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Abstract: Public procurement accounts for a 14% of the annual budget of the
different governments of the European Union. In Europe, contracting processes are
classified using Common Procurement Vocabulary codes (CPVs), a taxonomy de-
signed to facilitate statistical reporting, search and the creation of alerts that can
be used by potential bidders. CPVs are commonly assigned manually by public
employees in charge of contracting processes. However, CPV classification is not a
trivial task, as there are more than 9,000 different CPV categories, which are often
assigned following heterogeneous criteria. In this paper we have created a CPV
classifier that uses as an input the textual description of the contracting process,
and assigns CPVs from the 45 top-level CPV categories. We work only with texts
in Spanish, although our approach may be easily extended to other languages. Our
results improve the state of the art (10% F1-score improvement) and are available
online.
Keywords: CPV, Multi-label Classification, Public Procurement, Hierarchical
Classification.

Resumen: Las licitaciones públicas suponen el 14% del presupuesto anual de la
Unión Europea. En Europa, los procesos de contratación se clasifican usando la
taxonomı́a Common Procurement Vocabulary (CPVs), diseñada para facilitar la
generación de estad́ısticas, las búsquedas y la creación de alertas que puedan uti-
lizar los posibles licitadores. Los códigos CPV suelen ser asignados manualmente
por los empleados públicos encargados del proceso de contratación. Sin embargo, la
clasificación de textos de acuerdo con estos códigos no es trivial, pues existen más de
9000 CPVs y no siempre se siguen los mismos criterios para su asignación. En este
art́ıculo se propone un clasificador que utiliza como entrada la descripción textual
del proceso de contratación, y produce códigos de entre las 45 categoŕıas de CPV
más generales de la jerarqúıa. Trabajamos sólo con textos en español, aunque nue-
stro enfoque puede extenderse fácilmente a otros idiomas. Los resultados obtenidos
superan el estado del arte (10% de mejora en F1), y se encuentran disponibles online.
Palabras clave: CPV, Clasificación Multi-etiqueta, Licitaciones Públicas, Clasifi-
cación Jerárquica.

1 Introduction

Public authorities in the European Union
spend around 14% of the yearly Gross Do-
mestic Product (around 2 trillion euros) pur-
chasing services, utilities and supplies.1 Ac-
cess to this data is crucial for enabling a sin-
gle digital market in Europe, as well as for ac-
countability and transparency. Hence many
governments provide this data in their open

1https://ec.europa.eu/growth/
single-market/public-procurement_en

data portals as well as in data.europa.eu,
and a number of platforms have been de-
veloped to improve both the efficiency and
transparency in public procurement2 (Soylu
et al., 2022).

Common Procurement Vocabulary codes
(CPVs)3 help classify public procurement
processes in the European Union across dif-

2https://opentender.eu/es/about/
about-opentender

3https://simap.ted.europa.eu/web/simap/cpv



ferent languages. Thanks to CPVs, decision
makers can easily explore contracting pro-
cesses across Europe, and companies from
different countries may use them to detect
procurement processes of interest, indepen-
dently of the country of origin.

Each public procurement process must be
classified with at least one CPV. However,
manual CPV classification presents three
main challenges. First, there are thousands
of possible codes (more than 9000), some of
them with similar purposes, making it diffi-
cult for those assigning or curating them to
decide which codes better suit a specific pro-
cess. Second, countries with different official
languages and countries with more than one
official language, such as Spain or Belgium,
often have offers in different languages (e.g.,
Catalan, Basque, Castilian, etc.). Offices
from different regions therefore follow differ-
ent classification guidelines. Third, CPVs
are organized in a hierarchy, and thus an-
notated at different levels of granularity ac-
cording to the annotator’s or department’s
criteria. For example, the CPV “Pharma-
ceutical products” (3360000) shown in Fig-
ure 1 is often overgeneralized, instead of us-
ing more specific codes that shed more light
in the type of purchase. This issue is in fact
reflected in the European Union Policy Hand-
book, where the need of suggesting users to
select more specific CPV codes is stressed
(European Commission, 2020).

In order to address these issues and ease
the assignment of CPV codes to procurement
processes, this paper presents an approach
to automatically assign high-level CPV codes
(i.e., the 45 most general categories) to a pro-
curement process. In this paper, we assume
that we have the textual description of the
process and that the text is in Spanish. Dif-
ferent methods have been tested to this end,
outperforming the previous available results
for the Spanish language. We expect this re-
search line will help public procurement prac-
titioners in assigning CPV codes in a more
homogeneous manner by providing sugges-
tions that humans can use in their decision
process.

The rest of the paper is organized as fol-
lows. Section 2 introduces the CPV classifi-
cation problem in detail, explaining the ratio-
nale behind each part of the codes. Section 3
summarizes the related work done in the con-
text of multi-label text classification, as well

as existing approaches for CPV classification
in Spanish. Section 4 describes how the cor-
pus used to train our classifier was developed,
while in Section 5 we outline our approach.
Finally, Section 6 details the results obtained
by the different classification techniques used,
and Section 7 concludes our work.

2 Background

The Common Procurement Vocabulary
(CPV) allows classifying public procurement
processes with a homogeneous code that
represents the need and main object of the
requested contract. Several CPV codes may
be used to describe a single offer. The format
of these CPV codes follows a five-level tree
structure comprising the following digits:

• The first two digits identify the divisions
(XX000000)

• The first three digits identify the groups
(XXX00000)

• The first four digits identify the classes
(XXXX0000)

• The first five digits identify the cate-
gories (XXXXX000)

• The following three digits give a greater
degree of precision within each category
(00000XXX)

A ninth check digit serves to verify the
previous digits, and has no meaning by itself
(00000000-Y).

Therefore, the task of automatically clas-
sifying CPVs increases in complexity the
more digits we aim to predict. The cur-
rent official list of CPVs has 9454 possible
codes, grouped into 45 different divisions, 317
groups, 1321 classes and 3704 categories. In
this paper we focus in classifying CPVs at
the division level.

3 Related Work

While text classification has been widely ex-
plored in the literature (Aggarwal and Zhai,
2012; Minaee et al., 2021), multi-label clas-
sification for the Spanish language has re-
ceived less attention so far. The main dif-
ference between the multi-label text classifi-
cation case presented in this paper and other
popular problems like sentiment analysis is
the amount of possible labels. Sentiment
analysis labels correspond to certain degrees



Figure 1: Excerpt of the tree-structure of CPV code 33600000, “Pharmaceutical products”,
extracted from http://www.cpv.enem.pl/en/33600000-6.

of positive and negative emotions, or to a tax-
onomy of emotions, whilst CPV labels may
contain up to thousands of possible options.
In order to target this kind of problems, a
new subtask has been defined inside multi-
label text classification: extreme multi-label
text classification (XMTC) (Liu et al., 2017).

XMTC addresses the problem of assign-
ing to a document its most relevant subset
of class labels from an extremely large label
collection (Liu et al., 2017). The work by
Gargiulo et al. (2019) analyzes the impact
of using different word embedding models in
Deep Learning targeting extreme multi-label
classification. Their approach uses Convo-
lutional Neural Networks (CNN) to classify
27,775 hierarchical labels in the biomedical
domain. Similarly, Liu et al. (2017) com-
pared CNN to other approaches in XMTC,
such as KNN-based approaches like SLEEC
(Bhatia et al., 2015) or tree-based methods
like FastXML (Prabhu and Varma, 2014).
Finally, Chang et al. (2020) proposed a
scalable framework to fine-tune Deep Trans-
former models that performed well in differ-
ent XMTC datasets.

Regarding specific previous work on CPV
classification, one of the main results was the
multilingual model built by Kaan Görgün.4

This model categorizes public procurement
descriptions in multiple languages among 45
different division labels, with an F1 Score of
0.68. Industrial approaches have also tar-
geted the CPV code classification problem,
such as the solution developed by the data
science consultancy uData (Deloitte, 2020),
using a hierarchical nested approach consist-
ing of one model to predict the first two dig-

4https://huggingface.co/MKaan/
multilingual-cpv-sector-classifier

its of the CPV code, 50 models to predict the
third code (depending on the first model re-
sults) and 250 additional models to predict
the fourth digit. Other approaches in the
literature include a deep learning sequence-
processing regression algorithm (also contain-
ing several classifiers, considering different
aspects of CPVs) (Suta, 2019), or the ap-
proach by Ahmia (2020), who used Linear
SVMs in order to predict the first two dig-
its of the CPV codes. SVMs were also used
in Kayte and Schneider-Kamp (2019). Since
the only model available for reuse and evalua-
tion for the Spanish language is the one from
Kaan Görgün, we use it as a baseline for com-
parison against our approach, making both
training data and model results available to
the community.

4 Creating a Spanish CPV
Corpus

We created our training corpus with open
data from historical public procurement from
the Spanish Treasury’s website (Hacienda5).
We decided to use data from 2019, in order to
avoid including later data that may have been
influenced by public procurement related to
COVID19 pandemics. Procurement pro-
cesses’ metadata were processed from their
original format (Atom Syndication Format6)
using different scripts available in our paper
repository (Navas-Loro, Garijo, and Corcho,
2022).7 Document pre-processing included
the following stages:

1. Information extraction from all the

5https://www.hacienda.gob.es/es-ES/
GobiernoAbierto/Datos%20Abiertos/Paginas/
LicitacionesContratante.aspx

6https://www.w3.org/2005/Atom
7https://github.com/oeg-upm/cpv-classifier



information contained in the Atom doc-
uments. We only retrieved the textual
description of the offers and the differ-
ent CPV codes assigned to them. This
is represented as a CSV file in order to
ease its further processing.

2. Duplicate deletion and trim of the de-
scriptions. Additionally, we only keep
texts in Spanish (to this aim we used
fastText’s language identification func-
tionality8).

3. Train/test dataset division, in order
to make the dataset more manageable,
we split it into train and test sets (70/30)
before uploading it to our public code
repository.

4. In-code preprocessing. An additional
set of scripts were used to remove rows
with no CPV code assigned and gener-
alize CPV codes to the division level,
which is the one we use in our experi-
ments.

The result of the first two steps are two
csv files, available in our repository. The
code used for all processing scripts can also
be found in the same location. Figure 2 shows
the distribution for each of the 45 division la-
bels, which are clearly unbalanced. The most
frequent label (‘45’, that represents the divi-
sion ‘works’) is present in 16128 instances of
the the training set, while label ‘76’ is only
present in 13 instances.

5 Approach

We addressed CPV classification in a hierar-
chical manner: instead of creating a classifier
for nine thousand labels, we took advantage
of the hierarchical structure of the CPVs and
created a classifier for the 45 available divi-
sions (first two digits). We believe this to
be a good first step due to the training data
available for most categories.

The only model openly available to per-
form this task is the model from Kaan
Görgün (from now, MKaan) mentioned in
the Related Work section. This model also
targeted just the first two digits of the CPV
code, so we use it as a baseline to compare
the different approaches we have tested.

In order to perform multi-label classifica-
tion, several approaches can be used. We can

8https://fasttext.cc/docs/en/
language-identification.html

use algorithms adapted to the task, such as
decision trees or random forests, or we can
also use binary classifiers like Näıve Bayes
or SVM and then apply different strategies
so that they serve for multi-label classifica-
tion. Another option is to fine-tune exist-
ing transformers, as done in the approach by
MKaan. We briefly present below the differ-
ent approaches we tested.

5.1 Classical Techniques

We tried the following classifiers:

Näıve Bayes (Minsky, 1961) has been

widely used for text classification (İşgüder-
Şahin, Zafer, and Adah, 2014), specially for
sentiment analysis and SPAM classification.
Although this algorithm relies on probability
independence, it works very well even when
this assumption is not met.

SVM Support Vector Machines (SVM)
(Boser, Guyon, and Vapnik, 1992) are lin-
ear classifiers that define an hyperplane in
order to discriminate among classes. SVM
have been frequently used for multiclass clas-
sification tasks.

SVM with RBF kernel Besides testing
the linear version of SVM, we also evaluated
the performance of an SVM with the Radial
Basis Function as kernel, that is:

rbfγ = e−γ∥x−x′∥2 (1)

with parameter γ ≥ 0.

Decision Trees (Quinlan, 1986) are an in-
tuitive way to classify instances. In our im-
plementation we used the sklearn optimized
version of the CART algorithm.9

Random Forests (Breiman, 2001) are a
tree-based ensemble approach to classifica-
tion that overcomes most of the problems
with decision trees, such as high variance.
Due to this robustness they have been fre-
quently used for Extreme Multi-label Classi-
fication (Siblini, Kuntz, and Meyer, 2018).

K-Nearest Neighbours (K-NN) (Hand,
2007) is widely used for multi-label classifica-
tion (Zhang and Zhou, 2007). The idea be-
hind K-NN is to check the K labeled instances
that are the closest to the new instance and
classify it with the most common label from
these neighbours.

9https://scikit-learn.org/
stable/modules/tree.html#
tree-algorithms-id3-c4-5-c5-0-and-cart
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Figure 2: Bars (y axis) represent the amount of instances per division label (x axis). Blue
bars represents the amount of labels in the training set, while red bars represent the number of
instances in the evaluation set.

AdaBoost (Freund and Schapire, 1997) is
a meta-estimator that fits different versions
of models using boosting (i.e., different
versions of the training dataset). We used
the implementation defined in Hastie et al.
(2009): AdaBoost-SAMME.

For all these approaches we used the Term
Frequency - Inverse Document Frequency
(TF-IDF) technique for vectorization, allow-
ing n-grams with n = 3. For those algo-
rithms that do not support multi-label clas-
sification, we decided to use the One-vs-the-
rest (OvR) or One-vs-all strategy, frequently
used for multiclass classification, where one
binary classifier per label is built in order to
decide if an instance should be classified with
that label or not.

5.2 RoBERTa fine-tuned approach

In addition to the aforementioned classi-
cal approaches, we also decided to fine-
tune a transformed-based model for the
Spanish language, namely RoBERTa-base-
bne (Gutiérrez-Fandiño et al., 2021), on a
dataset derived from Spanish Public Procure-
ment documents from 2019.

RoBERTa-base-bne is a transformer-

based masked language model based on
the RoBERTa model and pre-trained us-
ing the largest Spanish corpus known to
date (570GB), compiled from the annual web
crawlings performed by the National Library
of Spain (Biblioteca Nacional de España)
from 2009 to 2019.10

Table 1 summarizes the hyperparam-
eters used in the fine-tuning process,
performed using the HuggingFace trans-
formers library. The whole training process
can be reproduced using the notebook
‘fine-tuned-roberta-for-spanish-cpv-
codes.ipynb’ in our code repository.

6 Evaluation

This section describes how we evaluated
the results obtained with the different ap-
proaches, and discusses them.

6.1 Metrics

We use two sets of metrics in our evalua-
tion. First, we use general metrics such as
the Area Under the ROC Curve (ROC AUC),
F1-score and accuracy. Second, we use multi-
label specific metrics, i.e., coverage error and

10https://huggingface.co/PlanTL-GOB-ES/
roberta-base-bne



Parameter Value
learning rate 2 ∗ 10−5

train batch size 8
eval batch size 8
seed 42
optimizer adam
epochs 10

Table 1: Summary of the hyperparameters
used for training the RoBERTa fine-tuned
model used in our analysis.

Label Ranking Average Precision. We briefly
describe all these metrics below.

6.1.1 General Metrics

The metrics used that are not specific to
multi-label classification are the following:

Area Under the ROC Curve (AUC):
measures the capability of a classifier to dis-
tinguish between classes. The higher the
AUC, the better the model can make the dis-
tinction among classes.

F1-score: harmonic mean between preci-
sion and recall, widely adopted to monitor
both metrics at the same time.

Accuracy: fraction of predictions that the
model classified correctly.

6.1.2 Coverage Error

The coverage error computes the average
number of labels that have to be included in
the final prediction such that all true labels
are predicted. That is, the average amount
of ranked labels to take into account to miss
no true label.

coverage(y, f̂) =
1

ns

ns−1∑
i=0

max
j:yij=1

rankij (2)

with nl being the amount of labels, ns

being the amount of samples, f̂ ∈ Rns×n
l

the score associated with each label, y ∈
{0, 1}ns×nl the ground truth labels, rankij ={
k : f̂ik ≥ f̂ij

}
.

6.1.3 Label Ranking Average
Precision

Label Ranking Average Precision (LRAP)
averages over the ground truth labels as-
signed to each sample, ranking true labels
higher. This metric shows which ratio of
higher-ranked labels were true labels.

LRAP (y, f̂) =
1

ns

ns−1∑
i=0

1

||yi||0

∑
j:yij=1

|Lij |
rankij

(3)
with nl being the amount of labels,
ns being the amount of samples, f̂ ∈
Rns×n

l the score associated with each la-
bel, y ∈ {0, 1}ns×nl the ground truth la-

bels, rankij =
{
k : f̂ik ≥ f̂ij

}
, Lij ={

k : yik = 1, f̂ik ≥ f̂ij
}
, || · ||0 being the

ℓ0 norm (which computes the amount of
nonzero elements in a vector), and | · | rep-
resenting the cardinality of the set.

6.2 Results and Discussion

We compare our results against the model by
MKaan, since it is the only available model
that we have been able to find targeting the
CPV code assignment problem in Spanish
(besides other languages). Since no default
threshold or function is provided, we tested
different thresholds with the most common
functions (softmax and sigmoid). Results are
summarized in Table 2 (using only 10% of
the dataset), and Table 3 (using the whole
dataset).

The results clearly show that the
RoBERTa fine-tuned model outperforms the
rest of the approaches both when training
using just a fraction of the dataset and the
full dataset. The model by MKann shows
a good performance taking into account
its multilingual nature (not specific for
the Spanish language). However, MKaan
is matched and even outperformed by
some of the traditional algorithms in both
experiments.

In particular, classical approaches such
as SVM, random forests and decision trees,
produce remarkably good results (0.69, 0.64
and 0.63 F1 scores respectively on the full
dataset). Given that these algorithms are
usually less expensive to train, test and use
than transformer-based solutions, they are
reasonable candidates for assisting in CPV
classification at a low cost. One possible ex-
planation for this good performance is that,
despite the presence of polysemous words
that can be problematic, both the hyper-
planes of SVM and the decisions of tree-
based methods allow to effectively discrimi-
nate each label against all others (that is the
strategy usually used to adapt the algorithms



Approach ROC-AUC F1 Accuracy LRAP Cov. Error

Multinomial NB 0.53 0.11 0.06 0.09 42.32
SVM 0.66 0.47 0.33 0.36 30.19
SVM (rbf) 0.66 0.47 0.33 0.36 30.19
KNN 0.70 0.54 0.41 0.45 26.54
Decision Tree 0.74 0.51 0.49 0.53 22.74
Random Forest 0.68 0.52 0.39 0.41 27.96
AdaBoost 0.75 0.56 0.41 0.49 22.10

RoBERTa fine-tuned (t=0.5) 0.84 0.74 0.68 0.73 14.13
RoBERTa fine-tuned (t=0.6) 0.83 0.73 0.67 0.71 14.86
RoBERTa fine-tuned (t=0.65) 0.82 0.73 0.67 0.70 15.41
RoBERTa fine-tuned (t=0.7) 0.81 0.72 0.64 0.68 16.54

MKaan (sigmoid, t=0.5) 0.80 0.13 0.0 0.07 17.38
MKaan (sigmoid, t=0.7) 0.85 0.19 0.0 0.11 13.31
MKaan (sigmoid, t=0.8) 0.86 0.24 0.0 0.15 12.21
MKaan (sigmoid, t=0.9) 0.87 0.32 0.01 0.23 11.49
MKaan (sigmoid, t=0.95) 0.87 0.42 0.06 0.34 11.64

MKaan (softmax, t=0.01) 0.88 0.37 0.25 0.44 11.05
MKaan (softmax, t=0.05) 0.86 0.55 0.43 0.59 12.48
MKaan (softmax, t=0.1) 0.85 0.61 0.51 0.64 13.64
MKaan (softmax, t=0.3) 0.81 0.65 0.61 0.66 16.63
MKaan (softmax, t=0.5) 0.79 0.65 0.60 0.63 18.71

Table 2: Results of the different approaches trained and tested on the 10% of the dataset (7243
training samples, 3104 test samples).

Approach ROC-AUC F1 Accuracy LRAP Cov. Error

Multinomial NB 0.56 0.22 0.14 0.16 39.07
SVM 0.78 0.69 0.58 0.62 18.89
SVM (rbf) 0.78 0.69 0.58 0.62 18.89
KNN 0.75 0.62 0.52 0.56 21.68
Decision Tree 0.80 0.63 0.60 0.64 17.68
Random Forest 0.74 0.64 0.51 0.54 22.32
AdaBoost 0.75 0.60 0.45 0.51 22.47

RoBERTa fine-tuned (t=0.5) 0.89 0.79 0.74 0.80 10.32
RoBERTa fine-tuned (t=0.6) 0.88 0.80 0.74 0.80 10.66
RoBERTa fine-tuned (t=0.65) 0.88 0.79 0.74 0.79 10.95
RoBERTa fine-tuned (t=0.7) 0.88 0.79 0.74 0.79 10.94

MKaan (sigmoid, t=0.5) 0.81 0.13 0.0 0.07 17.19
MKaan (sigmoid, t=0.7) 0.86 0.19 0.0 0.11 13.01
MKaan (sigmoid, t=0.8) 0.87 0.24 0.0 0.15 11.91
MKaan (sigmoid, t=0.9) 0.87 0.33 0.01 0.23 11.32
MKaan (sigmoid, t=0.95) 0.87 0.42 0.06 0.34 11.50

MKaan (softmax, t=0.01) 0.88 0.38 0.24 0.44 10.74
MKaan (softmax, t=0.05) 0.86 0.55 0.43 0.59 12.25
MKaan (softmax, t=0.1) 0.85 0.61 0.50 0.63 13.54
MKaan (softmax, t=0.3) 0.81 0.66 0.61 0.66 16.46
MKaan (softmax, t=0.5) 0.79 0.66 0.60 0.63 18.62

Table 3: Results of the different approaches trained and tested on the whole dataset (72429
training samples, 31042 test samples).
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Figure 3: Results of the RoBERTa fine-tuned model (t=0.5) per label. We preserve the order
presented in Figure 2, from more represented labels (‘45’) to less represented labels (‘76’).

to multiclass problems).

A limitation of our approach is the lack
of measures for balancing input data. Typi-
cally, this would risk having our CPV classi-
fier performing well only for the classes with
more representation. However, as shown in
Figure 3, our CPV classifier shows an excel-
lent performance for most categories, and has
an acceptable performance for classes with
less data available (except fpr extremely rare
categories ‘41’ and ‘76’). We suspect that in
addition to the number of training instances,
the generality of the divisions and the over-
lap between them also play a role in the dif-
ferences in performance. For example, divi-
sions ‘42’ and ‘43’ represent “Industrial ma-
chinery” and “Machinery for mining, quar-
rying, construction equipment”, respectively.
Words similar to “machinery” will therefore
appear frequently in descriptions of both di-
visions, leading to false positives/negatives.
In Figure 3, we can in fact confirm that
both divisions have worse performance than
the immediate surrounding divisions having
a similar amount of instances.

7 Conclusions and Future Work

This paper presents an approach to classify
CPV code divisions for Spanish public pro-
curement descriptions. Our work evaluated
classical machine learning algorithms, show-
ing that SVM had an excellent performance,
surpassing the previous existing transformed-
based approach for the task. Additionally, we
fine-tuned the RoBERTa transformed-based
model trained on a corpus of the BNE (Span-
ish National Library), that outperformed all
the previous approaches. All data, data pro-
cessing scripts and training notebooks have
been made available through a public code
repository, Zenodo (Navas-Loro, Garijo, and
Corcho, 2022)11 and a Research Object12 for
the sake of reproducibility. This material is
also planned to be used in the AI4Gov inter-
national master.13

Our approach covers only CPV division
classification, and therefore it does not yet
address the CPV over-generalization problem
when assigning CPVs to text (i.e., some codes

11https://zenodo.org/record/6554843
12https://w3id.org/dgarijo/ro/sepln2022
13https://ai4gov-master.eu/
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Figure 4: Hierarchical approach to the CPV
classification problem. The first classifier
would be responsible for categorizing the first
two digits of the code, i.e., its division. The
next level would attempt to predict the next
digit based on the previous digits. For ex-
ample, if the first classifier determined that
a description corresponds to the labels ‘45’
and ‘48’, that description would be passed to
the classifiers that determine the next digit
trained with examples of those two codes.

are systematically not used in preference to
more generic codes, even though the specific
codes in disuse are much better suited to the
topic of the description). Our future work
includes designing a sequence of models that
successively classify the digits of CPVs, as de-
picted in Figure 4, to be able to predict more
specific CPVs. Alternatively, we plan on as-
sessing techniques based on sentence embed-
dings against CPV descriptions, in order to
suggest more specific CPVs despite the lack
of training instances. Designing more spe-
cific classifiers will also require dealing with
noise in data, e.g., when annotators assign
different CPVs to the same contract descrip-
tion or incorrect CPVs. We also plan to in-
crease the dataset, including contracting in-
formation from several years and also retriev-
ing and making use of additional information
from contracting processes. These include
features such as the cost, that could help in
the disambiguation of general words such as
“service” or “work”, that can be used in very
different situations. Additionally, we will also
enhance the preprocessing of the data in or-
der to improve the quality in the dataset, a

well-known problem in this kind of classifica-
tion problem.

Overall, our positive results are a step for-
ward towards the creation of a decision sup-
port system to help in CPV classification, al-
lowing a more transparent and efficient public
procurement in Spain and Europe.
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