Good practice versus reality: A landscape analysis
of Research Software metadata adoption in
European Open Science Clusters

1%t Anas El Hounsri
Ontology Engineering Group
Universidad Politécnica de Madrid
Madrid, Spain
anas.elhounsri@alumnos.upm.es

Abstract—Research Software has become a key asset to sup-
port the results described in academic publications, enabling
effective data analysis and reproducibility. In order to ensure
adherence of Research Software to the Findable, Accessible,
Interoperable, and Reusable (FAIR) principles, the scientific
community has proposed metadata guidelines and best practices.
However, it is unclear how these practices have been adopted so
far. This paper examines how different scientific communities
describe Research Software with metadata to support FAIR,
how do they adopt existing good practices regarding citation,
documentation or versioning, and what is the current adoption
of archival services for long-term preservation. We carry out
our analysis in the software registries of five science clusters
(in domains ranging from Physics to Environmental Sciences),
together with a multi-domain collaborative software registry.
Our results highlight the main gaps in metadata adoption in
the different communities, opening an opportunity for future
contributions to aid researchers in adopting good FAIR and Open
Science practices.

Index Terms—Research Software, Metadata, FAIR software,
FAIR principles, Guidelines.

I. INTRODUCTION

Research Software, i.e., the code files, scripts, tools, or
workflows involved in or produced throughout the research
lifecycle [1] plays a pivotal role in modern scientific re-
search, to support the research outputs described in scientific
publications. Understanding the role of Research Software
is essential not only for supporting research efficiency but
also for ensuring reproducibility. In this regard, the scientific
community has promoted initiatives towards adopting Open
Science best practices, such as the Findable, Accessible,
Interoperable and Reusable (FAIR) principles for data [2],
which have also been extended for Research Software [3].
The adoption of FAIR is expected to ease the reuse of data
and software while allowing automated systems to retrieve and
interoperate with (meta)data. In fact, compliance with FAIR
is now part of the agenda of international organizations such
as the European Commission, through the European Open
Science Cloud initiative [4], or NASA [5].!

Thttps://science.nasa.gov/open-science/

2" Daniel Garijo
Ontology Engineering Group
Universidad Politécnica de Madrid
Madrid, Spain
daniel.garijo@upm.es

In order to ease the adoption of FAIR and Open Science,
several efforts have developed guidelines, lessons, and good
practices for researchers to improve the metadata available in
their code repositories (e.g., the Research Software MetaData
Guidelines (RSMD) [6], Software Carpentry?, Open Source
Security Foundation®, etc.). However, it is unclear how these
practices are adopted by different scientific communities,
making it challenging to assess their impact.

In this paper, we address this issue by assessing the adoption
of Research Software metadata best practices (inspired by
the RSMD guidelines) of a vast number of repositories from
different multi-disciplinary scientific clusters. Our goal is to
quantify in detail the adoption of Research Software metadata
best practices within these communities and to find common
gaps in their adoption. In particular, we focus on the following
research questions:

¢ RQ1: How do communities describe Research Software
metadata in their code repositories?

o RQ2: What is the adoption of archival infrastructures
across disciplines?

« RQ3: How do software projects adopt versioning?

e RQ4: How comprehensive is the metadata provided in
code repositories? Specifically:

— What is the adoption of open licenses?

— Do research projects include a description?

— How well documented are research projects? (i.e., in
terms of installation instructions, requirements, and
documentation availability)

o« RQS5: What are the most common citation practices
among communities?

We carry out our analysis with code repositories available
in public software registries of five major European Science
Clusters, ranging from Physics to Environmental sciences, and
a multi-disciplinary software registry. In total, our analysis
includes 10,040 software entries.

Zhttps://software-carpentry.org/lessons/
3https://www.bestpractices.dev/en

https://science.nasa.gov/open-science/
https://software-carpentry.org/lessons/
https://www.bestpractices.dev/en

With this work, our aim is to find the current adoption gaps
in order to develop tools that will assist researchers in creating
consistent software metadata records to support FAIR.

This paper is structured as follows. Section II refers to
related work and studies in the area of FAIR principles and
metadata adoption. In Section III, we introduce the clusters
we chose to create our datasets. In Section IV, we explain
our approach to collect data to answer these questions and
methods of measurement. Next, in Section V, we provide
descriptive statistics of the results. In Section VI, we present
our analysis about each research question (RQ). We discuss
the wider implications and the threats of not adopting FAIR.
In Section VII we propose strategies to adopt best practices
for the FAIR principles. We conclude the paper in Section VI.

II. RELATED WORK

We divide this section into three main efforts: 1) existing
guidelines for the adoption of FAIR in Research Software, 2)
previous studies exploring metadata adoption by the scientific
community, and 3) tools or managing Research Software
metadata.

A. Guidelines for Open Science and FAIR Research Software

The FAIR principles, described by Wilkinson et al. (2016),
[2] address key challenges in managing scholarly data by
establishing guidelines to make data Findable, Accessible,
Interoperable, and Reusable. These principles aim to support
data findability and reuse not only by users but also by
machines, which is essential in data-intensive research. The
principles are intended for numerous stakeholders, including
data publishers, software developers, funding bodies, and
scientific communities.

FAIR has been adapted to different types of research arti-
facts. In Erdmann et al [7] the authors provide a structured
introduction to FAIR concepts for different disciplines, one of
them being Research Software, designed to help the research
community implement the FAIR principles for both data
and software. The FAIR for Research Software Principles
(FAIR4RS) [3] followed, developed by an international work-
ing group, jointly led by the Research Data Alliance (RDA),*
the Research Software Alliance (ReSA),> and FORCE11.° The
FAIR4RS principles emphasize accommodating the unique
characteristics of Research Software such as executability,
versioning, and complex structures by focusing on specific
challenges such as version identification, provenance track-
ing, and cross-environment usability. This work resulted in a
detailed guide outlining principles for the entire lifecycle of
Research Software, from creation to preservation and reuse.
While other best practices for Research Software in support for
Open Science have been developed throughout the years (e.g.,
Software Carpentry lessons, Open Source Security Foundation
guidelines), FAIR Research Software has become a major

“https://www.rd-alliance.org/
Shttps://www.researchsoft.org/
Shttps://force11.org/

goal for some major funding bodies (e.g., the European
Commission [4]) and agencies (e.g., NASA”).

Adopting FAIR4RS, Chue Hong et al. [8] developed
domain-agnostic metrics for the automated assessment of
Research Software, addressing challenges such as software
versioning, licensing, metadata management, and interoper-
ability. These guidelines build on top of the Research Software
MetaData recommendations (RSMD) [6], which indicate how
Research Software metadata fields should be described in a
given code repository, independently of its research discipline.
RSMD guidelines inspire our work, which aims to determine
current practices in different science domains.

Finally, other guidelines focus on different aspects of FAIR,
such as citation and credit. Katz et al. [9] provide guidelines
on software citation practices to ensure proper attribution and
reuse within the academic publishing and research communi-
ties. Similarly, Bouquin et al. [10] identify software citation
challenges, proposing interventions to support software ac-
knowledgment across diverse research communities. Our RQ5
aims to explore the adoption of the citation practices suggested
by these works.

B. Exploring Metadata adoption by scientific communities

Numerous studies have analyzed the various aspects of
software metadata independently of their role in the FAIR
principles. At a general level, Kelley and Garijo [11] create
a Knowledge Graph of Research Software metadata with
more than 10,000 Zenodo entries,® assessing the number of
repositories with description, license or installation instruc-
tions among other metadata fields. Other works like [12]
identify metadata standards that support reproducibility in
computational research, from data input to final publication.
By highlighting existing gaps and emerging trends, [12] offers
targeted insights to improve reproducibility practices across all
stages of scientific data analysis.

Other studies focus on the adoption of specific metadata
fields. For example, software versioning is addressed by [13]
with the goal of observing how Ansible role developers adhere
to semantic versioning standards by analyzing changes across
role versions, identifying common practices and inconsisten-
cies, and developing a predictive model to help classify ver-
sion changes. Meanwhile, [14] investigates whether software
libraries on Maven Central adhere to semantic versioning
principles, by examining the frequency and impact of breaking
changes in major, minor and patch releases. Another example
is [15], which aims to define the quality parameters for version
control system (VCS) practices, develop a tool to automate the
assessment of the quality of versioning activities based on VCS
log files, and showcase its use in the evaluation of versioning
practices in open source projects.

Several studies focus on licenses. Kapitsaki et al. [16] aim
to ease the license compatibility process in open source soft-
ware by using the Software Package Data Exchange (SPDX)

7https://software.nasa.gov/
8https://zenodo.org

https://www.rd-alliance.org/
https://www.researchsoft.org/
https://force11.org/
https://software.nasa.gov/
https://zenodo.org

standard to detect and address license compatibility issues
in software packages. Zacchiroli et al. [17] compile a large-
scale open data set of FOSS license texts and metadata
from Software Heritage deposits in order to support historical
studies in open source licensing.

As for the adoption of citation best practices, there are
studies at different levels of granularity. Garijo et al. [18]
explore how code repositories refer to their respective scientific
publications in their code repositories, while Chaoqun Du et
al. [19] focus on recognizing the tools mentioned in a research
publication. Alternatively, A. Alsudais [20] investigates in-
code citation practices in open Research Software libraries,
specifically examining their prevalence, consistency, and com-
pleteness to propose best practices for citation standards.

Although these studies have investigated the adoption of
specific elements in Research Software, such as licensing
practices [16], versioning protocols [13, 14], citation [20] and
general metadata [12, 11], the extent of metadata adoption that
aligns specifically with the FAIR principles within scientific
domains still remains largely unexplored. Studying this gap
is highly relevant because the FAIR principles serve as a
foundational framework for ensuring that Research Software
and data are accessible, reusable, and interoperable within
the Open Science community and identifying gaps and areas
where metadata practices fall short of these principles is key
to improve their adoption.

Finally, other quantitative works have focused on producing
software metadata datasets in specific domains. For instance,
in the Machine Learning domain, Jiang et. al. [21] create
a dataset of pre-trained model metadata based on available
model documentation (including nearly 30,000 GitHub repos-
itories). Similarly, [22] develop a model metadata dataset from
more than 15,000 entries in Hugging Face [23], Model Zoo
[24] based on their documentation. While these quantitative
studies may be used to assess the adoption of metadata in
their respective domains, this was beyond the original scope
of these works.

C. Tools for managing Research Software Metadata

Several tools exist to automate metadata extraction from
software. For example, AIMMX [25] is a tool designed to
automatically extract metadata from AI models on GitHub,
in order to facilitate model management and reproducibility.
The Software Metadata Extraction Framework (SoMEF) [26]
is a tool for extracting Research Software metadata from code
repositories like GitHub and GitLab, by exploring metadata
files, README and public APIs. Instead, Codemetapy [27]
and SOMESY ° [28] are metadata harvesters based on package
files (e.g., pom.xml for Java, setup.py for Python, etc.). These
tools simplify the management of software project metadata
by automating the synchronization of key metadata from the
project. In our work, we adopt SOMEF to retrieve metadata to
study the adoption of code repositories.

%https://materials-data-science-and-informatics.github.io/somesy/latest/

III. AN OVERVIEW OF EUROPEAN OPEN SCIENCE
CLUSTERS

In order to assess software practices in different science
communities, we focus our work in five of the six European
Science clusters within the OSCARS network [29]. These sci-
ence clusters represent major research communities in Europe,
and all have at least a curated set of software repositories
for their respective domains. We decided to leave out of
our analysis the Social Sciences & Humanities Open Cloud
(SSHOC), since it only had six repositories at the time of the
analysis. An overview of the clusters is available below:

The European Science Cluster of Astronomy <& Particle
Physics ESFRI Research Infrastructures (ESCAPE)0 s a
collection of various research infrastructures in astronomy,
particle physics, and nuclear physics to create solutions for
managing large-scale scientific data. This work leverages
open science principles and FAIR guidelines to improve data
accessibility and usability across disciplines. Available in
Zenodo, ESCAPE provides a repository of datasets, software,
documentations, and papers that support scientific workflows
and collaborative research. The repository includes resources
for data processing, data preservation, and knowledge sharing,
with the aim of creating a unified digital research infrastructure
for the European science community.

The Environmental Research Infrastructure (ENVRI)!! is a
scientific hub which offers many notebooks to explore data
and has a search service where users can find software such
as notebooks and their corresponding GitHub repositories. EN-
VRI provides datasets, tools, and documentation that facilitate
interdisciplinary research in Earth and environmental sciences.
The repository aims to follow the FAIR principles, promoting
shared access to data, models, and software relevant to climate
change, biodiversity, and geosciences, it focuses on creating
interoperable, reusable research tools, supporting scientists
to easily integrate and share their work across disciplines
contributing to environmental research.

The Life Science Research Infrastructure bio.tools (LS-RI)"?
is a directory dedicated to bio-informatics tools and resources
that support life sciences research, facilitating data sharing,
analysis, and software reuse. bio.tools provides metadata-
driven descriptions for tools across bio-informatics, genomics,
proteomics, and related fields. The project emphasizes meta-
data completeness, open access, and interoperability, support-
ing researchers in finding and using software solutions to an-
alyze complex biological datasets. The repository’s resources
aid in standardizing software usage in life sciences, enhancing
collaborative and reproducible research practices.

Photon and Neutron Open Science Cloud Software Catalog
(PaNOSC)"* project focuses on creating a software catalog
for photon and neutron research facilities, providing accessible
tools and services tailored to data-intensive scientific research.

10https://projectescape.eu/zenodo
https://search.envri.eu/genericpages/genericpages?page=home
Zhttps://bio.tools/bio.tools

Bhttps://software.pan-data.eu/

https://materials-data-science-and-informatics.github.io/somesy/latest/
https://projectescape.eu/zenodo
https://search.envri.eu/genericpages/genericpages?page=home
https://bio.tools/bio.tools
https://software.pan-data.eu/

By using a software database catalog that has all available
software in the cluster, PaNOSC emphasize Open Science
and FAIR principles to make software and data processing
tools available for researchers. This repository offers tools for
simulation, data reduction, and analysis, supporting scientists
in areas such as materials science and structural biology. The
catalog encourages standardization across facilities, promoting
easier access and collaboration in photon and neutron sciences.

Finally, in our analysis, we also considered the Research
Software Directory (RSD).'"* While this software catalog does
not represent a science cluster, it has gained momentum
as a software registry from multiple science domains, with
contributions from more than 20 different organizations. RSD
is aimed at scholarly research software, in order to improve
software visibility, citation, and reuse within the scientific
community. RSD hosts metadata-rich entries that describe
software functionality, authorship, and licenses, helping re-
searchers find, evaluate, and incorporate software in their
work.

IV. METHODOLOGY

Figure 1 shows an overview of the steps followed to perform
the analysis of our five research questions. First, in order to
extract the list of GitHub and GitLab repositories to analyze
from each science cluster, we created a script that exploits
domain registry APIs with web scraping, storing the list of
repositories to analyze (with their respective source) in a JSON
file'>[30]. The ESCAPE cluster provided their registry in Zen-
odo, allowing us to utilize Zenodo’s API to retrieve metadata
for each software entry, that includes links to repositories.
The LS-RI cluster, specifically the bio.tools directory, serves
as an aggregated directory of various sciences repositories
and offer an API service, providing a structured access to
metadata across its repositories. For the remaining resources,
i.e., PaNOSC, ENVRI and RSD, did not offer a direct API
nor standardized access to the repositories. Therefore we
developed web scraping scripts to retrieve repositories from
their sites [30]. It was necessary to create custom scripts to
navigate each site structure, extract all accessible repository
data, and organize it into a standardized format compatible
with our dataset. Although web scraping caused additional
challenges compared to previous clusters, this method allowed
us to streamline the extraction of repositories from clusters that
otherwise lack automated data retrieval solutions.

Next, we used SOMEF [26] on each code repository, in order
to extract a structured and integrated metadata record. SOMEF
extracts information from more than 30 metadata categories,
indicating the source file for where each metadata property was
found (e.g., README, LICENSE.md, etc.), which we use to
answer some of the RQs. Additional scripts were developed'®
[31] in order to answer specific research questions. The dataset
containing both the links to the repositories and the analysis

4https://research-software-directory.org/
I5https://github.com/Anas- Elhounsri/Repositories- Extraction/tree/v0.1.0
16https://github.com/Anas-Elhounsri/Metadata- Adoption- Quantify

with the final results is archived in Zenodo [32].

A. Research Questions Methodology

Our RQs are inspired by the RSMD guidelines, which divide
RS metadata in five main categories General, Accessibility
and preservation, Reference and identification, Descrip-
tion, Credit and attribution. In order to address each of our
RQs, we searched for different files and metadata on each code
repository, further detailed below:

To address RQ1: how communities describe Research
Software metadata?, we explore the following metadata files:

« Citation File Format (CFF) [33]: Metadata file containing
human and machine-readable citation metadata for re-
search software. CFF is serialized in YAML, and includes
fields for tracking license, title and url of a code deposit
among others.

« README: Human-readable files, usually written in
Markdown, with a brief description of the code repository
or tool. READMESs usually contain a wide range of
metadata attributes, including description, title, license,
citation or installation instructions among other cate-
gories.

o Package files: Metadata files specific to programming
languages (e.g., setup.py in Python, pom.xml in Java,
etc.). These files are machine-readable.

o AUTHORS: A file for listing individuals or groups who
contributed to the project, usually includes their names
and optionally their roles

o« CONTRIBUTORS: A file that details contributions of
people involved in the project, often used with AU-
THORS

o LICENSE: File specifying the license used in a code
repository.

o codemeta.json: JSON-LD [34] file that contains struc-
tured metadata about the software, to facilitate discovery
and citation.

« zenodo.json: JSON file with metadata to ease integration
with Zenodo, specifying metadata for archiving software.

These categories address a range of metadata documen-
tation types, from standardized files (Codemeta.json and
Zenodo.json) that facilitate handling automated metadata, to
human-generated files like README and CONTRIBUTORS
that provide contextual and the individuals and/or group in-
volved in their work. This selection is crucial to capture a
comprehensive view of the ways in which researchers, soft-
ware developers, and stakeholders maintain and share essential
software metadata.

To examine RQ2: adoption of archival infrastructures
across different communities we decided to explore whether
code repositories are 1) deposited in Software Heritage,'”
which is the largest public archive of software source code
and development history, with more than 16 billion unique
source code files coming from more than 250 million col-
laborative development projects [35]; and 2) whether code

https://www.softwareheritage.org/

https://research-software-directory.org/
https://github.com/Anas-Elhounsri/Repositories-Extraction/tree/v0.1.0
https://github.com/Anas-Elhounsri/Metadata-Adoption-Quantify
https://www.softwareheritage.org/

Archives & Registries
(Zenodo (ESCAPE), bio.tools)

—
> = "‘ E
2 al 2]
B TN - — - —
< / > « =2
— — J— —' »< /> SH=
Call API or use web scrapping Ky Q —
fo exiract repositories 0 M e Extract the needed Results
—> & — information
A ; Extract all needed to answer the
. metadata information
Websites (ENVRI, RSD, RQs as JSON

Extracted repositories

PANOSC) as JSON file

Fig. 1. Workflow to extract the information to answer the RQs

repositories acknowledge using Zenodo (i.e., including a badge
in their README). Zenodo is a multidisciplinary open re-
search repository that is developed and hosted by CERN
[36]. We chose these infrastructures because they play a
crucial role in ensuring that Research Software and outputs
remain accessible, reproducible, and citable over time. By
focusing on these archival solutions, we aim to assess how
frequently they are adopted across various research fields.
This approach underscores the importance of consistent use
of archival platforms by researchers and software developers
to ensure longevity and reach of their work.

For investigating RQ3: how research software projects
adopt versioning, we observed whether software projects
had code releases and consistent versioning naming scheme
(i.e., all releases follow the same conventions) to provide
a comprehensive understanding of versioning practices and
how well are they documented. We look into the following
versioning schemes:

o Semantic versioning'®: the project uses releases following

the ”X.Y.Z” notation, where X stands for major changes,
Y for minor changes and Z for patches.

o Calendar versioning: the project uses the current date to

tag their releases

o Alphanumeric: the project combines numbers and char-

acters in the release.

These elements are crucial as they ensure accurate identifi-
cation and referencing of software projects, modules, and their
respective versions. By examining the presence of releases, the
consistency in versioning approaches and the adopted naming
conventions, we aim to understand how projects manage
their versions over time, which is crucial for ensuring clarity
and reliability in RS and collaboration within the research
community.

For the research question on RQ4: how comprehensive is
the metadata provided in code repositories?, we selected
attributes that represent critical aspects of metadata usage. We
focus on three main attributes:

1) Project description: we assess if software projects have
a “short description”, (i.e., a one line summary of the

Bhttps://semver.org/

project), or a longer description. The short description
is provided by GitHub API, and the longer description
is extracted with SOMEF from the README.md file.
We aim to capture the depth and accessibility of project
descriptions across platforms.

2) License: We assess whether 1) a license is declared; and
2) whether that license follows the SPDX!® conventions
(i.e., it is a known license). This allows us to quantify
the degree to which communities follow recognized
norms for software licensing, essential for compliance
and interoperability.

3) Installation instructions: We assess whether installation
instructions, covering installation steps, requirements,
and documentation, are included in a code repository.
We use SoMEF for the extraction, which looks into
specific headers of the README files mentioning instal-
lation instructions, and links to external documentation
(readthedocs,?’, wiki setup). In addition, we look for
specific files describing requirements such as ‘require-
ments.txt’ in Python, ‘pom.xml’ in Java, etc.

Collectively, these attributes reveal how communities approach
metadata and reflect their commitment to accessibility, trace-
ability, and best practices in software metadata management.

For last research question RQS: what are the citation

practices among the communities?, we assess whether a
citation is declared by any of the following methods:

o A BibTex [37] file (e.g., CITATION.bib) is available in
the repository. BibTeX [37] is a popular reference man-
agement tool, used with LaTex to format bibliographies.
“bib” files are plain text files containing bibliographic
information structured in a specific format.

e A Citation File Format file (CFF) is available in the
repository. CFF files are a good practice that has recently
seen uptake from the scientific community, receiving
support from platforms such as GitHub?!

« README contains a citation: alternatively, we assess if
the README file contains a citation (i.e., by retrieving

https://spdx.org/licenses/

20https://docs.readthedocs.io/

21 https://docs. github.com/en/repositories/managing- your-repositorys-
settings-and- features/customizing- your-repository/about-citation-files

https://semver.org/
https://spdx.org/licenses/
https://docs.readthedocs.io/
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-citation-files
https://docs.github.com/en/repositories/managing-your-repositorys-settings-and-features/customizing-your-repository/about-citation-files

TABLE I
DISTRIBUTION OF REPOSITORIES OF DIFFERENT CLUSTERS

TABLE 11
RESULTS FOR RQ2: WHAT IS THE ADOPTION OF ARCHIVAL
INFRASTRUCTURES CROSS THE DISCIPLINES?

BiBteX code in it), since many authors choose to suggest
others how to cite their software directly with a BiBteX
entry. The presence of citation details in README.md
files represents a less formalized method of citation, but
still widely used.

This methodology offers a flexible foundation that can be
expanded to other software repositories, providing valuable
insights into metadata adoption across diverse research com-
munities. By leveraging APIs (when present) or using web
scraping techniques, this approach can be applied to a variety
of repository structures and metadata formats, making it pos-
sible to have a broader assessment of metadata completeness
and FAIR compliance.

V. RESULTS

In this section we describe the results of our analysis. We
first describe the distribution of the dataset, and then dive into
each of the research questions. SOMEF was used mainly to
extract the metadata from each code repository in the clusters.
As discussed in Kelley and Garijo [11], SOMEF combines
synset analysis (leveraging semantic relationships in natural
language) with regular expressions and machine learning
classifiers (for structured text parsing). This hybrid approach
yields robust performance, with F1 scores spanning 0.82 for
tasks like extracting long descriptions to 0.95 for metadata
categories such as documentation. To further validate these
results, the framework outputs were cross-checked against a
subset of repositories, ensuring alignment with ground-truth
metadata.

A. Dataset

As we mentioned in our methodology, ESCAPE and LS-
RI offered public API services, while ENVRI, PaNOSC and
RSD did not offer public APIs and therefore web scrapping
techniques were used. In total 10,040 repositories were ana-
lyzed from all clusters. It is important to note that our dataset is
highly imbalanced, with ESCAPE contributing 17 repositories,
PaNOSC 21, ENVRI 512, RSD 432, and LS-RI contributing
the majority with 9,058 repositories as shown in Table 1. These
reflect the current status of each catalog among the different
science clusters.

B. Research Questions

The heat map in Figure 2 shows the main preferences of
researchers when describing metadata. Note that the choices
are not mutually exclusive, since a code repository may
include several files for describing a license, citation or overall
documentation. The “None” row indicates that none of the
alternatives were chosen. Overall, most researchers add some

ESCAPE | PANOSC | LS-RI | ENVRI | RSD

é\]“mb.er of 17 21 9058 512 432 _ Archival ESCAPE | PANOSC | LS-RI | ENVRI | RSD
ep0s1t0rles infrastructures

Deposited in SWH 20% 8261% | 6951% | 85.33% | 56%

Zenodo badge 41.18% 4.76% 5% | 488% | 28%

kind of metadata to their source code repositories, but the
practice seems to be inconsistent. When it comes to packages,
we see somewhat a moderate adoption among communities
except for ENVRI and LSRI. When it comes to having
CONTRIBUTORS metadata, most communities are close to
0% except for ESCAPE with 17.6%. CFF adoption is also
low, except in RSD. Codemeta.json and Zenodo.json do not
have wide adoption (except for the ESCAPE community and
RSD for Zenodo.json), indicating that while they are useful
for interoperability of metadata records, authors still do not
recognize them. However, we see the majority of communities
provide README files with ESCAPE being 100%, showing
the usefulness of these files.

Table II shows the role of archival infrastructures across
disciplines. For Software Heritage (SWH), the adoption rates
differ significantly among communities, with ENVRI showing
the highest adoption at 85.33%, followed by PANOSC at
82.61%, and a minimal adoption rate in ESCAPE at 20%.
Repositories with a Zenodo badge exhibit a lower but relatively
similar adoption overall, with ESCAPE leading at 41.18%,
followed by RSD at 28% and LS-Ri, PANOSC and ENVRI
have low adoption rates at 4.5%, 4.75% and 4.88%, respec-
tively. It should be noted that having “Zenodo Badge” does
not necessarily mean that the repository is archived in Zenodo.

Next, Figure 3 and Figure 4 show how many projects have
releases, along with the versioning scheme used, respectively.
The results of the analysis of versioning practices in different
research software projects provide insights into the adoption
of versioning strategies. The data reveal that the percentage
of projects with releases varies significantly, ranging from a
low of 16% in the ENVRI project to a high of 88.2% in
ESCAPE. In terms of a consistent version naming scheme,
the findings indicate a similar trend, with ESCAPE 80%
and ENVRI 80.5% code repositories employing a consistent
naming scheme. LSRI, PANOSC and RSD show a decent
adoption of consistent versioning schemes, although lower
than ENVRI and ESCAPE. In general, these results highlight
the varying levels of commitment to versioning practices
across the projects analyzed. Some projects demonstrate a
good approach to version management while others have low
adoption of releases, but overall display a good versioning con-
sistency. The ”Other” category in Figure 4 includes versioning
schemes like “version/4.7.1rc1” and "i-vresse/wb-core@1.1.0”
that do not classify one of the common versioning schemes.

Figures 5, 6 and 7 show the results for the adoption of spe-
cific metadata fields across the different science communities.
When it comes to whether researchers provide a description of
their code repositories, Figure 5 shows that most repositories

Metadata Files

CFF File - o 5.9

100.0

README -
Package File - -
AUTHORS - 0.4 11.8 1.4 19.0 3.5
CONTRIBUTORS - 2.9 17.6 1.7 0.0 2.8
LICENSE - 85.7 9.5 40

Codemeta.json -

-20
Zenodo.json - 0.2 29.4 0.2 0.0 253
None - 2.3 0.0 3.5 4.8 0.5
| ! I | I -0
N N
S ¥ & Sl &
< - V?\
&]

Research Clusters

Fig. 2. RQI: How do communities describe Research Software metadata in their code repositories?

Emm Releases mmm Consistent Version

100 -

80- 80.0%

74.7%

61.9%
60 -

Percentage (%)

40 -

37.6%

20-

16.0%

ENVRI ESCAPE LSRI

Research Cluster

PANOSC

Fig. 3. RQ3-1: How do communities adopt releases and their consistency?

Percentage (%)

o ---

Calendar - 0.0% 0.0%

Versioning Scheme

Alphanumeric - 32.9% 26.7%

Other - 0.0% 0.0%

0.0%

34.2%

0.1%

“ N
& 9
&

100%

75%

0.0%

0.0%

50%

Adoption Percentage (%)

17.0%

-25%

1.1%
- 0%

:
19
&
X

Research Cluster

Fig. 4. RQ3-2: How do software projects adopt versioning?

mmE Long Description
mmm Short Description

80 -

60 -

Percentage (%)

20 -

s None

Research Cluster

Fig. 5. RQ4-1: How do research projects include description?

across domains provide at least a short description of their
intent. Long descriptions show between 5% (ENVRI) to 38%
(PANOSC) less adoption than short descriptions, with LS-RI
becoming an exception (nearly 4% of the projects have more
long descriptions than short ones). We believe this could be
the cuase since long descriptions are harder to develop. Next,
Figure 6 shows the adoption of licenses. The majority of
communities provide a known license by linking it to SPDX,
except for ENVRI being the lowest with 49.3%, and also being
the highest at not adopting any form of licenses at 45.35%.
LSRI follows with 32.3%, while the other communities gen-

erally adopt a license in their repositories. Figure 7 shows
the adoption of dedicated documentation besides a README
file (e.g., through a readthedocs dedicated page, through
wikis, etc.) and installation instructions (usually available in
READMES) or requirement files (e.g., requirements.txt, maven
files, etc.). Here we have varying results, with installation
having the highest adoption compared to other instructions,
and requirements having the lowest adoption. PANOSC, LS-
RI and RSD repositories tend to have specific sections for
installation instructions (more than 50% for all three).

100 -

80 -

60 -

Percentage (%)

40 -

20 -

100 -

. SPDX B No License
s Other
94.1%

l

ESCAPE LSRI
Research Cluster

94.4%

81.0%

49.2%

o,
21% 3.5%

ENVRI PANOSC RSD

Fig. 6. RQ4-2: What is the adoption of open licenses?

mmm Requirements ~ mmM Documentation

mmm Installation

80 -

64.7%

60 -

Percentage (%)

40 -

20.5%

20 - 16.8%
10.5%
0-
&
&

53.9% 52.4%
o,
29.0% 27.3%
9.5%

61.9%

60.6%

58.6%

N 19 Q
& & &
X

Research Cluster

Fig. 7. RQ4-3: How well documented are research projects?

TABLE III also not mutually exclusive, since a repository may declare a
RESULTS FOR RQ5: WHAT ARE THE CITATION PRACTICES AMONG THE CFF file while also providing a citation in the README file
COMMUNITIES? o

with the corresponding BibTeX code. A diversity of citation

Cgf‘l‘;:“ ESCAPE | PANOSC | LS-RI | ENVRI | RSD 2};5]i:lrl\? \;‘l‘i‘;pge;’ ngll;gﬂ;?lzs;;mg, 1(1;ed m ESICAIi E ";’Iﬂ;
bib 5.85% 0% | 437% | 293% | 255% > (3%) and LS-RI (4.3%), indicating a low level o

~ 533% 7% 7% 117% 1 6065% | structured BibTeX-based citation usage. In RSD BibTeX usage
README.md | 17.65% 1428% | 31.03% | 18.16% | 5.19% remains low at 2.5%, and PANOSC shows no adoption. The
Citation 2941% | 18.89% | 374% | 22.26% | 68.99% | use of .cff files varies widely, RSD leads with a significant 60%

Table III shows the results for common citation practices
in the different communities. Note that these practices are

adoption, where ESCAPE, PANOSC, LS-RI and ENVRI com-
munities show minimal engagement at 6%, 4.7%, 2%, and 1%,
respectively. README.md files appear more frequently as a

citation method across ESCAPE (17%), PANOSC (14%), LS-
RI (312%) and ENVRI (18%). Notably, a varying proportion
of projects in all science communities include citation (ranging
from 22% in ENVRI to nearly 70% in RSD), indicating that
a majority of Research Software projects across communities
do not yet adopt citation practices (except for RSD).

VI. DISCUSSION

In this section we address all research questions based on
the result of our analysis. Our goal is to detect the main
metadata practice adoption gaps in the different communities.
We believe that while there is a dataset imbalance in the
number of repositories (with little over 9,000 repositories for
LS-RI) the division by community still uncovers unique trends
(e.g., adoption of recent citation practices such as CFF).

The analysis for RQ1: how communities describe RS
metadata? reveals that while researchers consistently dedicate
effort in adding some metadata in their code repositories, the
way they do so is inconsistent for the most part (LICENSE and
READMEs are widely adopted, and package files are fairly
commonly used, although ENVRI and LSRI have low adoption
of packages). The adoption of recent community standards
for metadata (CodeMeta) and citation (CFF) is still quite low,
although they are present in some science communities (ES-
CAPE and RSD respectively). The continuous support from
the community to help create these files (e.g., the CodeMeta
generator,”” cffinit?®) may increase their adoption. Attribution-
specific files like AUTHORS and CONTRIBUTORS are for
the most part absent in code repositories, indicating that
authors do not yet consider key to acknowledge contributor
roles. The increasing demand for recognizing contributions
(e.g., with the Credit taxonomy?*) may see a rise in the
adoption of these files. Zenodo.json files, used in the metadata
integration with the platform are not widely recognized yet.

When it comes to the question RQ2: What is the adoption
of archival infrastructures across the disciplines?, results
show a varied commitment to long term preservation. Software
Heritage (SWH) is notably used in ENVRI, PANOSC, LSRI
and RSD while ESCAPE shows low adoption with 20%,
suggesting potential reliance on alternative systems or low
prioritization of preservation practices.

While many repositories use archival services, the results
show that not many of them acknowledge their use. For
example, ESCAPE software registry is in Zenodo, yet only
41.18% of their repositories include a badge with a DOI to
the platform. RSD follows with (28%). The results highlight a
significant variation in archival infrastructure adoption across
disciplines, indicating that while some communities prioritize
long-term software preservation, others may lack the necessary
practices or awareness. As we can see that PANOSC, LS-RI
and ENVRI dominate when it comes to archiving sources in
SWH, but in Zenodo they have little use with most values

22https://codemeta.github.io/codemeta- generator/
23https://citation-file-format. github.io/cff-initializer-javascript/
Z4https://credit.niso.org/

being around 4%. Zenodo and Software Heritage are currently
being integrated,? helping the automated propagation of meta-
data and records between both infrastructures.

Next, for RQ3: how research software projects adopt
versioning? we see that practices in Research Software show
major variations in the adoption of releases and consistent
version naming schemes. While ESCAPE and RSD exhibit
the highest adoption rates with 88.2% and 85.9% of projects
having releases and 80% and 76.5% using consistent naming
conventions, ENVRI shows much lower adoption, with only
16% including releases. A similar pattern applies to the rest of
the communities. These results suggest that some communities
prioritize versioning for clear identification and reliable collab-
oration, while others demonstrate less adherence to structured
versioning practices. Overall, the results show us that there is
a need for an easy way to keep consistent versioning. Here, an
automated approach to guide researchers when creating new
releases would improve versioning standards to ensure clarity
and reliability in research software development.

Next, for RQ4: How comprehensive is the metadata
provided in code repositories? we analyzed different meta-
data adoption for description, licenses and documentation
associated with code repositories. For starters, by analyzing
Figure 5, we see a positive adoption rate overall across all
communities when it comes to including both short and long
descriptions, which is probably due to how much easier it
is to provide description with either a README file, or
in the short description section in GitHub. When it comes
to providing known licenses in Figure 6, we see a positive
adoption rate, except for ENVRI, with an alarming number
of repositories with no license. As for documentation and
installation instructions in Figure 7, we notice a peculiar
pattern in instructions, where only installation have the most
positive adoption, with documentation slightly falling behind,
and requirements show very low adoption rates, this may
show a positive adoption of instructions if it was not for
PANSOC and ENVRI being 9.5% and 10.5% in requirements,
and ENVRI 16.8% in documentation. In this case, we believe
there is an opportunity for registries to warn researchers when
key metadata is missing from their repositories (e.g., license,
which highly affects their reusability)

Finally, we used the results of Table III to answer RQS:
what are the citation practices among the communities?,
seeing how different scientific communities adopt citations
reveals several insights into how the communities approach
this aspect in research software projects. The adoption of
structured citation formats, such as .bib and .cff, is limited
across most communities, with the only notable exception in
RSD (60.6% for .cff). Unfortunately, not using standardized
citation practices makes discoverability challenging. The fre-
quent use of README.md files across communities, at least
more notably than .bib and .cff (except for RSD with 5.78%)
suggests that, despite the lack of structured formats, many
projects still acknowledge the need for citation, providing this

Zhttps://blog.zenodo.org/2024/10/21/2024-10-21-swh/

https://codemeta.github.io/codemeta-generator/
https://citation-file-format.github.io/cff-initializer-javascript/
https://credit.niso.org/
https://blog.zenodo.org/2024/10/21/2024-10-21-swh/

information in a more accessible, though less formalized and
standardized way. This gap of citation practices indicates a
reliance on README files to communicate citation details
more than using .bib and .cff, possibly due to their flexibility
and ease of use, compared generating citation using .bib and
.cff. However, while README files are easy to read, they lack
a standard method of citing, which limits their effectiveness in
automated citation systems. This gap is important for raising
awareness in developing an easier and automated way to adopt
novel citation formats such as CFF.

VII. TOWARDS BEST PRACTICE ADOPTION

Improving the adoption of FAIR and Open Science practices
in Research Software metadata requires a combination of
strategies. The following recommendations cover a significant
portion of good practices for the FAIR principles:

o Create software metadata files: Adding metadata files
such as Codemeta and CFF enhances the findability
and citation of Research Software. These files provide
machine-readable metadata that aligns with the FAIR
principles, enabling automated systems to retrieve key in-
formation about a software tool. Tools like the CodeMeta
Generator?® simplify the creation of these files, making
it easier for researchers to adopt them. By including
metadata files, researchers ensure that their software is
better integrated into the scholarly ecosystem and can be
cited appropriately.

o Improve the structure of your README file: A well-
structured README file serves as the primary entry
point for good understanding of a software repository. By
following existing guidelines,?’ researchers can include
essential details such as project descriptions, installation
instructions, usage examples, and contact information.
This not only improves the usability of the software
tool, but also reduces the barrier for others to adopt and
contribute to the project. A comprehensive README
ensures clarity and promotes better collaboration within
the research community.

« Reuse existing Licenses: Licensing is a critical aspect
of Research Software that determines how it can be
used, modified, and shared. By adopting existing licenses
like SPDX, researchers ensure compliance with legal
requirements and promote reusability across different
software projects. Standardized licenses simplify the pro-
cess of understanding usage rights and reduce the risk of
incompatibilities when integrating software from multiple
sources. This practice also ensures trust and transparency
within the research community.

o Use consistent versioning in software releases: Im-
plementing a consistent versioning scheme, such as se-
mantic versioning, alphanumeric, calendar etc. ensures
that changes to the software are clearly communicated.
This practice provides users with a reliable way to track

26https://codemeta.github.io/codemeta- generator/
27e.g., https://everse.software/RSQKit/how_to_make_a_good_readme

updates, identify compatibility issues, and understand the
scope of changes in each release. Consistent versioning
enhances the reliability and maintainability of Research
Software, making it easier for users to adopt and integrate
into their workflows.

o Archive your software releases: Archival platforms like
Zenodo and Software Heritage play a crucial role in pre-
serving Research Software for the long term. By deposit-
ing software in these repositories, researchers ensure that
their work remains accessible, citable, and reproducible.
Archiving also protects against data loss and provides a
permanent record of the software’s development history.
The GitHub-Zenodo bridge?® simplifies archiving by al-
lowing researchers to directly link GitHub repositories
to Zenodo, automatically generating DOIs for software
versions.

VIII. CONCLUSIONS AND FUTURE WORK

This paper provides a landscape analysis of metadata adop-
tion practices across five major European Science Clusters.
Inspired by the RSMD guidelines [6] and leveraging an auto-
mated workflow, we examined common practices to address
key research questions about metadata documentation, archival
service usage, code versioning, repository descriptions, and
citation behaviors. Our findings highlight gaps in current prac-
tices and serve as a foundational step toward understanding
barriers to metadata standardization in scientific communities,
while raising awareness about the importance of adopting
robust practices.

In future work, we aim to broaden this analysis beyond
European clusters to include domain-specific registries such
as ASCL (astrophysics), SWMath (mathematics), and CSDMS
(hydrology). By expanding to these communities, we will
assess how automated tools and policies influence the incre-
mental adoption of metadata practices over time. Additionally,
we plan to refine automated detection methods to identify
recurring pitfalls and generate tailored recommendations for
researchers, empowering them to implement the FAIR4RS
principles more effectively. This dual focus on scalable analy-
sis and actionable guidance will close the gap between policy
frameworks and practical adoption, emphasizing on a culture
of reproducibility and transparency in Open Science.

ACKNOWLEDGMENT

The authors acknowledge the OSCARS project, which has
received funding from the European Commission’s Horizon
Europe Research and Innovation programme under grant
agreement No. 101129751

REFERENCES

[1] Morane Gruenpeter et al. Defining Research Software:
a controversial discussion. Version 1. Dec. 2021. DOI:
10.5281/zenodo.5504016.

Z8https://docs. github.com/en/repositories/archiving-a- github-repository/
referencing-and-citing-content

https://codemeta.github.io/codemeta-generator/
https://everse.software/RSQKit/how_to_make_a_good_readme
https://doi.org/10.5281/zenodo.5504016
https://docs.github.com/en/repositories/archiving-a-github-repository/referencing-and-citing-content
https://docs.github.com/en/repositories/archiving-a-github-repository/referencing-and-citing-content

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Mark D. Wilkinson et al. “The FAIR Guiding Principles
for scientific data management and stewardship”. In:
Scientific Data 3 (Mar. 2016), p. 160018. po1: 10.1038/
sdata.2016.18.

Neil P. Chue Hong et al. FAIR Principles for Research
Software (FAIR4RS Principles). Version 1.0. May 2022.
DOI: 10.15497/RDA00068.

European Commission, Directorate-General for Re-
search, and Innovation. Strategic Research and Inno-
vation Agenda (SRIA) of the European Open Science
Cloud (EOSC). Publications Office of the European
Union, 2022. DOI: doi/10.2777/935288.

Daniel C. Berrios, Afshin Beheshti, and Sylvain V.
Costes. “FAIRness and Usability for Open-access
Omics Data Systems”. In: NASA Technical Reports
(2018).

Morane Gruenpeter et al. D4.4 - Guidelines for recom-
mended metadata standard for research software within
EOSC. June 2023. por: 10.5281/zenodo.8097537.
Christopher Erdmann et al. Top 10 FAIR Data & Soft-
ware Things. Feb. 2019. DOI: 10.5281/zenodo.2555498.
Neil Chue Hong et al. D5.2 - Metrics for automated
FAIR software assessment in a disciplinary context.
Version 1.0 - DRAFT not yet approved by the Euro-
pean Commission. Oct. 2023. DOI: 10.5281/zenodo.
10047401.

Daniel S. Katz, Neil P. Chue Hong, Tim Clark, et al.
“Recognizing the value of software: a software cita-
tion guide [version 2; peer review: 2 approved]”. In:
FI1000Research 9 (2021), p. 1257. por: 10. 12688/
f1000research.26932.2.

Daina Bouquin et al. Advancing Software Citation Im-
plementation (Software Citation Workshop 2022). 2023.
arXiv: 2302.07500 [cs.DL].

Aidan Kelley and Daniel Garijo. “A framework for
creating knowledge graphs of scientific software meta-
data”. In: Quantitative Science Studies 2.4 (Dec. 2021),
pp. 1423-1446. 1SSN: 2641-3337. por: 10. 1162/
gss_a_00167.

J. Leipzig et al. “The role of metadata in re-
producible computational research”. In: Patterns 2.9
(2021), p. 100322. poOI: 10.1016/j.patter.2021.100322.
Ruben Opdebeeck et al. “Does Infrastructure as Code
Adhere to Semantic Versioning? An Analysis of Ansible
Role Evolution”. In: 2020 [EEE 20th International
Working Conference on Source Code Analysis and Ma-
nipulation (SCAM). 2020, pp. 238-248. por: 10.1109/
SCAMS51674.2020.00032.

Steven Raemaekers, Arie van Deursen, and Joost Visser.
“Semantic Versioning versus Breaking Changes: A
Study of the Maven Repository”. In: 2014 IEEE 14th In-
ternational Working Conference on Source Code Anal-
ysis and Manipulation. 2014, pp. 215-224. por: 10.
1109/SCAM.2014.30.

Rickard Elsen, Inggriani Liem, and Saiful Akbar. “Soft-
ware versioning quality parameters: Automated assess-

[22]

ment tools based on the parameters”. In: 2016 Interna-
tional Conference on Data and Software Engineering
(ICoDSE). 2016, pp. 1-6. poI: 10.1109/ICODSE.2016.
7936139.

G. M. Kapitsaki, F. Kramer, and N. D. Tselikas.
“Automating the license compatibility process in open
source software with SPDX”. In: Journal of Systems
and Software 131 (2017), pp. 386—401. po1: 10.1016/
j-Jjss.2016.06.064.

Stefano Zacchiroli. “A large-scale dataset of (open
source) license text variants”. In: Proceedings of the
19th International Conference on Mining Software
Repositories. MSR °22. ACM, May 2022. DoT1: 10.1145/
3524842.3528491.

Daniel Garijo et al. “Bidirectional Paper-Repository
Tracing in Software Engineering”. In: 21st International
Conference on Mining Software Repositories. Cham:
ACM, 2024. por: 10.1145/3643991.3644876.
Chaoqun Du et al. “Softcite dataset: A dataset of
software mentions in biomedical and economic research
publications”. In: Journal of the Association for Infor-
mation Science and Technology 72.7 (2021), pp. 870—
884. Dor: 10.1002/asi.24454.

A. Alsudais. “In-code citation practices in open research
software libraries”. In: Journal of Informetrics 15.1
(2021), p. 101139. po1: 10.1016/j.j0i.2021.101139.
Wenxin Jiang et al. “PeaTMOSS: A Dataset and Ini-
tial Analysis of Pre-Trained Models in Open-Source
Software”. In: Proceedings of the 2l1st International
Conference on Mining Software Repositories. MSR ’24.
Lisbon, Portugal: Association for Computing Machin-
ery, 2024, pp. 431-443. 1SBN: 9798400705878. DOI:
10.1145/3643991.3644907.

Wenxin Jiang et al. “ PTMTorrent: A Dataset for Mining
Open-source Pre-trained Model Packages ”. In: 2023
IEEE/ACM 20th International Conference on Mining
Software Repositories (MSR). Los Alamitos, CA, USA:
IEEE Computer Society, May 2023, pp. 57-61. DOI:
10.1109/MSR59073.2023.00021.

Hugging Face. Hugging Face — The AI Community
Building the Future. https://huggingface.co/. [Online;
accessed 2024]. 2024. URL: https://huggingface.co/.
ONNX. ONNX Model Zoo. https://github.com/onnx/
models. [Online; accessed 2022]. 2024. URL: https://
github.com/onnx/models.

Jason Tsay et al. “AIMMX: Artificial Intelligence
Model Metadata Extractor”. In: Proceedings of the 17th
International Conference on Mining Software Reposito-
ries. MSR ’20. Seoul, Republic of Korea: Association
for Computing Machinery, 2020, pp. 81-92. ISBN:
9781450375177. DOI: 10.1145/3379597.3387448.
Allen Mao, Daniel Garijo, and Shobeir Fakhraei.
“SoMEF: A Framework for Capturing Scientific Soft-
ware Metadata from its Documentation”. In: 2079 IEEE
International Conference on Big Data (Big Data). 2019,

https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.1038/sdata.2016.18
https://doi.org/10.15497/RDA00068
https://doi.org/doi/10.2777/935288
https://doi.org/10.5281/zenodo.8097537
https://doi.org/10.5281/zenodo.2555498
https://doi.org/10.5281/zenodo.10047401
https://doi.org/10.5281/zenodo.10047401
https://doi.org/10.12688/f1000research.26932.2
https://doi.org/10.12688/f1000research.26932.2
https://arxiv.org/abs/2302.07500
https://doi.org/10.1162/qss_a_00167
https://doi.org/10.1162/qss_a_00167
https://doi.org/10.1016/j.patter.2021.100322
https://doi.org/10.1109/SCAM51674.2020.00032
https://doi.org/10.1109/SCAM51674.2020.00032
https://doi.org/10.1109/SCAM.2014.30
https://doi.org/10.1109/SCAM.2014.30
https://doi.org/10.1109/ICODSE.2016.7936139
https://doi.org/10.1109/ICODSE.2016.7936139
https://doi.org/10.1016/j.jss.2016.06.064
https://doi.org/10.1016/j.jss.2016.06.064
https://doi.org/10.1145/3524842.3528491
https://doi.org/10.1145/3524842.3528491
https://doi.org/10.1145/3643991.3644876
https://doi.org/10.1002/asi.24454
https://doi.org/10.1016/j.joi.2021.101139
https://doi.org/10.1145/3643991.3644907
https://doi.org/10.1109/MSR59073.2023.00021
https://huggingface.co/
https://huggingface.co/
https://github.com/onnx/models
https://github.com/onnx/models
https://github.com/onnx/models
https://github.com/onnx/models
https://doi.org/10.1145/3379597.3387448

[27]

(28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

pp- 3032-3037. por: 10.1109/BigData47090.2019.
9006447.

Maarten van Gompel. CodeMetaPy. Version 2.5.3. Ver-
sion 2.5.3. Amsterdam, Netherlands: KNAW Humani-
ties Cluster, 2024. URL: https://github.com/proycon/
codemetapy.git.

Mustafa Soylu et al. somesy. Version 0.4.3. 2024. URL:
https://materials- data- science- and- informatics. github.
io/somesy.

OSCAR Project. OSCAR Science Clusters. https://
oscars - project.eu/science - clusters. [Online; accessed
2024]. URL: https://oscars-project.eu/science-clusters.
Anas El Hounsri and Daniel Garijo. Anas-
Elhounsri/Repositories-Extraction: Initial ~ version.
Version v0.1.0. Feb. 2025. por: 10. 5281 / zenodo .
148030009.

Anas El Hounsri and Daniel Garijo. Anas-
Elhounsri/Metadata-Adoption-Quantify: Full release.
Version v1.0.0. Feb. 2025. por: 10. 5281 / zenodo .
14803019.

Anas El Hounsri and Daniel Garijo. Dataset for ”Good
practice versus reality: A landscape analysis of Re-
search Software metadata adoption in European Open
Science Clusters”. Zenodo, Feb. 2025. por: 10.5281/
zenodo.14770578.

Stephan Druskat et al. Citation File Format. Ver-
sion 1.2.0. Aug. 2021. DOI: 10.5281/zenodo.5171937.
JSON-LD Community Group. JSON-LD: JavaScript
Object Notation for Linked Data. https://json-1d.org/.
[Online; accessed 2024]. URL: https://json-1d.org/.
Roberto Di Cosmo and Stefano Zacchiroli. “The Soft-
ware Heritage Open Science Ecosystem”. In: Software
Ecosystems. Springer International Publishing, 2023,
pp- 33-61. 1SBN: 9783031360602. po1: 10.1007/978-
3-031-36060-2_2.

CERN. Zenodo. 2024. URL: https://openscience.cern/
zenodo.

Graduate Academic Affairs. Creating Bibliography with
LaTeX. 2024. URL: https://webmaster.iit.edu/files/
graduate-academic-affairs/latex-bibliography-help.pdf.

https://doi.org/10.1109/BigData47090.2019.9006447
https://doi.org/10.1109/BigData47090.2019.9006447
https://github.com/proycon/codemetapy.git
https://github.com/proycon/codemetapy.git
https://materials-data-science-and-informatics.github.io/somesy
https://materials-data-science-and-informatics.github.io/somesy
https://oscars-project.eu/science-clusters
https://oscars-project.eu/science-clusters
https://oscars-project.eu/science-clusters
https://doi.org/10.5281/zenodo.14803009
https://doi.org/10.5281/zenodo.14803009
https://doi.org/10.5281/zenodo.14803019
https://doi.org/10.5281/zenodo.14803019
https://doi.org/10.5281/zenodo.14770578
https://doi.org/10.5281/zenodo.14770578
https://doi.org/10.5281/zenodo.5171937
https://json-ld.org/
https://json-ld.org/
https://doi.org/10.1007/978-3-031-36060-2_2
https://doi.org/10.1007/978-3-031-36060-2_2
https://openscience.cern/zenodo
https://openscience.cern/zenodo
https://webmaster.iit.edu/files/graduate-academic-affairs/latex-bibliography-help.pdf
https://webmaster.iit.edu/files/graduate-academic-affairs/latex-bibliography-help.pdf

	Introduction
	Related Work
	Guidelines for Open Science and FAIR Research Software
	Exploring Metadata adoption by scientific communities
	Tools for managing Research Software Metadata

	An overview of European Open Science Clusters
	Methodology
	Research Questions Methodology

	Results
	Dataset
	Research Questions

	Discussion
	Towards Best Practice Adoption
	Conclusions and future work

