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ABSTRACT
Reusing and repurposing scientific workflows for novel scien-
tific experiments is nowadays facilitated by workflow repos-
itories. Such repositories allow scientists to find existing
workflows and re-execute them. However, workflow input
parameters often need to be adjusted to the research problem
at hand. Adapting these parameters may become a daunting
task due to the infinite combinations of their values in a wide
range of applications. Thus, a scientist may preferably use
an automated optimization mechanism to adjust the work-
flow set-up and improve the result. Currently, automated
optimizations must be started from scratch as optimization
meta-data are not stored together with workflow provenance
data. This important meta-data is lost and can neither be
reused nor assessed by other researchers. In this paper we
present a novel approach to capture optimization meta-data
by extending the Research Object model and reusing the
W3C standards. We validate our proposal through a real-
world use case taken from the biodivertsity domain, and
discuss the exploitation of our solution in the context of
existing e-Science infrastructures.

Keywords
Scientific Workflows, Optimization, Research Object, Ontol-
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1. INTRODUCTION
In recent years scientific workflows have emerged as an

alternative to script programming for performing in-silico
experiments. Scientific workflows describe the set of tasks
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needed to carry out a computational experiment [5]. Sim-
ilar to the ’mashup’ concept in web programming, many
scientific ideas can be phrased as different combinations of
existing algorithmic building blocks (also known as compo-
nents). Scientific workflows have been particularly attractive
to scientists aiming to expose, share and reuse their work [14],
as they help specifying the methods used for each step of
the experiment. Consequentially, e-Science environments
have started to provide public repositories for collection and
sharing of scientific workflows [20] thereby providing a source
for large amounts of material for assembling novel methods.

However, even if a researcher has successfully assembled a
workflow, it is often necessary to find suitable parameters of
the workflow components for its execution. This is not a triv-
ial task, since the quality of the final result of an experiment
depends on the choices for these input parameters. Therefore,
when sharing and reusing scientific workflow results, the final
choice of the input parameters should be justified.

In order to find a suitable parameter set, scientists fre-
quently use trial and error or parameter sweeps. Lately, they
may also use optimization techniques provided for scientific
workflows [9]. This optimization process has to be performed
for each workflow from scratch and is neither captured nor
shared among scientists.

However, the optimization process could be much more
simplified and improved if public workflow repositories stored
not only provenance data of the workflow execution but also
the necessary meta-information of the optimization process
itself. This optimization provenance could be used to refine
further optimization runs. For instance, it could help to
identify those parts in the parameter value search space that
do not need to be searched again because the fitness values
of prior runs were poor. Another way would be to use a set
of parameter and fitness values for the first breeding process.
Provenance reuse may allow for a faster convergence of the
optimization algorithm and is likely to improve the workflow
overall results. Researchers could then reuse the suitable
results of others to automatically improve their own scientific
result and reduce the time required for analysis. Additionally,
the computing time required for the optimization process is
wasted if the optimization results were not stored and reused.



In this paper we propose a novel approach to capture
workflow optimization meta-data, which is validated against
a real world use case. In the following sub-section we motivate
the required concept.

1.1 Contributions
Rather than developing our solution from scratch, we have

built our approach based on the Research Object model [1],
already aligned with the W3C standards.

The Research Object model was developed to promote
the sharing and preservation of research artifacts, in par-
ticular those involving scientific workflows. It supports the
description of the scientific processes in a machine process-
able format, together with the datasets involved, the results
obtained, and their provenance information.

The resources that compose a Research Object, as well
as the Research Object itself are accompanied by annota-
tions, which promote the discoverability, and therefore the
reusability of the workflows, as well as enabling third parties
to assess the validity and reproducibility of the results. The
model is implemented in the form of a family of ontologies,
where each ontology captures a specific facet of the scientific
experiment.

Our model captures the specific aspects of workflow opti-
mizations. Specifically, we make the following contributions:

• A Novel Optimization Ontology (RO-Opt) that
extends the Research Object ontologies for capturing
and sharing workflow optimizations.

• A Real-World Case Study for Capturing Work-
flow Optimization. As a proof of concept, we show
how the proposed optimization ontology was used to
capture the optimization results of a real world scientific
workflow from the biodiversity domain.

The paper is organized as follows. A background for the
motivation of workflow optimization is presented in Section 2.
We introduce the concepts of scientific workflows and work-
flow optimization in Section 3. We present the ontology
that we designed for capturing workflow optimizations in
Section 4. In Section 5, we present the case study showing
how the ontology was used to capture the optimization re-
sults of a real world workflow for ecology niche modeling.
We discuss the use of the ontology proposed in the context
of an e-Science infrastructure such as myExperiment [7] in
Section 6. Finally, we conclude the paper underlining our
contributions and discussing future work in Section 7.

2. SCIENTIFIC WORKFLOW OPTIMIZA-
TION: BACKGROUND

This section provides background information and related
work to the reader in order to underpin our motivation to
support scientific workflow optimization.

The ”Golden Trail” project [17] aims to build a provenance
infrastructure for workflow traces. Special focus is put on
those traces, which represent best practice results for sci-
entists and how these results evolved. This is pursued by
merging historically related provenance traces. By querying
the workflow repository, a scientist can receive a best prac-
tice workflow and analyze the traces to see how this set-up
evolved. This may give an idea of the parameter distribution,
but requires a certain number of available traces to form a

hypothesis. Although the found workflow is best practice,
it depends on the applied input data and may not be suffi-
ciently tested and explored. Even if a parameter study was
performed, the resulting trace may become difficult to follow
and the researcher may not be able to extract important
information to improve his own workflow set-up.

In order to generally assist workflow users in searching
suitable values for scientific workflows, several researchers
have explored the usage of optimization techniques. As a
result, some tools have been made available to enhance the
performance of the so called parameter sweep workflows [12,
2, 19]. These parameter sweeps are used to systematically
test parameters and find a best parameter set. The param-
eter settings obtained using parameter sweeps improve the
workflow output and thus the scientific result. However,
parameter sweeps may be computational intensive or sam-
ple the search space in an ineffective manner. Because of
this, authors of the present paper have recently developed a
general framework for automated parameter optimization of
scientific workflows [9]. This framework is extendable and
uses the knowledge provided by the researcher to narrow
the parameter space via constraints or parameter dependen-
cies. Based on this, the search space is limited and can be
intelligently searched via heuristic optimization methods.

However, the individual workflow executions are currently
stored separate from each other and all meta-data, such as
the used optimization algorithm or parameter ranges, are
lost. Currently, the ordinary captured workflow provenance
of optimized workflow will not give any improvement with
respect to non-optimized workflow provenance. In this paper
we focus on a method to capture the optimization meta-data.

3. PRELIMINARIES
Workflow optimization is integrated in the common scien-

tific workflow life cycle. In order to provide an appropriate
context of workflow optimization, this section describes the
extended scientific workflow life cycle and the optimization
process in detail.

3.1 Life Cycle of Scientific Workflows
The development of a scientific workflow can be organized

in a cyclic process with several steps including optimiza-
tion [9] as illustrated in Figure 1. The individual phases
including the novel optimization phase, which are further
explained in [9], are summarized below.

Design and Refinement.
The initial cycle usually starts with the design of a new

workflow or the refinement of an existing workflow taken from
a workflow repository. During this phase the components
of the workflow are designed, representing the single steps
of an experiment. Afterwards, the composition of these
components is established, including the precise definition of
the dependencies between data and components.

Sharing and Planning.
In general, this phase is used to share the designed work-

flow with the community in an e-Science infrastructure. The
aim is that other researchers can access the workflows to run
or extend them. Planning refers to turning the abstract work-
flow created during design phase into a concrete executable
workflow. This is achieved by mapping abstract parts to
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Figure 1: The extended scientific workflow life cy-
cle showing the common cycle including the novel
integrated optimization phase.

concrete components of the workflow. Parameters and data
sources are defined as inputs and execution resources are
selected.

Optimization.
During this phase, the scientific workflow is optimized in

an automated way with the aim of identifying the values
which yield the best results. Typically, only a user defined
sub-workflow is optimized in order to avoid executing the
entire workflow and including components that do not affect
the result. The definition of a better workflow result is
application-dependent and is defined by the user.

Workflow Execution.
The workflow execution is typically managed by a workflow

engine. The engine maps the execution to an appropriate
execution environment by retrieving information about suit-
able software, computing resources and data resources. The
workflow components are then executed in the predefined
order, consuming the defined data while being monitored by
the engine. The results of the execution are then sent back
to the engine, and passed on to the user.

Analysis and Learning.
In order to successfully elaborate the scientific experiment,

the scientific workflow life cycle contains a last phase for
analysis and learning. Some definitions also include into this
phase the publishing of the workflow and the results [15, 6].
The phase includes the examination as well as a comparison
of the obtained results with those of other experiments. Com-
monly scientists restart the life cycle after the analysis step
if results do not yet match the goals or expectations. During
subsequent cycles, the workflow is refined and improved using
trial and error approaches.

3.2 Optimization of Scientific workflows
In our prior work [9] we introduced a new phase to the sci-

entific workflow life cycle, the optimization phase, described

briefly in Section 3.1. This phase performs the automated
optimization of a scientific workflow. This enables the re-
searcher to concentrate on the problem at hand rather than
dealing with details of the workflow execution or manual
improvement of the workflow set-up.

The optimization phase was prototypically implemented
as a plugin for Taverna [18], a commonly used scientific work-
flow management system. As workflow optimization may
target different levels of the workflow description and the
optimization process can be performed by different optimiza-
tion algorithms, the implemented solution was designed as
an extensible optimization framework. Extensibility enables
developers to implement (novel) optimization algorithms or
levels as plugins and plug these into the framework. As
the framework provides general methods required for work-
flow optimization, such as a graphical user interface (GUI),
sub-workflow creation, security methods, parallel workflow
execution and monitoring the developer can concentrate on
the optimization algorithm itself. Accordingly, developers
do not have to design a bottom-up solution each time. The
proposed optimization framework can be extended by all
kinds of optimization plugins.

The optimization phase was designed to perform the op-
timization on a sub-workflow. This sub-workflow has to be
selected by the user. The selection is made via the provided
GUI of the optimization framework within the Taverna Work-
bench. The user can select the components to be optimized
and thus comprise the sub-workflow. The sub-workflow data
structure is created by the optimization framework in the
background hidden from the user.

In our prior work [9] we developed an exemplary opti-
mization plugin for parameter optimization. This extension
was plugged into the described optimization framework. It
implements a Genetic Algorithm to sample the parameter
search space of the sub-workflow. During the optimization
process several different sub-workflow set-ups are tested au-
tomatically. The parameter values are intelligently chosen
by the Genetic Algorithm utilizing a combination of different
natural operators [10]. The number of optimization cycles
depends on the researchers’ decision. Among others, the
execution time or the reached fitness value can serve as a
termination criterion for the algorithm. After a user specified
termination criterion the optimization process finishes and
returns the value combination that yielded the best result.

Similar to general optimization methods, workflow opti-
mization requires a measure to rate the individual workflow
executions (the result). Therefore, the scientist has to define
one or several workflow output ports that should be subject

Figure 2: Research Object in a nutshell. The blue
dots represent resources of other kinds of objects.



to the fitness measure. Example measures are the area under
the curve or the squared correlation coefficient that is defined
as one output of a component.

In order to save execution time and obtain the best result
in a reasonable amount of time, the search space should be
narrowed. The framework provides a specification window
within its GUI, which can be implemented by the respective
plugin to capture the available knowledge of the user. The
exemplary parameter optimization plugin includes among
other things minimum and maximum values for input param-
eters and dependency descriptions. The Genetic Algorithm
uses only values within the user specified ranges to sample
the specific parameters for workflow execution. For a more
detailed description of the optimization framework, such as
an architecture explanation and a screenshot, please refer
to [9].

4. WORKFLOW OPTIMIZATION ONTOL-
OGY

In order to capture workflow optimizations, their context
and their provenance (algorithms used, sub-workflows on top
of which the optimization has been specified, parameters
selected, etc.) we have created the generic Workflow Opti-
mization Ontology (RO-Opt)1. RO-Opt is built on top of
the Research Object model, reusing and extending its main
concepts when necessary. In this section we first explain the
basic concepts of the Research Object model in Section 4.1
and second describe the details and design decisions of the
generic RO-Opt in Section 4.2.

4.1 The Research Object Model: An Over-
view

Research Objects [1] aim at providing support for the de-
scription of scientific investigations in a machine readable
format. In addition to the scholarly article that reports on

1http://purl.org/net/RO-optimization#

the results of the research investigation, a Research Object
encapsulates other resources that enable and promote the
reuse, interpretation and reproducibility of such investiga-
tion results. In particular, a Research Object comprises the
datasets used and generated during the research investiga-
tion, the workflow encoding the experiment carried out, the
provenance traces captured by running the experiments and
the various annotations that describes resources and their
relationships.

Figure 2 illustrates a coarse-grained view of the Research
Object model. Here we focus on Workflow-Centric Research
Objects, i.e., Research Objects that contain at least a work-
flow. A Research Object aggregates a number of resources,
namely:

• A Workflow, which defines a template with the inter-
connected series of steps necessary to specify a given
experiment;

• The WorkflowRuns that identifies a given execution
of a workflow. Workflow runs in Research Objects are
accompanied with provenance information specifying,
amongst other things, the inputs used to feed the ex-
ecution of the workflow, the intermediary steps of its
internal steps as well as the results obtained at the end
of the workflow execution.

• The Annotations used to describe the current Research
Object, its resources and their relationships;

• Other resources used to help providing context to the
research investigation, e.g., a paper describing the re-
search, the hypothesis of the experiment, bibliography
related to the experiment, conclusions and interpreta-
tions of the results, configuration files, etc.

The Research Object model is represented by a family of
ontologies2, which is divided into a Research Object Core

2http://wf4ever.github.io/ro-primer/
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Figure 3: The main classes of the Optimization Research Object Ontology developed to store optimization
provenance.



Ontology 3 and extension modules that cater to different
domain specific requirements (Research Object evolution,
scientific workflows, etc.). RO-Opt extends the Research
Object Core Ontology and the ontologies used to specify
Workflow-Centric Research Objects: the wfdesc ontology4

(used to specify workflow templates) and the wfprov ontol-
ogy5 (used to capture the provenance traces of the workflow
executions).

4.2 The Research Object Optimization Ontol-
ogy (RO-Opt)

An Optimization Research Object (opt:OptimizationRe-
searchObject)6 is an aggregation of all the resources required
for performing the generic workflow optimization process pre-
sented in Section 3.2. Since Research Objects (ro:Research-
Object) are aggregations of the resources used or referenced
in an investigation, an Optimization Research Object is a
specific type of Research Object. Figure 3 shows an overview
of the main resources aggregated as part of an Optimization
Research Object: The algorithm (opt:Algorithm) used to
generate the optimization parameters, the fitness function
(opt:Fitness) used, the population of individuals (solutions)
that have been produced at a given Generation (i.e. a given
iteration) of the optimization algorithm (opt:Generation),
the results of the optimization run (opt:Optimization-
Run) as a combination of input parameters and fitness values,
the search space (opt:SearchSpace) where the algorithm
has searched for optimum values, the termination condi-
tion (opt:TerminationCondition) for the optimization al-
gorithm, the workflow (wfdesc:Workflow) being optimized
and the link to the best results (opt:hasBestResult)
found. In the following subsections each of these aggregated
resources are described in detail.

Figure 4: Classes and properties of the Algorithm
section of RO-Opt. Blue concepts show the terms
reused from the Research Object Ontologies.

4.2.1 Algorithm
As the fitness landscape of optimization problems can be

rugged and contain no gradient information [21], meta-heu-
ristic search methods [3] are convenient search algorithms
(opt:Algorithm) to deal with the optimization of scientific

3Prefix ro: http://purl.org/wf4ever/ro#
4Prefix wfdesc: http://purl.org/wf4ever/wfdesc#
5Prefix wfrpov: http://purl.org/wf4ever/wfprov#
6Prefix opt: http://purl.org/net/RO-optimization#

workflows. Figure 4 shows the type of search algorithms we
focus on this paper: Genetic Algorithms (opt:GeneticAl-
gorithm) and Particle Swarm Optimization (opt:Particle-
SwarmOptimizationAlgorithm). As workflow optimization
is an ongoing research topic, other algorithms can be plugged
into the optimization framework. In such case, the ontology
requires to be extended for the algorithm class respectively.
Offering such a generic mechanism allows the fast extension
of arbitrary optimization algorithms.

The used optimization algorithms should be stored for
identification and comparison. Not only the type of algorithm
but also the specific parameters of the algorithm may be
reused in later optimization runs.

Figure 5: Classes and properties of the Fitness sec-
tion of RO-Opt.

4.2.2 Fitness
In order to automate the optimization process, workflow re-

sults are evaluated by the optimization algorithm. The work-
flow results are represented by output parameters (opt:Func-
tionOutputParameter), which represents a specific fitness
measure (opt:Fitness). Figure 5 depicts an overview of
the fitness section of the ontology. The fitness measure
may consist of one or several output parameters. Several
parameters and weights are used, if the user wants to per-
form a multi-objective optimization (opt:MultiObjective-
Fitness) instead of a single-objective optimization (opt:Sin-
gleObjectiveFitness). Multi-objective optimization tries
to solve problems that have two or more, often conflicting,
objectives [16]. Single-objective optimization in turn tries
to solve only a single objective. The ontology can capture
both types of optimization objectives. The fitness function
(opt:FitnessFunction) associated with the fitness measure
can not only store output parameters and weights but also
a body (opt:hasBody) which may contain a piece of code
representing a unique measure description.

4.2.3 Generation
During the optimization process each workflow instance

from a population of size y is executed. Each of these in-
stances represents a unique parameter and component com-
bination. After the execution and evaluation of the workflow
instances, a new generation of unique workflow set-ups is
executed.



To monitor the population evolution, each individual work-
flow run has a corresponding generation number (opt:has-
GenerationNumber). Additionally, the population size of
each generation is stored (opt:hasPopulationSize), as this
number can vary for optimization runs in general and for
each generation in particular.

4.2.4 Optimization Run
Results obtained during the optimization process may be

of interest and required to learn from them in later opti-
mization runs (opt:OptimizationRun). Thus the original
executed workflow instances and their results should be cap-
tured as well. Most scientific workflow management systems
allow to export a trace of the workflow execution and re-
sults. However, we recommend against storing the entire
provenance traces of several optimization workflow runs if
one optimization trace has already been saved. This is due
to storage limitations, since many relevant data objects (e.g.
intermediate results) may require a lot of space. For ex-
ample, capturing the provenance of one execution of the
use case presented in Section 5 produced files of a total of
7.7MB in disk. These data objects are often negligible when
reproducing an optimization and especially when learning
from optimization runs. The crucial values to associate to
the optimization run (opt:OptimizationRun) are the fitness
values (opt:hasFitnessValue) and a flag (opt:Flag), which
depicts the origin of the fitness value. In our example, by
capturing just input and output values produced a data file
of 9.6kB. As shown in Figure 6, the flag indicates that the
fitness value may have been calculated (opt:Original), ap-
proximated (opt:Approx) or just taken from a prior similar
or identical optimization run (opt:LinkToOriginal). The
flag allows users to relate where the specific fitness value
originates from. In particular, when optimizing identical
workflows it would be useful to reuse fitness values from prior
optimization runs (and use the opt:LinkToOriginal flag).

Figure 6: Classes and properties of the Optimization
Run section of RO-Opt.

4.2.5 Search Space
Each workflow variation represents one specific set-up and

can be sampled within a specific search space (opt:Search-
Space). The search space is spanned by the selected workflow
parameters and/or structural changes. As not all parameter
values or combinations of components (i.e. processors) are
valid, the number of tested workflow set-ups can be reduced
by sampling the search space with an optimization algorithm.
The dependencies of the search space should be stored in or-
der to allow other optimization processes to reuse the search
space later. As shown in Figure 7, the search space com-
prises component and parameter dependencies respectively
(opt:ProcessorDependecy and opt:ParameterDependency)
as well as parameter constraints (linked with the data prop-
erty opt:hasParameterConstraint).

Figure 7: Classes and properties of the Search Space
section of RO-Opt. The specific types of input pa-
rameters (numeric, string, etc.) and data properties
have been ommitted for simplicity.

Constraints limit possible values for parameters. Whereas
numerical parameters (double or integer) may be limited
by a minimum and maximum value, other parameter types
may also be limited. As an example, a parameter can be
defined by a regular expression or by a fixed list of valid
values. Parameters and components might also have specific
dependencies. For example, a parameter A can be dependent
on another parameter B by e.g. a numeric sum dependency
such as A+B = 1. In a similar manner, workflow components
can be dependent on each other. Consider for example the
following component dependency: a task can be performed
by component D or A and another task by component B or
C. Additionally, component A can only be executed together
with component C but not with component B. These de-
pendencies can be asserted with the opt:onParameter and
opt:hasTargetProcessor properties.

4.2.6 Termination Condition
The optimization process will stop at a certain time prefer-

ably when the algorithm has converged. However, as this
may be a very time consuming task, the user often wants
to add additional termination criteria. The termination con-
dition (opt:TerminationCondition) should be stored due
to reasons regarding the plausibility of the optimization



run. The termination condition precisely stores under which
condition the optimization is to be terminated. This informa-
tion allows the user to verify why the optimization process
ended and whether it affected the overall result or not. It
can be the maximum number of performed workflow ex-
ecutions (opt:hadMaxNumberOfExecutions), the maximum
number of evolutionary steps (opt:hadNumberOfSteps), the
time required for the optimization process (opt:hadMaxTime),
a reached fitness value (opt:hadFitnessReached) or a num-
ber of generations that did not improve the fitness measure
(opt:noChange). Depending on the workflow, the search
space settings and how strict the termination condition has
been set, inferences can be made about the value of the best
recorded result.

4.2.7 Workflow
The original workflow (wfdesc:Workflow) should be stored

within the Optimization Research Object to increase the opti-
mization process discoverability (with the opt:hasWorkflow

property). If a researcher wants to optimize a similar or iden-
tical workflow, the original workflow can be used to search
the repository and find similar structured workflows. The
workflow may be stored in an abstract or concrete fash-
ion to capture the scientific experiment. Together with
this resource, one representative workflow run (wfdesc:-
WorkflowRun) should be stored to capture the input data
from the non-optimized input ports.

4.2.8 Link to the best results
To ensure a fast and easy analysis, link(s) to the best

result(s) (opt:hasBestResult) should be stored. For single-
objective optimization one link is stored, for multi-objective-
optimization several results representing the Pareto Front [16]
are stored.

The presented Research Object optimization ontology can
be used to capture the optimization process of scientific
workflows. The ontology was designed to be generic and
usable for many different scenarios. In order to support
further optimization algorithms, a new sub-class of opt:Al-

gorithm has to be extended. All other entities and relations
were defined to be generic so they can be reused by any
optimization algorithm or optimization level.

In the next section we show an example use case that was
optimized and where the optimization provenance was cap-
tured manually to show the usage of our developed ontology.

5. THE ECOLOGICAL NICHE MODELING
WORKFLOW

The BioVeL7 project is building a virtual e-laboratory
which includes the development of scientific workflows within
the ecological domain. Among others, an Ecological Niche
Modeling (ENM) workflow was developed in Taverna [18],
which performs the analysis of species distributions and
predicts changes in biodiversity patterns [22, 8, 13]. The idea
of niche modeling is based on G.E. Hutchinson’s definition of
the realized niche, where a set of environmental factors or a
multidimensional space of resources (e.g. light and structure),
can be used to predict the persistence of a species [11]. Thus,

7http://www.biovel.eu
9Figure source: http://openmodeller.sourceforge.net/
overview.html
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Figure 8: General principle of Ecological Niche mod-
eling. (1) Species occurrence points. (2) Set of spa-
tially explicit environmental variables that influence
the distribution of the species. (3) Ecological niche
modeling algorithm. (4) Generated model in the en-
vironmental space. (5) Model projected back into
the geographical space, showing habitat suitability
for the species from blue (unsuitable) to red (suit-
able)9.

potential distribution models can be generated with relatively
few variables characterizing the abiotic environment of the
species in the form of geo-referenced raster layers (Figure 8).

In order to obtain valid models for species niches, in many
cases it is important to specify the appropriate set of param-
eter values for a given input data set (occurrences, mask,
and layers). The best parameter values can vary between
different input data sets and hence they are difficult to know
beforehand. We used the aforementioned optimization frame-
work and parameter optimization plugin [9] in the workflow
management system Taverna [18]. As the BioVeL ENM
workflow was originally built using Taverna, further efforts
for reuse were not required.

The workflow uses web services to remotely execute a
specific modeling algorithm, provided by openModeller10 [4].
An abstract description of the workflow is shown in Figure 9.
Within the first step, the input parameters are prepared and
the model creation operation is called on 90% of the input
points. The model then represents the suitable conditions of
abiotic for a given species. After creating the model, the test
model operation is called. This operation tests the model,
by using the 10% points left out of model creation. The
test operation calculates the receiver operating characteristic

10http://openmodeller.sf.net/
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Figure 9: The abstract ENM workflow uses occur-
rence and environmental data to model ecological
niches based on a variety of algorithms, including
Support Vector Machines and others. The purple
squares represent fixed parameters, the red the op-
timized parameters, blue the components and green
the output used as fitness function.

(ROC) curve and the area under the curve (AUC). A 10-fold
cross-validation was used to test model prediction, each time
measuring the AUC and in the end using the average AUC
as the single-objective fitness measure to optimize the ENM
workflow.

As an example use case, we took the ENM workflow, using
a support vector machine (SVM) algorithm to calculate the
model11. The type of SVM that was chosen has among other
configurable parameters the following: gamma, cost and the
number of pseudo absences, since only presence points were
used as input and the type of SVM that was chosen requires
two classes for training (when no absences are specified,
the algorithm internally generates an indicated number of
pseudo absences). These parameters were identified by the
workflow developers as those that can affect model results
for the selected type of SVM and kernel function. To limit
the search space of the optimization problem, various ranges
were set to these parameters to limit the search space. More
precisely, gamma was determined to range from 0 to 10, cost
from 0 to 256 and numberOfPseudoAbsences from 200 to
600. Gamma and cost were defined as a double value while
numberOfPseudoAbsences was defined as an integer values.
To describe the cost parameter, we further restricted cost to
be a power of 2, between 20 and 28 (which corresponds to
0 to 256). These range descriptions can be entered through
the graphical user interface of the optimization framework in
Taverna. A dataset from the algae: Prorocentrum minimum
was used 12 was used as input dataset.

The increase in frequency and intensity of Prorocentrum
minimum has led to increased incidence of shellfish poisoning,
large fish kills, and deaths of livestock and wildlife, as well
as illness and death in humans. The economic repercussions
of algae contamination can be very serious. Not only is fish

11http://www.myexperiment.org/workflows/3680.html
12Dataset available from http://www.gbif.org

production affected, through stock destruction and consumer
mistrust, but there are also consequences for the tourism
sector. Although toxic algal blooms represent a serious public
health and economic problem, no comprehensive forecasting
systems for Prorocentrum minimum is in place for research
and management.

The data set contains 173 occurrence records of the species
in the North East Atlantic, a geographic mask for the same
region, and a set of environmental layers that drive the dis-
tribution of the species (mean sea surface temperature, mean
salinity and mean photosynthetically available radiation).

The optimization process was performed based on this
input data and the previously defined constraints. Initially,
the population size was set to 16 and the total runtime was
limited to 24h due to third party restrictions. The best fitness
(AUC) obtained was 0.9207 with gamma = 2.36 cost=23 and
numberofPseudoAbsences = 363.

This optimization run has been captured with the RO-Opt
ontology. In doing so, the described ontology was applied to
manually model the performed optimization process as an
OptimizationResearchObject and thus create optimization
provenance. This model stores the three parameters modi-
fied during the optimization run, their constraints and the
termination criterion: 24 hours maximum execution time.
All workflow instances as well as the best result have been
recorded. Figure 10 shows a fraction of the RDF encoding the
example. In particular it captures how the optimization run
is modeled and shows the record for the best fitness obtained
during the optimization run. The complete Optimization
Research Object is available online13.

Since this provenance meta-data is available, a second
optimization run could e.g. restore the tested parameters
and obtained fitness values and take them as granted during
the optimization. This run could then reuse already obtained
gradient information and sample the next parameter values
in a promising area.

6. TOWARDS SHARING AND EXPLOIT-
ING OPTIMIZATION RESEARCH OB-
JECTS

In the previous section we showed how to manually create
and store optimization provenance data. As optimization
meta-data can now be stored in a structured format it can
be read and interpreted by a program and by a scientist
alike. Even a single researcher can already benefit from this
meta-data set, as the optimization algorithm can include
the results during further optimization runs of the same
workflow and data. The algorithm may thereby identify
gradient information and converge to a (local) optimum more
quickly. If different but similar data is used, a researcher
can explore prior optimization runs to gain insights into
relevant parameters and their ranges. Statistics about the
used parameter space may help identify relevant parameters
or parameter ranges.

Workflow optimization and the presented ontology would
benefit from a community-wide adoption and reveal their full
potential. Researchers may want to share their Optimization
Research Objects, analyze results from colleagues and reuse
their search space constraints, fitness definitions, and so on.
In this respect, it is worth mentioning that the development

13http://purl.org/net/svm-opt-research-object



Figure 10: Modeling an Optimization run with the
RO-Opt ontology.

version of myExperiment14 is currently being extended to
enable users to create and manage workflow-centric Research
Objects. Once stable, the new functionalities will be then
incorporated within the production version of myExperi-
ment15.

One can envisage storing and sharing Optimization Re-
search Objects using a community repository. For example,
having the full example of the extract shown in Figure 10
stored in a SPARQL endpoint would easily enable answering
a query to retrieve the parameter names (?pname) and values
(?value) of the best optimization runs (i.e., those runs (?run)
with best fitness values):

prefix opt: <http://purl.org/net/RO-optimization#>

prefix wfprov: <http://purl.org/wf4ever/wfprov#>

select distinct ?run ?pname ?value where {

?run a opt:OptimizationRun.

?run opt:hasFitnessValue ?v.

?run wfprov:usedInput ?in.

?in opt:hasValue ?value

?in wfprov:describedByParameter ?p.

?p opt:hasName ?pname.

}order by desc (?v)

Other interesting questions would include retrieving the
parameters involved as part of the optimization, knowing
which is the best parameter combination for a given workflow,

14http://alpha.myexperiment.org
15http://www.myexperiment.org

gathering the parameter ranges used during prior workflow
optimization runs, collecting which was the best result ever
gained for a specific workflow or retrieving those parameters
which seem to have a larger influence on the final result. By
implementing a close connection between workflow manage-
ment systems (in portals) and infrastructure, optimization
provenance could be directly uploaded and downloaded for
sharing purposes and further reuse. Researchers could not
only retrieve answers through a portal (e.g. myExperiment),
but also let optimization algorithms reuse the optimization
provenance in many different ways, such as:

• Adopt the used parameter ranges of parameters

• Reuse the algorithm settings

• Perform the identical optimization with different input
data

• Use self-defined optimization settings but reuse existing
results if possible

• Resume optimization and use half of parameters as half
of the initial population of a new optimization run

The more search space definitions, results and other opti-
mization meta-data are stored, the easier it is to determine
what the best relevant ranges, parameters, or algorithm set-
tings are. Certainly, similar results could also be obtained
by analyzing ordinary workflow runs but Research Objects
of optimized workflows bundle important information in a
machine readable representation. This concept, implemented
by the proposed workflow optimization provenance ontology,
may lead to a simplified and automated way to obtain better
scientific results. In our ongoing work, we will investigate the
possibility to incorporate Optimization Research Objects,
as presented in this paper, in a community portal such as
myExperiment.

7. CONCLUSIONS AND FUTURE WORK
We presented in this paper the RO-Opt ontology16, the

first proposal for capturing the results of scientific workflow
optimizations in a systematic and structured manner. The
RO-Opt ontology captures different facets of workflow opti-
mizations, including the workflow (or sub-workflow) subject
to optimization, the space of solutions that was explored,
the algorithm used for optimization as well as the fitness
function used for assessing the fitness of potential solutions.
In order to promote its adoption we built RO-Opt upon the
Research Object model, a model that has been developed
to enable the sharing, reuse and dissemination of scientific
research results. We also showcased the use of RO-Opt to
encode the optimization results of a real-world scientific work-
flow and made it available online. By storing optimization
provenance, many questions can be answered and meta-data
reused, which would not be possible otherwise. The full
potential of our approach will be maximized when enabling
sharing and reuse in a collaborative manner. Similar to con-
ventional workflow provenance, many researchers will then
be able to benefit from the available optimization meta-data.

Our ongoing and future works include promoting the use
of RO-Opt in an e-Science infrastructure and investigating
further real use cases and with the objective of extending

16http://purl.org/net/RO-optimization#



it to fit (new) requirements of users and other workflow
management systems.
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