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Abstract
Large Language Models (LLMs) have emerged as a powerful technology for text generation tasks, showing
promise in supporting the Ontology Engineering (OE) process. In this paper, we review current research on
applying LLMs to OE tasks, aiming to identify commonalities and gaps in the state of the art. We categorize these
efforts using the Linked Open Terms (LOT) methodology, characterizing them by their input and expected output.
From this analysis, we highlight key challenges when creating benchmarks to evaluate LLM performance in OE
tasks.
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1. Introduction

Ontologies are a key component of Knowledge Engineering for integrating, validating and reasoning
with data in Knowledge Graphs [1]. However, developing ontologies is a challenging and time consuming
task. According to existing methodologies for ontology development [2], Knowledge Engineers should
follow an iterative process to 1) distill the knowledge of the target domain by interviewing experts
and understand their data-driven requirements, 2) implement a shared conceptualization by assessing
existing standard ontologies described in the domain and validating it against the requirements, 3) make
the ontology available on the web in both human and machine-readable manner, and 4) assess and
maintain the ontology by addressing any new requirements that may arise from its use. While different
tools have been developed by the scientific community to assist in the Ontology Engineerning process
(e.g., for formalizing tests to assess requirements [3], creating human-readable documentation [4],
ontology assessment [5, 6], etc.) a significant manual effort is still required from knowledge engineers
for conceptualizing, reusing and validating existing ontologies.

In recent years, Large Language Models (LLMs) [7, 8, 9] have emerged as a disruptive AI technology
for text generation tasks. On the one hand, LLMs have revolutionized the state of the art by providing
impressive results in challenging AI tasks such as code generation [10], question answering [11] or
text summarization [7], and becoming easy to adapt as chat bots such as ChatGPT.1 On the other hand,
LLMs have limited reasoning skills [12], hallucination problems (i.e., producing inaccurate answers and
information) [13], lack transparency when providing results [14] and present bias problems [15].

A number of works have started using LLMs for aiding developers in ontology engineering tasks
(e.g., proposing competency questions [16], learning ontologies from text [17], aligning concepts to
existing taxonomies [18], etc.). However, the tasks addressed in existing works are usually defined in
an heterogeneous manner, with different scope, inputs and expected outputs. In this paper we provide
an overview of existing Ontology Engineering tasks addressed in the state of the art and map them
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Figure 1: An overview of the LOT methodology, showing most relevant phases and activities.

against the different phases described in the Linked Open Terms (LOT) methodology [2]. In addition,
we characterize each different task by their expected input and output. Our work helps characterizing
existing tasks, describes existing gaps and discusses the main challenges when creating reference
benchmarks for evaluation.

2. Mapping LLM for OE Tasks to the LOT methodology

Ontology development projects may involve a substantial number of activities. For example, the NeOn
methodology identifies 10 processes and 49 activities involved in ontology engineering [19]. Some
activities are carried out almost in every ontology development, for example ontology evaluation,
while others are needed only in some specific cases, for example ontology customization. Ontology
development methodologies, like Linked Open Terms (LOT), NeOn , METHONTOLOGY [20], DILIGENT
[21] and SAMOD [22] among others, orchestrate the execution of ontology engineering activities in
a guided way that usually involves requirements specification (written as Competency Question or
affirmative statements), implementation and evaluation as core steps. We take the LOT workflow
as basis for our analysis as it considers the core steps from traditional methodologies and extends
them with additional steps for ontology publication and maintenance. Figure 1 depicts the core phases
included in LOT (requirements specification, implementation, publication and maintenance) and main
activities included in each phase. Boxes entitled “...” in Figure 1 group activities from the methodology
that are not considered for this analysis due to the nature of the activity, e.g., proposing a candidate
release to be published, or describing the purpose of the ontology.

In order to categorize existing works using LLMs for OE tasks, we reviewed and mapped each
approach to the activities from the LOT methodology. During this process, we considered which input
is given to the LLM (or system described in each work) and which output is expected by each approach,
so as to select the corresponding LOT activity and characterize each task. For example, if the input is a
set of competency questions and the output is OWL code, the task would be mapped under “Ontology
encoding”, while if the output is a diagram or other conceptualization formalism, it would be mapped
to “Ontology conceptualization”. Table 1 shows the results of our mapping, outlining the input and
output of each approach.

As described in Table 1, most of the existing efforts on applying LLMs to OE are focused on the initial
stages: requirement specification and implementation. Regarding requirements specification, existing
approaches focus mostly on generating Competency Questions from text, like Kommineni et al. [26]
and Antia and Keet [28]. Other works, e.g., Alharbi et al. [23], Rebboud et al. [24] and Ciroku et al. [25],



LOT Phase LOT Task Resource Input Output

Requirements
Specification

Purpose, scope,
and non-functional
requirement writing

-

Functional requirements
writing Alharbi et al. [23] Ontology file

CQs
CQ writing

Rebboud et al. [24]
Ontology file

Ciroku et al. [25]
Kommineni et al. [26] Text

Zhang et al. [27] User story

Antia and Keet [28]
Text and

CLaRO templates
Requirement improvement -
Requirement formalization Tufek et al. [29] CQs SPARQL Queries

Implementation

Reuse
Lopes et al. [18]

Term,
informal definition
and domain entity

Corresponding class
in top-level
ontology

Hertling and Paulheim [30] Ontologies and Text Ontology Mappings

Conceptualization
Babaei Giglou et al. [31]

Source text
and terminologies

Taxonomy,
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and axioms

Toro et al. [32]
Partially completed

ontology term

JSON/YAML object
with logical definitions

and relationships

Encoding

Mateiu and Groza [33] Text

Ontology file

Köhler and Neuhaus [34] Text
Doumanas et al. [35] Text (ORSD)

Saeedizade and Blomqvist [36]
CQs

Kommineni et al. [26]
Caufield et al. [37] Schema and Text

Amini et al. [38]
Ontology file and

additional information
Evaluation -

Publication
Documentation Toro et al. [32] Ontology term Term definition

Online publication -
Maintenance -

Table 1
Categorization of existing resources regarding the use of LLMs in Ontology Engineering per LOT phase and task.
Phases with no existing resources are denoted with ’-’.

analyzed the opposite activity, that is, extracting CQs from existing ontologies, which may be applied
during a reverse ontological engineering process. It can also be observed that Saeedizade and Blomqvist
[36] use LLMs to formalize ontological requirements as SPARQL queries.

Regarding the activities involved in the ontology implementation phase, we observe that most works
aim to facilitate the ontology encoding activity using LLMs to generate ontology OWL files from text
or CQs (e.g., Mateiu and Groza [33], Doumanas et al. [35], Saeedizade and Blomqvist [36], Kommineni
et al. [26], Caufield et al. [37], Amini et al. [38] and Köhler and Neuhaus [34]). Other works, such as
Babaei Giglou et al. [31], focus on a previous step by generating conceptualizations from texts and
terminologies. In addition, some approaches, like Lopes et al. [18] and Hertling and Paulheim [30], have
explored the use of LLMs for assisting the ontology matching activity, which may also be useful for
ontology reuse (i.e., helping identify candidate terms in existing ontologies). Finally, one work was
identified to aid ontology documentation: Toro et al. [32] present an LLM-powered ontology completion
approach that contributes to the ontology conceptualization task, since it extracts relations and logical
definitions for a given term, but it can also be categorized within ontology documentation, since it
provides a definition for the target input term.

3. LLMs for Ontology Engineering tasks: Gaps and challenges

Table 1 illustrates some of the main gaps in the state of the art. Within the requirement specification
phase, no approaches deal with non-functional requirement specification writing, an often neglected



task when building ontologies. Another important gap is on requirement improvement, where a new
task may be derived from CQ writing in order to use LLMs to enhance a current set of requirements,
given an initial set of CQs.

Next, the implementation phase has received most of the attention so far, especially on conceptual-
ization and encoding of ontologies. However, there are two notable gaps. First, in the reuse phase no
approaches have been presented to support ontology search, selection or adaptation by using LLMs.
Second, no approaches cover ontology evaluation so far. While [29] generates SPARQL queries from
CQs in order to validate an ontology against its instances, no approaches address the assessment of
the ontology itself. New tasks may be proposed in order to feed the reports from ontology evaluation
tools like OOPS! [5] or FOOPS! [6] to an LLM in order to translate their suggestions into changes in the
ontology.

Finally, the publication and maintenance phases are barely addressed by the reviewed works, despite
the potential of LLMs to contribute to tasks like generating ontology examples, proposing definitions and
labels in multiple languages, or suggesting changes in an existing OWL file based on a new requirement.

Given the interest in the community to automatically assist OE activities with LLMs, it is becoming
increasingly important to promote a common evaluation framework and benchmarks for OE in different
OE tasks. Works such as Hertling and Paulheim [30] and Alharbi et al. [23] have started moving in this
direction. We have identified three main challenges from the conducted review:
Challenge 1: Homogenizing OE Task Definitions. As shown in Table 1, different approaches

tackle the same LOT tasks with different aims. For example, in CQ writing some approaches take plain
text [23], while others take text and external templates [24]. Others reverse engineer the questions with
an ontology file [23]. Therefore, the first challenge is to identify precisely each OE task, specifying the
expected input and output for the LLM.
Challenge 2: Establishing common evaluation methods and metrics for OE tasks. Many

tasks from Table 1 have a clear input and output, but may be challenging to evaluate. For example,
for the ontology conceptualization and encoding tasks, the ontology models generated from LLMs
may be compared to multiple valid representations instead of a single reference ontology. In addition,
different similarity metrics may be used to consider similar entities in the ontology graph (e.g., if the
LLM proposes object properties that are synonyms of a reference property) or the completeness of
the proposed model (correct number of classes, properties and data properties). Similarly to the BLEU
score [39] established in other areas like Machine Translation, new metrics may have to be developed
to establish a fair result evaluation for OE tasks.
Challenge 3: Establishing OE task-specific curated benchmarks. In order to ensure a fair

evaluation of LLM results in different tasks, different benchmarks must be defined and be adapted to the
different inputs and outputs of the respective OE tasks. Some approaches have started working in this
direction [23], e.g., by reusing existing CQ benchmarks like Coral [40], which collect hundreds on CQs
across 14 ontologies. However, the quality among these CQs is heterogeneous (i.e., some CQs may be
ambiguous, or not provide enough context) as they belong to different initiatives with no common set of
practices or guidelines for their creation. In addition, existing resources may be subject to contamination,
i.e., resources are ingested as pre-training or fine-tuned data by LLMs. New task-specific benchmarks
should define common guidelines for curators, and ensure that a portion of the benchmark remains
concealed from web crawlers (but available for full evaluations on demand).

4. Conclusions and Future work

In this paper we provide an overview of existing efforts using (L)LMs for Ontology Engineering tasks,
grouping them according to the different phases described in the Linked Open Terms methodology
and characterizing them in terms of the input and output each work proposes. Our efforts highlight
unexplored areaswhere LLMsmay be used to aid OE tasks (e.g., evaluation, documentation, maintenance)
describing the main research challenges to be addressed in order to create reference benchmarks for each
of these tasks. We believe that creating high-quality benchmarks will provide a common framework for



automated evaluation, promoting the use of LLMs for OE tasks and reducing human effort required in
their evaluation. Extending the analysis started in this paper by including methodologies and activities
for building Knowledge Graphs (or other types of ontology exploitation scenarios) will likely be highly
valuable for assessing automated Knowledge Graphs construction processes.
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