf: http:/Awww.w3.0rg1999/02/22-rdf-syntax-ns#
sdmx-dimension: hitp//purl.org/llinked-data/sdmx/2009/dimension#
espad-medida: hitp:/ivocab.ci 1as. Mo

/padron-municipak#

Legend:

A
Reused Class i
ecrdftypes>

subClass of

Object Property
|

Figure 5: Diagram of the Population By Age data cube defined in the ontology for the data cubes representation of census of
inhabitants.

References

[1

—

(2]

[3

—

[4

=

[5

=

[6

—_

9

—

[10]

[11]

Apache, 2014. Apache Jena Fuseki. URL: https://jena.apache.org/
documentation/fuseki2/. accessed: 2020-03-12.

Arwe, J., Speicher, S., Malhotra, A., 2015. Linked Data Platform
1.0. W3C Recommendation. W3C. URL: https://www.w3.org/TR/
2015/REC-1dp-20150226/.

Badenes-Olmedo, C., 2019. RESTful API for RDF data. doi:i10.
5281/zenodo. 3543320. accessed: 2020-01-20.

Beck, K., 2003. Test-Driven Development: By Example. Addison-
Wesley Professional.

Berners-Lee, T., Capadisli, S., Verborgh, R., Kjernsmo, K., Bing-
ham, J., Zagidulin, D., 2019. The Solid Ecosystem, Editor’s Draft.
URL: https://solid.github.io/specification/. accessed: 2020-09-
11.

Bray, T., et al., 2014. The JavaScript Object Notation (JSON) Data
Interchange Format .

Broekstra, J., Kampman, A., Van Harmelen, F., 2002. Sesame:
A Generic Architecture for Storing and Querying RDF and RDF
Schema, in: International semantic web conference, Springer. pp.
54-68.

Brown, T.B., Mann, B., Ryder, N., Subbiah, M., Kaplan, J., Dhari-
wal, P., Neelakantan, A., Shyam, P., Sastry, G., Askell, A., et al.,
2020. Language Models are Few-Shot Learners. arXiv preprint
arXiv:2005.14165 .

Bukhari, S.A.C., Nagy, M.L., Ciccarese, P., Krauthammer, M.,
Baker, C.J.O.,2015. iCyrus: A Semantic Framework for Biomedical
Image Discovery, in: SWAT4LS.

Car, N., 2013. A method and example system for managing prove-
nance information in a heterogeneous process environment—a prove-
nance architecture containing the Provenance Management System
(PROMS), in: 20th International Congress on Modelling and Simu-
lation, pp. 824-830.

Carroll, J.J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A.,

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

Wilkinson, K., 2004. Jena: Implementing the Semantic Web Recom-
mendations, in: Proceedings of the 13th international World Wide
Web conference on Alternate track papers & posters, pp. 74-83.
éebiric’, § Goasdoué, F., Kondylakis, H., Kotzinos, D., Manolescu,
1., Troullinou, G., Zneika, M., 2019. Summarizing semantic graphs:
a survey. The VLDB Journal 28, 295-327.

Cheron, A., Bourcier, J., Barais, O., Michel, A., 2019. Comparison
Matrices of Semantic RESTful APIs Technologies, in: International
Conference on Web Engineering, Springer. pp. 425-440.

Clark, K., Torres, E., Feigenbaum, L., 2008. SPARQL
Protocol for RDF. W3C Recommendation. W3C.
Https://www.w3.0rg/TR/2008/REC-rdf-sparql-protocol-20080115/.
Corcho, O., Fernandez-Lépez, M., Gémez-Pérez, A., 2003. Method-
ologies, tools and languages for building ontologies. Where is their
meeting point? Data & knowledge engineering 46, 41-64.

Corradi, A., Foschini, L., Ianniello, R., 2014. Linked Data for Open
Government: The Case of Bologna, in: 2014 IEEE Symposium on
Computers and Communications (ISCC), IEEE. pp. 1-7.

Cox, S., Little, C., 2017. Time Ontology in OWL. W3C Rec-
ommendation. W3C. Https://www.w3.org/TR/2017/REC-owl-time-
20171019/.

Cyganiak, R., Bizer, C., 2007. Pubby — A Linked Data Fron-
tend for SPARQL Endpoints. URL: http://wifo5-03.informatik.
uni-mannheim.de/pubby/. accessed: 2020-03-08.

Cyganiak, R., Reynolds, D., 2014. The RDF Data Cube Vocabulary.
W3C Recommendation. W3C. Https://www.w3.org/TR/2014/REC-
vocab-data-cube-20140116/.

Daga, E., Panziera, L., Pedrinaci, C., 2015. A BASILar approach for
building web APIs on top of SPARQL endpoints, in: CEUR Work-
shop Proceedings, pp. 22-32.

Daquino, M., Heibi, 1., Peroni, S., Shotton, D., 2020. Creating Rest-
ful APIs over SPARQL endpoints with RAMOSE. arXiv preprint
arXiv:2007.16079 .

Deliot, C., 2014. Publishing the British National Bibliography as

P Espinoza-Arias et al.: Preprint submitted to Elsevier

Page 22 of 24

[23]

[24]
[25]
[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]
[36]

[37]

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

Crossing the Chasm Between Ontology Engineering and Application Development

Linked Open Data. Catalogue & Index 174, 13-18.

Diefenbach, D., Lopez, V., Singh, K., Maret, P., 2018. Core tech-
niques of question answering systems over knowledge bases: a sur-
vey. Knowledge and Information systems 55, 529-569.

Elsevier, . Scopus. URL: https://www.scopus.com. accessed: 2020-
02-12.

Epimorphics, 2011. Elda: The linked-data API in Java. URL: http:
//epimorphics.github.io/elda/index.html. accessed: 2020-03-09.
Erling, O., Mikhailov, I., 2009. RDF Support in the Virtuoso DBMS,
in: Networked Knowledge-Networked Media. Springer, pp. 7-24.
Espinoza-Arias, P., Fernandez-Ruiz, M.J., Morlan-Plo, V., Notivol-
Bezares, R., Corcho, O., 2020. The Zaragoza’s Knowledge Graph:
Open Data to Harness the City Knowledge. Information 11, 129.
Espinoza-Arias, P., Garijo, D., Corcho, O., 2021. Scopus records.
URL: https://doi.org/10.5281/zenodo. 4433203, doi:10.5281/zenodo.
4433203,

Estrada, E., 2012. The Structure of Complex Networks: Theory and
Applications. Oxford University Press.

Farré, C., Varga, J., Almar, R., 2019. GraphQL schema generation
for data-intensive web APIs, in: International Conference on Model
and Data Engineering, Springer. pp. 184-194.

Feigenbaum, L., Torres, E., Clark, K., Williams, G., 2013.
SPARQL 1.1 Protocol. W3C Recommendation. W3C.
Https://www.w3.0rg/TR/2013/REC-sparql1 1-protocol-20130321/.
Fernandez-Sellers, M., 2015. Linked Open Data Inspector. URL:
https://github.com/marfersel/LODI/. accessed: 2020-03-12.
Fielding, R.T., Taylor, R.N., 2002. Principled Design of the Mod-
ern Web Architecture. ACM Transactions on Internet Technology
(TOIT) 2, 115-150.

Fletcher, G., Groth, P.,, Sequeda, J., 2020. Knowledge Scien-
tists: Unlocking the data-driven organization. arXiv preprint
arXiv:2004.07917 .

Foundation, G., 2015. GraphQL. URL: https://spec.graphql.org/
June2018/. accessed: 2020-10-10.

Foundation, T.A.S., 2013. Apache Marmotta.
marmotta.apache.org/. accessed: 2020-07-10.
Garcia, A., O’Neill, K., Garcia, L.J., Lord, P., Stevens, R., Corcho,
0., Gibson, F., 2010. Developing Ontologies within Decentralised
Settings, in: Semantic e-Science. Springer, pp. 99-139.

Garijo, D., Osorio, M., 2020. OBA: An Ontology-Based Frame-
work for Creating REST APIs for Knowledge Graphs, in: Pan,
J.Z., Tamma, V., d’Amato, C., Janowicz, K., Fu, B., Polleres, A.,
Seneviratne, O., Kagal, L. (Eds.), The Semantic Web — ISWC 2020,
Springer International Publishing, Cham. pp. 48-64. doi:1¢.1007/
978-3-030-62466-8_4.

Google, 2010a. Linked Data API. URL: https://github.com/
UKGovLD/1linked-data-api. accessed: 2020-03-02.

Google, 2010b. Puelia. URL: https://code.google.com/archive/p/
puelia-php/. accessed: 2020-03-09.

Groth, P., Loizou, A., Gray, AJ., Goble, C., Harland, L., Pettifer,
S., 2014. Api-centric linked data integration: The open phacts
discovery platform case study. Journal of Web Semantics 29, 12
- 18.
$1570826814000195, doi:https://doi.org/10.1016/j.websem.2014.03.
003. life Science and e-Science.

Griininger, M., Fox, M.S., 1995. Methodology for the Design and
Evaluation of Ontologies .

Haller, A., Janowicz, K., Cox, S., Lefrancois, M., Taylor, K.,
Le Phuoc, D., Lieberman, J., Garcia-Castro, R., Atkinson, R.,
Stadler, C., 2018. The SOSA/SSN ontology: a joint WeC and OGC
standard specifying the semantics of sensors observations actuation
and sampling. Semantic Web 1, 1-19.

Hammar, K., 2020. The OWL20OAS Converter. URL: https:
//github.com/RealEstateCore/OWL20AS. accessed: 2020-06-15.
Hartig, O., Zhao, J., Miihleisen, H., 2010. Automatic integration of
metadata into the web of linked data, in: Proceedings of the Demo
Session at the 2nd Workshop on Trust and Privacy on the Social and
Semantic Web (SPOT) at ESWC, pp. 2-4.

URL: http://

URL: http://www.sciencedirect.com/science/article/pii/

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]
[54]
[55]
[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

Hendler, J., Holm, J., Musialek, C., Thomas, G., 2012. US Gov-
ernment Linked Open Data: Semantic.data.gov. IEEE Intelligent
Systems , 25-31.

Heyvaert, P., De Meester, B., Pandit, H., Verborgh, R., 2020.
Walder. URL: https://github.com/KNowledgeOnWebScale/walder. ac-
cessed: 2020-10-20.

Hogan, A., Blomgqyvist, E., Cochez, M., d’Amato, C., de Melo, G.,
Gutierrez, C., Gayo, J.E.L., Kirrane, S., Neumaier, S., Polleres, A.,
et al., 2020. Knowledge Graphs. arXiv preprint arXiv:2003.02320 .
Horridge, M., Bechhofer, S., 2011. The OWL API: A Java API for
OWL ontologies. Semantic web 2, 11-21.

Initiative, O., 2011. OpenAPI Specification. URL: https://swagger.
io/specification/. accessed: 2020-10-05.

Jansen, G., Coburn, A., Soroka, A., Marciano, R., 2019a. Using Data
Partitions and Stateless Servers to Scale Up Fedora Repositories, in:
2019 IEEE International Conference on Big Data (Big Data), IEEE
Computer Society. pp. 3098-3102.

Jansen, G., Coburn, A., Soroka, A., Thomas, W., Marciano, R.,
2019b. DRAS-TIC Linked Data: Evenly Distributing the Past. Pub-
lications 7, 50.

Jusevicius, M., 2014. Graphity: Generic processor for declarative
linked data applications, in: SWAT4LS.

Jusevicius, M., 2016. Linked Data Templates, in: Proceedings of
the XML London conference, pp. 50-55.

Jusevicius, M., 2016. AtomGraph Processor. URL: https://github.
com/AtomGraph/Processor. accessed: 2020-08-15.

Keet, M., 2018. An Introduction to Ontology Engineering. volume 1.
Maria Keet.

Kellogg, G., Lanthaler, M., Sporny, M., 2014. JSON-LD 1.0. W3C
Recommendation. W3C. Https://www.w3.0rg/TR/2014/REC-json-
1d-20140116/.

Kitchenham, B., Charters, S., 2007. Guidelines for performing Sys-
tematic Literature Reviews in Software Engineering. Engineering
45, 1051.

Kotis, K.I., Vouros, G.A., Spiliotopoulos, D., 2020. Ontology engi-
neering methodologies for the evolution of living and reused ontolo-
gies: status, trends, findings and recommendations. The Knowledge
Engineering Review 35.

Lanthaler, M., Giitl, C., 2013. Hydra:
Hypermedia-Driven Web APIs. LDOW 996.
Lapi, E., Tcholtchev, N., Bassbouss, L., Marienfeld, F., Schiefer-
decker, 1., 2012. Identification and Utilization of Components for
a Linked Open Data Platform, in: 2012 IEEE 36th Annual Com-
puter Software and Applications Conference Workshops, IEEE. pp.
112-115.

Ledvinka, M., Kostov, B., Kfemen, P., 2016. JOPA: Efficient
Ontology-Based Information System Design, in: Sack, H., Rizzo,
G., Steinmetz, N., Mladenié, D., Auer, S., Lange, C. (Eds.), The Se-
mantic Web, Springer International Publishing, Cham. pp. 156—-160.
doi:10.1007/978-3-319-47602-5_31.

Ledvinka, M., Kiemen, P., 2020. A comparison of object-
triple mapping libraries. ~Semantic Web 11, 483-524. URL:
https://content.iospress.com/articles/semantic-web/sw190345,
doi:10.3233/SW-190345. publisher: IOS Press.

Lehmann, J., Isele, R., Jakob, M., Jentzsch, A., Kontokostas, D.,
Mendes, P.N., Hellmann, S., Morsey, M., Van Kleef, P., Auer, S.,
etal., 2015. DBpedia - A Large-scale, Multilingual Knowledge Base
Extracted from Wikipedia. Semantic web 6, 167-195.

Lisena, P., Merofo-Peiiuela, A., Kuhn, T., Troncy, R., 2019. Easy
Web API Development with SPARQL Transformer, in: Ghidini, C.,
Hartig, O., Maleshkova, M., Svétek, V., Cruz, 1., Hogan, A., Song,
J., Lefrangois, M., Gandon, F. (Eds.), The Semantic Web — ISWC
2019, Springer International Publishing, Cham. pp. 454-470.
Lopes, P., Oliveira, J.L., 2012. COEUS:“semantic web in a box” for
biomedical applications. Journal of biomedical semantics 3, 11.
Mayer, S., Hodges, J., Yu, D., Kritzler, M., Michahelles, F., 2017.
An Open Semantic Framework for the industrial Internet of Things.
IEEE Intelligent Systems 32, 96—101.

A Vocabulary for

P Espinoza-Arias et al.: Preprint submitted to Elsevier

Page 23 of 24

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

Crossing the Chasm Between Ontology Engineering and Application Development

McCrae, J.P., Abele, A., Buitelaar, P., Cyganiak, R., Jentzsch, A.,
Andryushechkin, V., Debattista, J., Nasir, J., 2007. Linked Open
Data Cloud. URL: https://lod-cloud.net/. accessed: 2020-12-10.
McGuinness, D.L., Van Harmelen, F., et al., 2004. OWL Web On-
tology Language Overview. W3C recommendation 10, 2004.
Meroiio-Pefiuela, A., Hoekstra, R., 2016. grlc Makes GitHub Taste
Like Linked Data APIs, in: European Semantic Web Conference,
Springer. pp. 342-353.

Miller, J.J., 2013. Graph Database Applications and Concepts with
Neodj, in: Proceedings of the Southern Association for Information
Systems Conference, Atlanta, GA, USA.

Narvaez, E., Piedra, N., 2018. Un enfoque de linked data para garan-
tizar la interoperabilidad semantica e integridad de datos académi-
cos universitarios (A linked data approach to guarantee the semantic
interoperability and integrity of university academic data), in: Pro-
ceedings of the 3rd International Workshop on Semantic Web 2018
co-located with 15th International Congress on Information (INFO
2018), CEUR-WS.org. pp. 50-62.

Noy, N., Gao, Y., Jain, A., Narayanan, A., Patterson, A., Taylor, J.,
2019. Industry-scale Knowledge Graphs: Lessons and Challenges.
Queue 17, 48-75.

Ogbuji, C., 2013. SPARQL 1.1 Graph Store HTTP Protocol.
W3C Recommendation. W3C. Https://www.w3.org/TR/2013/REC-
sparql11-http-rdf-update-20130321/.

Ontotext, 2015. GraphDB. URL: https://graphdb.ontotext.com/.
accessed: 2020-03-12.

Osborne, F., Motta, E., 2018. Pragmatic Ontology Evolution: Rec-
onciling User Requirements and Application Performance, in: Inter-
national Semantic Web Conference, Springer. pp. 495-512.
Pernisch, R., Dell’Aglio, D., Serbak, M., Bernstein, A., 2020.
ChImp: Visualizing Ontology Changes and theirlmpact in Protégé,
in: Fifth International Workshop on Visualization and Interaction
for Ontologies and Linked Data, CEUR Workshop Proceedings. pp.
47-60.

Peroni, S., Motta, E., d’Aquin, M., 2008. Identifying Key Concepts
in an Ontology, through the Integration of Cognitive Principles with
Statistical and Topological Measures, in: Asian Semantic Web Con-
ference, Springer. pp. 242-256.

Piflero, J., Ramirez-Anguita, J.M., Saiich-Pitarch, J., Ronzano, F.,
Centeno, E., Sanz, F., Furlong, L.I., 2020. The DisGeNET knowl-
edge platform for disease genomics: 2019 update. Nucleic acids
research 48, D845-D855.

Postman, 2020. State of the API Report. URL: https: //www.postman.
com/state-of-api. accessed: 2021-03-22.

Pouriyeh, S., Allahyari, M., Liu, Q., Cheng, G., Arabnia, HR., At-
zori, M., Mohammadi, F.G., Kochut, K., 2019. Ontology Summa-
rization: Graph-Based Methods and Beyond. International Journal
of Semantic Computing 13, 259-283.

Safris, S., 2019. A Deep Look at JSON vs. XML, Part 1: The
History of Each Standard. URL: https://www.toptal.com/web/
json-vs-xml-part-1. accessed: 2021-03-25.

Salvadori, I., Siqueira, F., 2015. A Maturity Model for Semantic
RESTful Web APIs, in: 2015 IEEE International Conference on
Web Services, IEEE. pp. 703-710.

Schrider, M., Hees, J., Bernardi, A., Ewert, D., Klotz, P., Stadt-
miiller, S., 2018. Simplified sparql rest api, in: Gangemi, A., Gentile,
A.L., Nuzzolese, A.G., Rudolph, S., Maleshkova, M., Paulheim, H.,
Pan, J.Z., Alam, M. (Eds.), The Semantic Web: ESWC 2018 Satel-
lite Events, Springer International Publishing, Cham. pp. 40-45.
Seaborne, A., Harris, S., 2013. SPARQL 1.1 Query Language.
W3C Recommendation. W3C. Https://www.w3.0org/TR/2013/REC-
spargl11-query-20130321/.

Severance, C., 2012. Discovering JavaScript Object Notation. Com-
puter 45, 6-8.

Shadbolt, N., O’Hara, K., Berners-Lee, T., Gibbins, N., Glaser, H.,
Hall, W,, et al., 2012. Linked Open Government Data: Lessons from
Data.gov.uk. IEEE Intelligent Systems 27, 16-24.

Shefchek, K.A., Harris, N.L., Gargano, M., Matentzoglu, N., Unni,

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[97]

[98]

[99]

[100]

[101]

[102]

[103]

D., Brush, M., Keith, D., Conlin, T., Vasilevsky, N., Zhang, X.A.,
et al., 2020. The Monarch Initiative in 2019: An integrative data
and analytic platform connecting phenotypes to genotypes across
species. Nucleic acids research 48, D704-D715.

Simon, A., Wenz, R., Michel, V., Di Mascio, A., 2013. Publishing
bibliographic records on the web of data: Opportunities for the bnf
(french national library), in: Extended Semantic Web Conference,
Springer. pp. 563-577.

Stasiewicz, A., Waqar, M., 2016. Deliverable 3.2: Report on Open-
Govlntelligence ICT tools - first release. Technical Report. National
University of Ireland (NUIG). OpenGovlntelligence Project. URL:
https://ec.europa.eu/futurium/sites/futurium/files/d3.2_693849_
report_on_opengovintelligence_ict_tools_first_release.pdf.
Studer, R., Benjamins, V.R., Fensel, D., 1998. Knowledge engineer-
ing: Principles and methods. Data & knowledge engineering 25,
161-197.

SYSTAP, L., 2015. Blazegraph. URL: https://blazegraph.com/.
accessed: 2020-03-12.

Taelman, R., Van Herwegen, J., Vander Sande, M., Verborgh, R.,
2018a. Comunica: a Modular SPARQL Query Engine for the Web,
in: Proceedings of the 17th International Semantic Web Conference.
URL: https://comunica.github.io/Article- ISWC2018-Resource/.
Taelman, R., Vander Sande, M., Verborgh, R., 2018b. GraphQL-
LD: linked data querying with GraphQL, in: ISWC2018, the 17th
International Semantic Web Conference, pp. 1-4.

Torres, E., Clark, K., Feigenbaum, L., 2008. SPARQL
Protocol for RDF. W3C Recommendation. W3C.
Hittps://www.w3.0rg/TR/2008/REC-rdf-sparql-protocol-20080115/.
Van Herwegen, J., Taelman, R., Verborgh, R., 2020. Community
Solid Server. URL: https://github.com/solid/community-server. ac-
cessed: 2020-11-20.

Verborgh, R., Taelman, R., 2020. LDflex: A Read/Write Linked
Data Abstraction for Front-End Web Developers, in: International
Semantic Web Conference, Springer. pp. 193-211.

Verborgh, R., Vander Sande, M., 2020. The Semantic Web identity
crisis: in search of the trivialities that never were. Semantic Web ,
1-9.

Vila-Suero, D., Villazén-Terrazas, B., Gomez-Pérez, A., 2013.
datos.bne.es: A library linked dataset. Semantic Web 4, 307-313.
Vrandecié, D., Krotzsch, M., 2014. Wikidata:A Free Collaborative
Knowledge Base. Communications of the ACM 57, 78-85.

Yu, L., Liu, Y., 2015. Using Linked Data in a heterogeneous Sen-
sor Web: challenges, experiments and lessons learned. Interna-
tional Journal of Digital Earth 8, 17-37. doi:10.1080/17538947.2013.
839007.

Zablith, F., Antoniou, G., d’Aquin, M., Flouris, G., Kondylakis, H.,
Motta, E., Plexousakis, D., Sabou, M., 2015. Ontology evolution: a
process-centric survey. The knowledge engineering review 30, 45—
75.

Zeginis, D., Kalampokis, E., Roberts, B., Moynihan, R., Tambouris,
E., Tarabanis, K.A., 2017. Facilitating the Exploitation of Linked
Open Statistical Data: JSON-QB API Requirements and Design Cri-
teria, in: HybridSemStats@ ISWC.

P Espinoza-Arias et al.: Preprint submitted to Elsevier

Page 24 of 24

Declaration of interests

The authors declare that they have no known competing financial interests or personal relationships
that could have appeared to influence the work reported in this paper.

[IThe authors declare the following financial interests/personal relationships which may be considered
as potential competing interests:

