
Departamento de Inteligencia Artificial

Escuela Técnica Superior de Ingenieros Informáticos

PhD Thesis

Mining Abstractions in Scientific

Workflows

Author: Daniel Garijo Verdejo

Supervisors: Prof. Dr. Oscar Corcho

Prof. Dra. Yolanda Gil

December, 2015

ii

Tribunal nombrado por el Sr. Rector Magfco. de la Universidad Politécnica de Madrid,

el d́ıa 30 de octubre de 2015

Presidente: Dra. Asunción Gómez Pérez

Vocal: Dr. Jose Manuel Gómez Pérez

Vocal: Dr. Malcolm Atkinson

Vocal: Dr. Rafael Tolosana

Secretario: Dr. Mark Wilkinson

Suplente: Dr. Mariano Fernández López

Suplente: Dra. Belén Dı́az Agudo

Realizado el acto de defensa y lectura de la Tesis el d́ıa 3 de diciembre de 2015 en la

Facultad de Informática

Calificaćıon:

EL PRESIDENTE VOCAL 1 VOCAL 2

VOCAL 3 EL SECRETARIO

iii

iv

A mis padres

v

vi

Acknowledgements

Finally, after five years, I can finally say that I see light at the end of the

tunnel. Maybe the other side is still a bit cloudy at the moment, but the

important thing is to have arrived here. And, honestly, I think I wouldn’t

have made it to this point without all the people who have been by my side

during these years.

First, I would like to thank my supervisors Oscar Corcho and Yolanda Gil

for guiding me whenever I got stuck and for having the patience to answer

all my questions. Furthermore, thanks to their help, together with Asunción

Gómez Pérez’s advice, I was granted the FPU (Formación de Profesorado

Universitario) scholarship from the Ministerio de Ciencia e Innovación. This

scholarship has funded the internships and the research described on this

document, and I am very grateful for having had the opportunity to enjoy

it.

I would also like to thank my family, specially my parents (Francisco Javier

and Maŕıa Felisa) and my sister Elisa for all their support, advice and

suggestions during this period. Even from the distance!

Next up are my lab mates, who have helped me with the figures (Maŕıa

Poveda, I really think you could write a thesis just by doing cool figures),

logos (Idafen Santana, also responsible for our soccer team), technical sup-

port (Miguel Angel Garćıa and Raúl Alcázar), advice for the thesis (Andrés

Garćıa and Esther Lozano) or just cheering me up when hanging out with

them (Dani, Freddy, Carlos, Pablo, Julia, Boris, Alejandro, Olga and Vic-

tor). In this regard, I am also very grateful to my friends Sergio, Paloma,

David, Cristina and Javier for being always available to have a chat with a

beer and discuss things totally unrelated to this thesis.

I also owe special thanks to Paolo Missier and Khalid Belhajjame, who have

provided very valuable feedback with very little time for doing the review.

Next, Varun Ratnakar has always been crucial for some of the technical

parts described in this thesis. Varun is one of the best working colleagues

one could ever ask for.

And finally, I want to thank all the collaborators and projects pals I have

interacted with during these years, from the w4Ever team (with Carole,

Jun, Graham, Raúl, Piotr, Stian, Khalid, Kristina, Lourdes, Susana, Pique)

to the people I have met during my internships at the ISI (Dirk, John,

Matheus, Felix, Zori).

Abstract

Scientific workflows have been adopted in the last decade to represent the

computational methods used in in silico scientific experiments and their

associated research products. Scientific workflows have demonstrated to be

useful for sharing and reproducing scientific experiments, allowing scientists

to visualize, debug and save time when re-executing previous work. How-

ever, scientific workflows may be difficult to understand and reuse. The

large amount of available workflows in repositories, together with their het-

erogeneity and lack of documentation and usage examples may become an

obstacle for a scientist aiming to reuse the work from other scientists. Fur-

thermore, given that it is often possible to implement a method using differ-

ent algorithms or techniques, seemingly disparate workflows may be related

at a higher level of abstraction, based on their common functionality. In

this thesis we address the issue of reusability and abstraction by exploring

how workflows relate to one another in a workflow repository, mining ab-

stractions that may be helpful for workflow reuse. In order to do so, we

propose a simple model for representing and relating workflows and their

executions, we analyze the typical common abstractions that can be found

in workflow repositories, we explore the current practices of users regarding

workflow reuse and we describe a method for discovering useful abstractions

for workflows based on existing graph mining techniques. Our results ex-

pose the common abstractions and practices of users in terms of workflow

reuse, and show how our proposed abstractions have potential to become

useful for users designing new workflows.

ix

x

Resumen

Los flujos de trabajo cient́ıficos han sido adoptados durante la última década

para representar los métodos computacionales utilizados en experimentos in

silico, aśı como para dar soporte a sus publicaciones asociadas. Dichos flujos

de trabajo han demostrado ser útiles para compartir y reproducir experi-

mentos cient́ıficos, permitiendo a investigadores visualizar, depurar y aho-

rrar tiempo a la hora de re-ejecutar un trabajo realizado con anterioridad.

Sin embargo, los flujos de trabajo cient́ıficos pueden ser en ocasiones dif́ıciles

de entender y reutilizar. Esto es debido a impedimentos como el gran

número de flujos de trabajo existentes en repositorios, su heterogeneidad

o la falta generalizada de documentación y ejemplos de uso. Además, dado

que normalmente es posible implementar un mismo método utilizando algo-

ritmos o técnicas distintas, flujos de trabajo aparentemente distintos pueden

estar relacionados a un determinado nivel de abstracción, basadándose, por

ejemplo, en su funcionalidad común. Esta tesis se centra en la reutilización

de flujos de trabajo y su abstracción mediante la exploración de relaciones

entre los flujos de trabajo de un repositorio y la extracción de abstracciones

que podŕıan ayudar a la hora de reutilizar otros flujos de trabajo existentes.

Para ello, se propone un modelo simple de representación de flujos de tra-

bajo y sus ejecuciones, se analizan las abstracciones t́ıpicas que se pueden

encontrar en los repositorios de flujos de trabajo, se exploran las prácticas

habituales de los usuarios a la hora de reutilizar flujos de trabajo existentes

y se describe un método para descubrir abstracciones útiles para usuarios,

basadas en técnicas existentes de teoŕıa de grafos. Los resultados obtenidos

exponen las abstracciones y prácticas comunes de usuarios en términos de

reutilización de flujos de trabajo, y muestran cómo las abstracciones que se

extraen automáticamente tienen potencial para ser reutilizadas por usuarios

que buscan diseñar nuevos flujos de trabajo.

xi

xii

Contents

1 Introduction 1

1.1 Contributions . 3

1.2 Thesis Structure . 4

1.3 Publications . 5

1.4 External Contributions . 6

2 Related Work 9

2.1 Scientific Workflow Representation . 11

2.1.1 Scientific Workflow Management Systems 14

2.1.2 Scientific Workflow Life Cycle . 17

2.1.3 Scientific Workflow Models . 19

2.1.4 Scientific Workflow Publication 26

2.2 Workflow Abstraction . 28

2.2.1 Types of Abstractions in Scientific Workflows 28

2.2.2 Workflow Patterns . 33

2.3 Workflow Reuse . 34

2.3.1 Measuring Workflow Reuse . 35

2.3.2 Workflow Mining for Reuse . 36

2.4 Summary . 40

3 Research Objectives 43

3.1 Research Hypotheses . 44

3.2 Open Research Challenges . 44

3.2.1 Workflow Representation Heterogeneity 45

3.2.2 Inadequate Level of Workflow Abstraction 45

xiii

3.2.3 Difficulties of Workflow Reuse . 46

3.2.4 Lack of Support for Workflow Annotation 46

3.3 Research Methodology . 47

4 Scientific Workflow Representation and Publication 51

4.1 Scientific Workflow Model . 51

4.1.1 Representing the Provenance of Workflow Executions: The Open

Provenance Model and W3C PROV 52

4.1.2 Representing Workflow Templates and Instances: P-Plan 56

4.1.3 OPMW . 58

4.2 Scientific Workflow Publication . 63

4.2.1 Workflows as Linked Data Resources 65

4.2.2 A Methodology for Publishing Scientific Workflows as Linked Data 66

4.2.3 Linked Data Workflows: An Example 68

4.3 Summary . 70

5 Workflow Abstraction and Reuse 73

5.1 Workflow Motifs . 74

5.1.1 Experimental Setup . 74

5.1.2 Workflow Corpus Description . 75

5.1.3 Methodology for Workflow Analysis 78

5.1.4 A Motif Catalogue for Abstracting Scientific Workflows 79

5.1.5 Workflow Analysis Results . 85

5.1.6 Summary . 92

5.2 Analysis of Workflow and Workflow Fragment Reuse 93

5.2.1 Experimental Setup . 94

5.2.2 Workflow Reuse Analysis Results 98

5.3 Workflow and Workflow Fragment Reuse: User Survey 100

5.3.1 Experimental Setup . 100

5.3.2 User Survey Report . 101

5.4 Summary . 108

xiv

6 Workflow Fragment Mining 109

6.1 Data Preparation . 111

6.2 Common Workflow Fragment Extraction 111

6.2.1 Frequent Sub-graph Mining . 112

6.2.2 Frequent Sub-graph Mining in FragFlow 116

6.3 Fragment Filtering and Splitting . 120

6.4 Fragment Linking . 122

6.4.1 Workflow Fragment Representation 122

6.4.2 Finding Fragments in Workflows 124

6.5 Fragment Statistics and Visualization 128

6.6 Summary . 128

7 Evaluation 131

7.1 Evaluation Metrics . 131

7.1.1 Occurrence and Generalization Evaluation Metrics 132

7.1.2 Usefulness Evaluation Metrics . 132

7.2 Workflow Motif Detection and Workflow Generalization 135

7.2.1 Experimental Setup . 135

7.2.2 Evaluation of the Application of Inexact FSM techniques 137

7.2.3 Evaluation of the Application of Exact FSM Techniques 142

7.2.4 Summary . 143

7.3 Workflow Fragment Assessment . 144

7.3.1 Experimental Setup . 144

7.3.2 FragFlow Fragments versus User Defined Groupings 145

7.3.3 User Evaluation . 155

7.3.4 Summary . 157

7.4 Evaluation Conclusions . 157

7.4.1 Commonly Used Workflow Patterns and Abstractions 158

7.4.2 Workflow Fragment Usefulness 159

8 Conclusions and Future Work 161

8.1 Assumptions and Restrictions . 162

8.2 Contributions . 162

8.2.1 Workflow Representation Heterogeneity 162

xv

8.2.2 Addressing the Inadequate Level of Workflow Abstraction 164

8.2.3 Difficulty of Workflow Reuse . 165

8.2.4 Lack of Support for Workflow Annotation 167

8.3 Impact . 168

8.4 Limitations . 169

8.4.1 Workflow Representation and Publication 169

8.4.2 Common Workflow Motifs . 170

8.4.3 Workflow Fragment Mining . 170

8.4.4 Workflow Generalization . 171

8.5 Future Work . 171

8.5.1 Towards Workflow Ecosystem Interoperability 172

8.5.2 Automating Detection of Workflow Abstractions 172

8.5.3 Improving Workflow Reuse . 174

A Competency questions for OPMW 177

B Reuse Questionnaire 183

C Evaluation Details 187

C.1 Motifs found in the Wings Corpus . 187

C.2 Details on the evaluation of the Application of Inexact FSM techniques 187

C.3 Details on the evaluation of the Application of Exact FSM techniques . 187

C.4 Usefulness Questionnaire . 188

D Additional FSM Algorithms for Mining Useful Fragments 191

Glossary 193

Bibliography 207

xvi

List of Figures

2.1 Two sample workflows from two different workflow systems. The one on

the left is from the text analytics domain, while the one on the right is

for neuro-image analysis. 10

2.2 Example of a workflow represented as a Petri Net. The initial state

is represented with an “I”. Circles represent states of the workflow,

and boxes represent the actions executed between states. The arrows

represent data dependencies. 12

2.3 Example of a workflow represented in UML. The initial state is repre-

sented with a single black circle, while the final state has two circles.

Workflow steps are represented as ellipses, and their data dependencies

with arcs. Vertical bars represent fork and join nodes. 12

2.4 Example of a workflow represented in BPMN. The initial event is repre-

sented with a single circle, while the final event is depicted with a circle

with a wider line. Workflow steps (tasks) are represented with rounded

boxes. The flow is represented by arrows. Diamond boxes represent

gateways, which indicate when two activities are performed in parallel. . 13

2.5 Different types of graph, as introduced in Definition 1. 14

2.6 A workflow template (left), a workflow instance (center), and a successful

workflow execution (right). 18

2.7 A workflow template (left), a workflow instance (center), and a failed

workflow execution (right). 19

2.8 RDF example: a file is described with its creator. 22

xvii

2.9 Skeletal planning abstraction based on a taxonomy. Two different tem-

plates (at the bottom) are two possible specializations of the template

on the top, based on the taxonomy of components presented on the top

right of the figure. Computational steps are represented with rectangles,

while inputs, intermediate results and outputs are represented with ovals. 29

2.10 Predicate abstraction example: the workflow on the left is an abstraction

of the workflow of the right. Two predicates (inputs Dictionary and

Clusters) are omitted in creating the abstraction. 30

2.11 Macro abstraction example: two steps on the right are simplified as a

single step on the workflow in the left. 31

2.12 Layered abstraction example: the workflow of the left is an abstraction

of the workflow of the right, which results when a workflow execution

engine enacts it. Therefore the user’s view of the workflow (left) is

different form the system’s view of the workflow (right). 32

2.13 Difference in output: while process mining returns a network of probabil-

ities, a graph mining approach focuses on the possible fragments found

in the dataset. In the figure, the three workflows on the top lead to the

probability network on the bottom left and to the two fragments on the

bottom right. Inputs and outputs of each step have been omitted for

simplicity. 41

3.1 Roadmap of the thesis work, organized by the different problems, the

approach followed to tackle each one and its proposed evaluation. 48

4.1 OPMV overview, extracted from its specification. 54

4.2 PROV overview, extracted from its specification. 55

4.3 The commonalities between PROV (left) and OPM (right) facilitate

mappings across both representations. 56

4.4 Overview of P-Plan as an extension of PROV. 57

4.5 Sub-plan representation in P-Plan: A plan (P2) with two steps is con-

tained as the third step of another plan (P1) with 3 steps. 58

4.6 OPMW and its relationship to the OPM, PROV, and P-Plan vocabularies. 59

xviii

4.7 Example of OPMW as an extension of PROV, OPM and P-Plan. A

workflow execution (bottom right) is linked to its workflow template

(top right). Other details like attribution metadata have been omitted

to simplify the figure. 60

4.8 Example of roles: an executed workflow step used two datasets of genes

(Dataset A, Dataset B) and produced two datasets of genes (Dataset C,

Dataset D). Each dataset played a different role in the process. 61

4.9 Qualifying a usage relationship in PROV (on the left of the figure) and

OPM (on the right). Both models use an n-ary pattern (Usage and Used)

to link datasetA with the removeDuplicates step and the knownGenes role. 62

4.10 Role capture in OPMW: the roles of the inputs and outputs used and

generated by the activity removeDuplicates extend the OPM and PROV

usage and generation properties. 63

4.11 Example showing attribution metadata capture in OPMW. 64

4.12 Different approaches for accessing workflow resources: a user may re-

quest to resolve a URI of a workflow by browsing a web page (HTML

representation). Instead, a machine would request a machine readable

format like RDF/XML or Turtle. For both machines and human users,

more complex queries about resources may be issued through the public

endpoint. 70

5.1 Sample motifs in a Wings workflow fragment for drug discovery. A com-

parison analysis is performed on two different input datasets (SMAPV2).

The results are then sorted (SMAPResultSorter) and finally merged

(Merger, SMAPAlignementResultMerger). 84

5.2 Sample motifs in a Taverna workflow for functional genomics. The work-

flow transfers data files containing proteomics data to a remote server

and augments several parameters for the invocation request. Then the

workflow waits for job completion and inquires about the state of the

submitted job. Once the inquiry call is returned the results are down-

loaded from the remote server. 86

5.3 Distribution of the data-operation and data preparation motifs by domain. 87

5.4 Distribution of the data preparation motifs in the life sciences workflows. 89

xix

5.5 Distribution of motifs in the life sciences workflows. 90

5.6 Distribution of workflow-oriented motifs grouped by domain. 92

5.7 An example of a workflow in the LONI Pipeline, with workflow steps

(components) shown as circles. Outputs are shown as triangles while

the input (linearly registered) is a smaller circle. The connections among

steps represent the dataflow. Users can select sub-workflows to create

groupings of components (shown with dashed lines), which can be reused

in the same workflow and in others (shown as rectangular components). 95

5.8 Distribution of the answers regarding the utility of writing and sharing

code and the utility of the workflow system. 102

5.9 Preferred size of created workflows. 103

5.10 Utility of workflows and groupings. 106

6.1 An overview of our approach for common workflow fragment mining.

The rectangles represent major steps, while the ellipses are the inputs

and results from each step. Arrows represent where an input is used or

produced by a step. 110

6.2 Simplifying workflows: by removing the data dependencies on the input

graph of the left, we reduce the overhead for graph mining algorithms

(middle and right). 112

6.3 Example of an inexact graph mining technique applied to three different

workflows (on top of the figure). The results can be seen in the lower

part of the figure. 114

6.4 Example of an exact match graph mining technique applied to three

different workflows (on top of the figure). The results can be seen in the

lower part of the figure. 115

6.5 Example of a support-based approach versus a frequency-based approach.

In a support-based approach, the occurrences of the fragment A → B

are two (one occurrence in the first workflow and another one on the

second workflow), while in a frequency-based approach the occurrences

would be three (two times in the first workflow and one in the second). . 117

6.6 Types of fragments for filtering FSM results. 121

6.7 Wf-fd overview, extending the P-Plan ontology. 123

xx

6.8 Wf-fd example. Two fragments (resultF1 and resultF2) are found twice

on the workflows Workflow1 and Workflow2. Their respective tied work-

flow fragments indicate where in each of the workflows the fragments

were found. Also, resultF2 is part of resultF1, being recorded appropri-

ately. 124

6.9 Three sample fragments. Arrows represent the dependencies among the

steps. 125

6.10 Inconsistent and consistent modeling of the fragments depicted in Figure

6.9. 126

6.11 Transforming fragments obtained with exact FSM techniques (left) and

inexact FSM techniques (right). 127

7.1 Overlap example: two fragments are compared against the same group-

ing. Fragment1 is exactly the same as Grouping1, while only two out of

three steps of Fragment2 are equal to Grouping1 (hence 66,6% overlap). 134

7.2 Example of an internal macro, annotated with a dashed line. The in-

ternal macro consists on the sequence of steps that are included on each

branch, ignoring all the possible 2, 3, 4 and 5 sub-workflows included on

it. 136

7.3 Workflow where the internal macro annotated could not be detected.

When transforming the workflow to its reduced form, the internal macro

is just a one-step fragment, which is ignored. 139

7.4 Fragment inclusion: The workflow on the left is included in the workflow

on the middle which itself is included on the one on the right. If maximal

patterns are chosen by the applied FSM technique, Workflow 1 may not

be detected as a common workflow fragment. 141

7.5 Fragment overlap in SUBDUE: three workflows overlap without being

included on each other (their common parts have been highlighted with

a dotted line). If the FSM technique selects the bigger fragment, the

smaller one (step D followed by B) would not be detected. 142

7.6 Number of fragments found and precision results for WC1 with the MDL

and Size evaluations. For the precision, only multi-step filtered fragments

are shown. 146

xxi

7.7 Number of fragments found and precision results for WC2 with the MDL

and Size evaluations. For the precision, only multi-step filtered fragments

are shown. 147

7.8 Number of fragments found and precision results for WC3 with the MDL

and Size evaluations. For the precision, only multi-step filtered fragments

are shown. 148

7.9 Number of fragments found and precision results for WC4 with the MDL

and Size evaluations. For the precision, only multi-step filtered fragments

are shown. The asterisk indicates an execution failure for WC4. 149

7.10 Groupings defined by user versus a fragment found. If a user defines

connected sub-groupings that co-occur with the same frequency, then

the fragment found will merge them. 150

7.11 Exact FSM results for corpus WC1 to WC4 using the gSpan algorithm. 154

xxii

List of Tables

2.1 Summary of the different approaches for representing WT, WI, WET,

their metadata and their connections. The asterisk (*) on the WT col-

umn indicates that the model makes no distinction when representing

WT and WI. 25

3.1 Hypotheses and their respective addressed workflow research areas. . . . 45

3.2 Open research challenges and their related hypotheses. 47

3.3 Research and technical objectives and their related challenges. 50

4.1 Comparison between OPMW and other scientific workflow vocabular-

ies for representing workflow templates, instances and execution traces.

The asterisk (*) on the WT column indicates that the model makes no

distinction when representing WT and WI. 72

5.1 Summary of the main differences in the features of each workflow system:

explicit support for control constructs (i.e., conditional, loops), whether

the user interface is web-based or not, whether the environment is open

or controlled, and the execution engine used. 76

5.2 Number of workflows analyzed from Taverna (T), Wings (W), Galaxy

(G) and VisTrails (V). 77

5.3 Maximum, minimum and average size in terms of the number of steps

within workflows per domain. 78

5.4 Overview of our catalog of workflow motifs. 80

5.5 Distribution of the workflows from Taverna (T), Wings (W), Galaxy (G)

and VisTrails (V) in the life sciences domain. 89

5.6 Corpus overview. 96

xxiii

5.7 Reuse of workflows (wfs) for each corpus. 98

5.8 Statistics and distribution of groupings in the corpora. 99

5.9 Reuse of groupings (group) for each corpus. 99

5.10 Survey results concerning why it is useful to create workflows. 104

5.11 Survey results with multiple choice answers concerning benefits of shar-

ing workflows. 105

5.12 Survey results with multiple choice answers concerning benefits of shar-

ing groupings. 107

6.1 Frequent sub-graph mining algorithms integrated in FragFlow. 118

7.1 Proposed metrics with their requirements for evaluation. 134

7.2 Summary of the manual analysis on the Wings corpus. 137

7.3 Inexact FSM techniques for the detection of internal macro motifs, using

the templates without and with generalization of their steps. 138

7.4 Inexact FSM techniques for the detection of workflows in composite

workflow motifs, using the templates as they are and with generaliza-

tion and the SUBDUE MDL evaluation. The asterisk represents the

results when a target workflow is included as part of a bigger detected

fragment. 139

7.5 Inexact FSM techniques for the detection of composite workflow motifs,

using the templates as they are and with generalization and the SUB-

DUE Size evaluation. The asterisk represents the results when a target

workflow is included as part of a bigger detected fragment. 140

7.6 Exact FSM techniques for the detection of workflows included in compos-

ite workflow motifs, using the templates with and without generalization. 143

7.7 Unique workflows, groupings and their reuse. These numbers will be

later used to calculate the precision and recall of the proposed fragments. 145

7.8 Recall result summary: for each corpus (WC1 to WC4) and inexact FSM

technique, the table displays the lowest and highest recall obtained, along

with the frequency at which it was obtained. 152

xxiv

7.9 Number of multi-step filtered fragments found by corpus at different sup-

port percentages. The number of workflows that the support corresponds

to is indicated in brackets. Due to memory problems, some executions

(indicated with an asterisk) at lower frequencies had to be limited to a

maximum size of fragment (around 10-15). 153

7.10 Inexact FSM technique results versus exact FSM techniques in terms of

precision, considering exact comparison and overlap. 154

7.11 Recall results summary obtained for the gSpan algorithm on each corpus.

The support percentage at which each result was obtained is highlighted

in brackets. 155

7.12 User evaluation of FragFlow fragments. 157

8.1 Assumptions considered in this thesis. 163

8.2 Restrictions considered in this thesis. 163

A.1 Competency questions for OPMW (1). 177

A.2 Competency questions for OPMW (2). 178

A.3 Competency questions for OPMW (3). 179

A.4 Competency questions for OPMW (4). 180

A.5 Competency questions for OPMW (5). 181

B.1 List of the questions included in the user survey (1). 183

B.2 List of the questions included in the user survey (2). 184

B.3 List of the questions included in the user survey (3). 185

C.1 Motifs found in the Wings corpus. Templates with one step are omitted. 188

C.2 Details on precision and recall of inexact FSM techniques on corpora

WC1-WC4, used in the LONI Pipeline evaluation. The frequency in-

dicates the minimum number of occurrences for a fragment to appear

in the corpus. The precision and recall are shown only for multi-step

filtered fragments (Mff) for simplicity. 189

xxv

C.3 Details on precision and recall of exact FSM techniques on corpora WC1-

WC4, used in the LONI Pipeline evaluation. The support indicates the

minimum number of templates in which to appear in the corpus. The

precision and recall are shown only for multi-step filtered fragments (Mff)

for simplicity. The asterisk (*) means that the execution was limited by

setting a maximum fragment size, in order to avoid out of memory errors.190

C.4 User questionnaire for assessing the usefulness of the proposed fragments. 190

xxvi

Chapter 1

Introduction

In the last decade, the research output produced by the scientific community has almost

doubled, from 1.3 million articles in 2003 to 2.4 million in 2013 (Ware and Mabe, 2015).

The productivity of scientists is heavily influenced by their number of publications in

high impact journals and conferences. Scientists are pressured to publish (Fanelli, 2010),

but they are not always required to grant access to the digital outputs associated with

their scientific publications. As a consequence, there is a general lack of transparency

when communicating the computational methods used to obtain publication results.

In order to improve transparency, several initiatives for open science are under-

way. The European Comission includes funding for open publication of research results

obtained in project grants1. The National Science Foundation requires a data manage-

ment plan to ensure access and preserve the outputs of a project grant2. Publishers

have promoted the notion of data and software journals3 to store and preserve datasets

as publications. Data repositories like FigShare4 or Dryad5 provide the means to share

and cite any piece of a scientific investigation. Similarly, code repositories like GitHub6

and Zenodo7 allow sharing and documenting software for the community.

Although these initiatives are valuable efforts to address the access to the resources

of an experiment, they do not focus on improving the communication of the meth-

1http://ec.europa.eu/research/science-society/open_access
2http://www.nsf.gov/pubs/policydocs/pappguide/nsf11001/gpg_2.jsp#dmp
3http://www.journals.elsevier.com/data-in-brief/
4http://figshare.com/
5http://datadryad.org/
6http://github.com/
7https://zenodo.org/

1

http://ec.europa.eu/research/science-society/open_access
http://www.nsf.gov/pubs/policydocs/pappguide/nsf11001/gpg_2.jsp#dmp
http://www.journals.elsevier.com/data-in-brief/
http://figshare.com/
http://datadryad.org/
http://github.com/
https://zenodo.org/

ods used in a scientific publication. Scientific articles usually describe computational

methods informally, often requiring a significant effort from others to reproduce and

to reuse. The reproducibility process can be very costly, even when the software and

datasets used in the publication are available online (Garijo et al., 2013b). Retractions

of publications have occurred in several disciplines (Marcus and Oransky, 2014; Rock-

off, 2015). Some initiatives have started tracking and documenting the retracted papers

of scientific journals8, in order to alert the community about problematic papers. The

repercussions of these bad practices can be seen beyond scientific circles. The public

shows neutral to low trust for science on topics like pesticides, depression drugs or flu

pandemics (American, 2010). Even publishers themselves have demanded researchers

to submit detailed descriptions of the materials and methods used in a publication

(Editorial, 2006).

Scientific workflows were proposed in the last decade in order to represent the

computational methods used in scientific publications (Taylor et al., 2006). Scientific

workflows define the set of computational tasks and dependencies needed to carry out

in silico experiments (therefore improving their reproducibility), and have been increas-

ingly adopted in domains like astronomy (Ruiz et al., 2014), brain image analysis (Di-

nov et al., 2009) and bioinformatics (Wolstencroft et al., 2013) among others. Besides

execution and reproducibility, there are several benefits of using scientific workflows

(Goderis, 2008) (Garijo et al., 2014b):

• Time savings: Individual users save a lot of time by copying and pasting whole

previous working pipelines in new experiments. Other users save time as well

when they reuse a workflow created by someone else, since they do not have to

re-implement every single step.

• Teaching: Workflows can be used as an effective way to teach students about the

sequence of steps and methods involved for processing an input. Breakpoints are

often placed throughout the workflow to serve as checkpoints and make sure that

execution was performed correctly.

• Visualization: With workflows, it is easier to understand how the overall method

is structured, as well as the algorithms used in each step.

8http://retractionwatch.com/

2

http://retractionwatch.com/

• Design for modularity: Workflows provide a high-level view of the major steps

involved in an analysis, and exposing those major steps drives the design of the

code in a modular fashion.

• Design for standardization: Using a common workflow system allows researchers

to see how others process certain kinds of data, what software packages they use,

and what formats are more common among a group of collaborators. This leads

to workflows that effectively capture emerging standards in the ways that data is

formatted and processed, based on common practices adopted by a community

of users.

• Debugging and inspectability: A workflow execution might fail due to incorrect

setup, problems in the underlying code, missing files, incompatible file types,

or server-related issues. Researchers use the workflow system’s environment to

debug errors in workflows.

Scientific workflows are relevant products of research, and “key enablers for repro-

ducibility of experiments involving large-scope computations” (Gil et al., 2007). How-

ever, reusing a workflow or any of its parts may become a daunting task. Scientific

workflows can become large and complex heterogeneous structures, and the lack of

documentation and examples often increases the difficulty in understanding their main

goals (Belhajjame et al., 2012b). In addition, there are large amounts of workflows

in existing workflow repositories. A repository may contain hundreds or thousands

of different workflows (Roure et al., 2009), and determining which ones are relevant

to the problem at hand might become a hurdle for a researcher. In this regard, the

creation of abstractions that group different workflows by certain criteria (e.g., com-

mon general functionality, shared workflow steps, etc.) is needed to improve workflow

understandability.

In this work we address the issue of reusability and abstraction in scientific work-

flows. We propose to do so by exploring common relationships among groups of work-

flows in a workflow repository, mining abstractions that are useful for reuse.

1.1 Contributions

The work presented in this thesis makes the following contributions:

3

• Workflow representation and publication: We propose a model to repre-

sent scientific workflows in the different stages of their life cycle, as well as a

methodology designed to publish scientific workflows and their resources in an

open architecture in the Web.

• A catalog of common workflow abstractions: We define a catalog of work-

flow motifs, which aim to capture the most common steps in scientific workflows

based on their functionality.

• Automatic detection of commonly used workflow fragments. We present

an approach to automatically mine commonly used workflow fragments that are

helpful for workflow reuse. Our approach exploits domain knowledge for gen-

eralizing workflows, which leads to the discovery of common abstract workflow

fragments. We also define metrics for assessing the usefulness of our results.

• Support for workflow annotation. In addition to our workflow representation

model, we define two models for semi-automatically annotating scientific work-

flows. The first model is a serialization of our catalog of workflow abstractions,

along with the means to annotate workflow steps and groups of steps. The sec-

ond model describes how workflow fragments are represented and linked to those

workflows where they appear.

1.2 Thesis Structure

The thesis is structured as follows:

Chapter 2 introduces the state of the art, along with the main concepts that we

will be handling throughout the thesis.

Based on the gaps identified in the state of the art, Chapter 3 describes the work

objectives and research hypotheses of this work.

Chapter 4 describes the model and methodology proposed to represent and publish

scientific workflows in their different stages of their life cycle.

Chapter 5 presents the catalog of common domain independent workflow abstrac-

tions, as well as two analyses of workflow reuse (one from an automatic perspective

and another one from a user community perspective) that help understand the current

practices of workflow users.

4

Chapter 6 explains the method to mine commonly used workflow fragments in

repositories of workflows, including how to filter and link the results. This approach is

evaluated in Chapter 7, where the results are explained in detail.

Finally, Chapter 8 describes conclusions and future lines of work.

1.3 Publications

The following publications have been accepted (in chronological order) during the re-

search work presented in this thesis:

1. Daniel Garijo and Yolanda Gil. A new Approach for Publishing workflows:

Abstractions, Standards, and Linked Data. Proceedings of the 6th Workshop on

Workflows in support of large-scale science, pages 47-56, Seattle, USA. 2011.

2. Daniel Garijo, Pinar Alper, Khalid Belhajjame, Oscar Corcho, Yolanda Gil, and

Carole Goble. Common Motifs in Scientific Workflows: An Empirical Analysis.

8th IEEE International Conference on eScience 2012, pages 1-8 Chicago, USA.

2012.

3. Daniel Garijo and Yolanda Gil. Augmenting PROV with Plans in P-Plan:

Scientific processes as Linked Data. Second International Workshop on Linked

Science: Tackling Big Data (LISC), held in conjunction with the International

Semantic Web Conference (ISWC), Boston, USA, 2012.

4. Daniel Garijo, Oscar Corcho, and Yolanda Gil. Detecting Common Scien-

tific Workflow Fragments Using Templates and Execution Provenance. Seventh

International Conference on Knowledge Capture (K-CAP), pages 33-40, Banff,

Alberta, Canada. 2013.

5. Khalid Belhajjame, Jun Zhao, Daniel Garijo, Aleix Garrido, Stian Soiland-

Reyes, Pinar Alper and Oscar Corcho. A Workflow PROV-Corpus Based on

Taverna and Wings. Proceedings of the Joint EDBT/ICDT 2013 Workshops,

pages 331-332. Genova, Italy 2013.

5

6. Daniel Garijo, Pinar Alper, Khalid Belhajjame, Oscar Corcho, Yolanda Gil,

Carole Goble. Common Motifs in Scientific Workflows: An Empirical Analy-

sis (Extension of the 2012 conference paper for a journal). Future Generation

Computer Systems, volume 36, pages 338-351. 2014.

7. Daniel Garijo, Oscar Corcho, Yolanda Gil, Boris A. Gutman, Ivo D. Dinov, Paul

Thompson, and Arthur W. Toga. Fragflow: Automated Fragment Detection in

Scientific Workflows. 10th IEEE International Conference on eScience 2014, pages

281-289, Guaruja, Brasil. 2014.

8. Daniel Garijo, Oscar Corcho, Yolanda Gil, Meredith N. Braskie, Derrek Hibar,

Xue Hua, Neda Jahanshad, Paul Thompson, and Arthur W. Toga. Workflow

Reuse in Practice: A Study of Neuroimaging Pipeline Users. 10th IEEE Interna-

tional Conference on eScience 2014, pages 90-99. Guaruja, Brasil. 2014.

9. Daniel Garijo and Yolanda Gil. Towards Workflow Ecosystems Through Stan-

dard Representations. 9th Workshop on Workflows in Support of Large-Scale

Science (WORKS 14), pages 94-104. New Orleans, USA. 2014.

1.4 External Contributions

The main work presented in this thesis is an original contribution by the author of the

manuscript. However, there are chapters which have been developed in collaboration

with other researchers. This section summarizes their names and contributions to this

thesis.

1. In Chapter 5.1 Pinar Alper and Khalid Belhajjame contributed by manually

inspecting many of the Taverna and VisTrails workflows. Together with Carole

Goble, they were also key to the discussions and development of the workflow

motif catalog, the associated ontology and the resulting publications.

2. In Section 5.3, Neda Jahanshad, Xue Hua, Meredith N.Braskie, Derrek Hibar

and Yolanda Gil contributed to the discussions used to create the online survey.

3. In Section 7.3, Samuel Hobel, Ivo D. Dinov and Boris A. Gutman participated in

evaluating the usefulness of the fragments produced by our approach. In addition,

6

some of the workflows of Boris A. Gutman have been used in the explanations of

this thesis.

4. Zhizhong Liu helped to retrieve the multi-user corpus of workflows of the LONI

Pipeline (WC3). This corpus was used in Chapters 5 and 7.

7

8

Chapter 2

Related Work

A scientific workflow is defined as a template specifying the tasks needed to carry

out a computational scientific experiment (Taylor et al., 2006). Each task, also known

as a workflow step, uses none or more inputs and produces one or more outputs.

The dataflow among the tasks, which we refer to as workflow step dependencies is

captured by recording the relationship between each output and input of any step of

the workflow. A workflow input is an input that has not been produced by any other

workflow step. Similarly, a workflow output is an output that is not used by any

other workflow step. An intermediate result is an output of a workflow step that

has been used as an input by another workflow step in the workflow.

Scientific workflows have been used successfully in a wide range of domains, ranging

from life sciences to geology or astronomy. Figure 2.1 shows an example of two scientific

workflows from two different workflow systems. In both samples, we can see the most

typical elements of a scientific workflow: their inputs (textFile1, textfile2, threshold1

and threshold2 for the workflow on the left and projected landmarks, average curve

landmarks and skulpted for the workflow on the right), intermediate results (only shown

on the workflow of the left) and outputs (LikelihoodFile on the left and the upside

triangle at the bottom of the MINC obj 2 mesh step on the right). Inputs of a scientific

workflow may have been produced by other scientific workflows. Thus, an end-to-end

experiment can be seen as a puzzle composed of different scientific workflows performing

different aspects of it.

The main objective of this thesis is to mine repositories of workflows to find common

abstractions that are helpful for workflow reuse. There are several areas of ongoing

9

Figure 2.1: Two sample workflows from two different workflow systems. The one on

the left is from the text analytics domain, while the one on the right is for neuro-image

analysis.

related work.

The first one is workflow representation, key for understanding the functionality

of the workflow steps at the different stages of the workflow life cycle.

The second area is workflow abstraction, which refers to the ability to generalize

different workflows (or workflow steps) by their common functionality. Workflow ab-

straction is important for simplifying workflows and for finding relationships between

them, which in the end make them easier to reuse and understand.

Finally, the third area is workflow reuse, as we aim to allow scientists to com-

plete their experiments by using existent workflows (or parts of them) made by other

researchers.

All three areas are closely related to each other. Having a clear representation of

the workflow functionality and its relationships with other workflows at several levels

of abstraction may help users decide whether a given workflow (or any of its sub-parts)

can be adapted from a previous experiment for reuse or not.

In this chapter we analyze the current state of the art and limitations in work-

flow representation, abstraction and reuse; introducing the concepts that will be used

throughout the rest of the thesis.

10

2.1 Scientific Workflow Representation

Scientific workflows have been often compared to business workflows1, which are used

to represent business processes in the corporate world (Cerezo et al., 2013). As stated

in (Cerezo et al., 2013), “nothing prevents a user from using a business workflow frame-

work to model and perform a scientific experiment or a scientific workflow framework

to capture and automate a business process” and, in fact, there are examples of ap-

proaches for business workflows being adapted for scientific workflows (Mayer et al.,

2012) (Slominski, 2007).

However, there are some important differences between scientific workflows and

business workflows (Cerezo et al., 2013)(Tan et al., 2009)(Barga and Gannon, 2007).

On the one hand, business workflows are generally robust, secure, reliable and control-

driven (i.e., they often include control constructs like conditional branches and loops).

Business workflows are designed to perform services rather than exploring whether an

experiment can be successful or not. They also include policy and privacy concerns

for their usage, as this is typical in the corporate world. On the other hand, scientific

workflows represent in silico experiments that tend to be data driven, more dynamic

and evolving, with an aim for shareability and reusability of the exposed scientific

methods and with a flexible design for being extended by other researchers.

In our work we focus on scientific workflows. There have been several proposals for

their representation, and all of them use a graph-based approach. We introduce the

most relevant approaches in this section. Examples of workflow systems adopting each

representation are further described in (Deelman et al., 2009).

Petri Nets (Reisig and Rozenberg, 1998) represent workflow steps as actions, which

connect states of the workflow through directed arcs. Each state represents the status

of the workflow after the execution of an action. The workflow always starts with an

initial neutral state and reaches its final state only after the execution is completed.

Figure 2.2 shows an example of a workflow represented as a Petri Net. The workflow

retrieves a list of terms from a file (Read), adds annotations in parallel consulting

two different data sources (Annot1 and Annot2) and plots the results (Plot). Two

additional steps (Split and Merge) distribute the data and merge it later in order to

create the annotations in parallel.

1http://www.wfmc.org/what-is-bpm

11

http://www.wfmc.org/what-is-bpm

Figure 2.2: Example of a workflow represented as a Petri Net. The initial state is

represented with an “I”. Circles represent states of the workflow, and boxes represent the

actions executed between states. The arrows represent data dependencies.

The Unified Modelling Language (UML) aims “to provide system architects, soft-

ware engineers, and software developers with tools for analysis, design, and implemen-

tation of software-based systems as well as for modeling business and similar processes”

(Bock et al., 2015). UML is one of the most popular languages for designing a system

in software engineering, as it provides the means to create structure, integration and

behavior diagrams. These include activity diagrams, which can be used to represent

scientific workflows. Figure 2.3 shows an example illustrating the workflow depicted in

Figure 2.2 (with a Petri Net) in UML.

Figure 2.3: Example of a workflow represented in UML. The initial state is represented

with a single black circle, while the final state has two circles. Workflow steps are repre-

sented as ellipses, and their data dependencies with arcs. Vertical bars represent fork and

join nodes.

The Business Process Model and Notation (BPMN) (Aggarwal et al., 2011) provides

a standard notation for implementing, managing and monitoring business processes.

BPMN is widely used in business workflows, and it was designed to visualize business

process execution languages such as the Business Process Execution Language (BPEL)

(Jordan et al., 2007). Figure 2.4 shows how the workflow described in Figure 2.2 would

12

be represented in BPMN.

Figure 2.4: Example of a workflow represented in BPMN. The initial event is represented

with a single circle, while the final event is depicted with a circle with a wider line. Workflow

steps (tasks) are represented with rounded boxes. The flow is represented by arrows.

Diamond boxes represent gateways, which indicate when two activities are performed in

parallel.

However, the most typical representation for scientific workflows are graph-based

models. In them, the nodes of the graph represent workflow steps and the edges capture

their dataflow dependencies (e.g, (Gil et al., 2011) (Wolstencroft et al., 2013) (Goecks

et al., 2010) (Fahringer et al., 2007) (Berthold et al., 2008) (Callahan et al., 2006)

(Ludäscher et al., 2006)). Figure 2.1, shows two workflow examples from two different

systems. It is worth mentioning that despite sharing the model, some systems represent

differently the inputs, outputs and intermediate results. In this case, ellipses are used

in the workflow of the left to refer to inputs, outputs and intermediate results, while

small circles and a triangle represent inputs and outputs for the workflow on the right.

Graph-based models are usually based on the definitions proposed in (Bondy and

Murty, 1976). Definition 1 summarizes the main concepts, which we use as basis for

the rest of the thesis.

Definition 1 A graph G = (V,E) is defined as a non empty set of vertices (nodes)

V = (v1, ..., vn) which are interconnected by an empty or non empty set of edges (links)

E = (e1, ..., em) with E ⊆ V × V and V disjoint from E (V ∩ E = ∅). Graphs are

directed when an edge e = (u, v) ∈ E means that the edge goes from u to v (having

(u, v) ∈ V), u being the tail of the edge while v being its head. A walk W is a sequence

of consecutive vertices (v1, ..., vn) ∈ V such that for each pair of vertices (vi, vi+1) with

i ∈ (1, ..., n−1) there exists an edge e ∈ E that connects them. If ∀ (vi, vj) ∈W vi 6= vj

with i 6= j, W is denoted as a path. Two vertices of a graph G are connected if there is

a path between them. Connection is an equivalence relation on the vertex set V. Hence,

13

a graph G (V,E) can be divided into sets of connected vertices, called components.

When G (V,E) has only one component, the graph is connected. Otherwise the graph

is disconnected. A cycle C is a walk with (v1, ..., vn), where v1 = vn and where the

edges (e1, ..., ek) ∈ C are distinct. A graph without cycles is acyclic. Finally, a graph

G = (V,E,LV , LE , ϕV , ϕE) is labeled if LV and LE are sets of labels for the vertices

and edges respectively; and ϕV and ϕE are functions that define how each vertex or

edge is mapped to a label: V → LV and E → LE respectively. An illustrative example

of each type of graph can be seen in Figure 2.5, according to its definition.

Figure 2.5: Different types of graph, as introduced in Definition 1.

Scientific workflows are typically data intensive, and they are often represented as

directed acyclic graphs (DAGs). However, there are systems which allow for control

flow constructs and use, when necessary, directed cyclic graphs (DCGs) like Kepler

(Ludäscher et al., 2006), VisTrails (Callahan et al., 2006) or Moteur (Glatard et al.,

2007). In the next section we introduce the main workflow management systems used

in this work.

2.1.1 Scientific Workflow Management Systems

In order to design, monitor, execute and debug scientific workflows the community has

created workflow management systems in different domains. Some examples are Wings

(Gil et al., 2011), Taverna (Wolstencroft et al., 2013), GenePattern (Reich et al., 2006),

the LONI Pipeline (Dinov et al., 2009), Galaxy (Goecks et al., 2010), VisTrails (Deel-

man et al., 2004), ASKALON (Fahringer et al., 2007), Knime (Berthold et al., 2008),

Kepler (Ludäscher et al., 2006), Pegasus (Deelman et al., 2005) or Moteur (Glatard

et al., 2007). These and other systems have already been described and compared in

14

detail in related work (Goderis, 2008) (Cerezo, 2013) (Deelman et al., 2009) (Yu and

Buyya, 2005). Here we introduce the workflow systems that have been used for the

experiments of this thesis. The rationale behind using each of these workflow systems

is explained on Chapter 5.

2.1.1.1 Taverna

Workflow system that can operate in different execution environments and provides

several possibilities of deployment (Wolstencroft et al., 2013). Taverna is available as a

workbench2, which embodies a desktop design user interface and an execution engine.

Taverna also allows standalone deployments of its engine3 in order to serve multiple

clients. In its default configuration Taverna does not prescribe that the datasets and

tools are integrated into an execution environment. In this sense it adopts an open-

world approach, where workflows integrate (typically) remote third party resources and

compose them into data-intensive pipelines. In addition, it also allows the development

of plug-ins for the access and usage of dedicated computing infrastructures (e.g. grids)

or local tools and executables. Its use has been extended in bioinformatics and in other

domains including astronomy, chemistry, text mining and image analysis.

2.1.1.2 Wings

Workflow system that uses semantic representations to describe the constraints of the

data and computational steps in the workflow (Gil et al., 2011). Wings can reason

about these constraints, propagating them through the workflow structure and using

them to validate workflows. It has been used in different domains, ranging from life

sciences to text analytics and geosciences. Wings provides web based access and can

run workflows locally, or submit4 them to the Pegasus/Condor (Deelman et al., 2005)

or Apache OODT (Mattmann et al., 2006) execution environments that can handle

large-scale distributed data and computations, optimization and data movement.

2Taverna Workbench http://www.taverna.org.uk/download/workbench/
3Taverna Server http://www.taverna.org.uk/download/server/
4http://www.wings-workflows.org

15

2.1.1.3 Galaxy

Web-based platform for data intensive biomedical research (Giardine et al., 2005)

(Blankenberg et al., 2007). One of the main features of Galaxy is its cloud back-

end, which provides support for its extensive catalogue of tools. These tools allow

performing different types of analysis of data from widely used existing datasets in the

biomedical domain. Galaxy uses its own engine for managing the workflow execution,

compatible with batch systems or Sun Grid Engine (SGE)5. Galaxy workflows can be

run online6 or by setting up a local instance7.

2.1.1.4 VisTrails

System that tracks the change-based provenance in workflow specifications in order

to facilitate reuse (Callahan et al., 2006). It has been used in different domains of

life sciences like medical informatics and biomedicine, but also in other domains like

image processing, climatology and physics. VisTrails uses its own engine to manage the

execution and allows for the combination of specialized libraries, grid and web services.

Its workflows can be run online8 or locally9.

2.1.1.5 The LONI Pipeline

Workflow system developed by the Laboratory of Neuro Imaging (LONI)10 mainly

for neuro-imaging applications (Dinov et al., 2011) (Dinov et al., 2009). It provides an

efficient distributed computing solution to address common challenges in neuro-imaging

research, enabling investigators to share, integrate, collaborate and expand resources

including data, computing platforms, and analytic algorithms. The LONI Pipeline

is mostly used for complex neuro-imaging analysis, which often requires knowledge

about the input/output requirements of algorithms, data format conversions, optimal

parameter settings, and a unique running environment since imaging studies tend to

produce large amounts of data.

5http://star.mit.edu/cluster/docs/0.93.3/guides/sge.html
6https://main.g2.bx.psu.edu/root
7http://wiki.galaxyproject.org/Admin/Get%20Galaxy
8http://www.crowdlabs.org/vistrails/
9http://www.vistrails.org/index.php/Downloads

10http://loni.usc.edu/

16

2.1.2 Scientific Workflow Life Cycle

There are four main stages in the life cycle of a workflow (van der Aalst et al., 2003b):

workflow design, workflow configuration, workflow enactment and workflow diagnosis.

Rather than focusing on the phases themselves, here we describe the main workflow

structures that are interchanged within a workflow management system during the

workflow life cycle. We distinguish three major types of workflow structures:

1. Workflow Template (WT): A generic reusable workflow specification that in-

dicates the types of steps in the workflow and their dataflow dependencies. Work-

flow templates have also been referred to as “Workflow Orchestration” (Deelman

et al., 2009). A workflow generation tool can take types of steps specified in the

workflow template (e.g., “Sort”) and specialize them to implemented algorithms

and codes (e.g., “Quicksort in Python”) to create a workflow instance.

2. Workflow Instance (WI): A workflow that specifies the application algorithms

to be executed and the data to be used (Deelman et al., 2009). Workflow instances

are created from workflow templates when datasets are identified and are some-

times called abstract workflows because they do not specify execution resources

(Cerezo et al., 2013). Since a type of step can have different implementations,

the same workflow template could be used to generate very different workflow

instances. A workflow instance can be submitted to a workflow mapping and

execution system, which will identify and assign available resources at run-time,

submit it for execution, oversee its execution, and return a workflow execution

trace. Because different resources may be available at different times or in dif-

ferent execution environments, the same workflow instance may result in very

different workflow execution traces.

3. Workflow Execution Trace (WET): Also known as provenance trace, a work-

flow execution trace contains the details of what happened during the execution

of a workflow, including what resources it was executed on, execution time for

each step, links to the intermediate results, and possibly other execution details

such as steps for data movements. When workflow steps fail to execute, a work-

flow execution contains annotations of what failed and in this way its dataflow

structure may be different from the dataflow in a workflow instance.

17

Figure 2.6: A workflow template (left), a workflow instance (center), and a successful

workflow execution (right).

Figure 2.6 illustrates the difference between workflow templates, instances and exe-

cutions with an example. The left of the figure shows a template with two steps (Stem

and Sort), an input (Dataset) and an output (FinalResult). A workflow instance built

from this template is shown in the middle of the figure, specifying Dataset123 as the

input and specific executable codes for each of the steps (the LovinsStemmer algorithm

and Quicksort algorithm respectively). The workflow instance also has placeholders

for the expected results (Id:resultaa1, and fresutlaa2). When this workflow instance

is executed, the workflow execution engine produces the execution trace shown on the

right (each step has its start and end time, and each intermediate result identifier (e.g.,

Id:resultaa1) has associated the path of the file it represents).

Figure 2.7 shows a failed execution of the same template and instance shown in

Figure 2.6. The execution failed when executing the Quicksort component, which led

to a trace with no final output and with different dataflow from the workflow instance.

Another crucial aspect to consider when representing workflows in their different

stages is their granularity. Templates may be simplified or abstracted for helping in

workflow design (Cerezo, 2013). Workflow execution traces and workflow instances may

18

Figure 2.7: A workflow template (left), a workflow instance (center), and a failed workflow

execution (right).

have very little in common after a workflow execution engine processes and optimizes

the workflow instance for its execution (Deelman et al., 2004). Workflow traces can be

summarized for providing an explanation of a failure. All these representations coexist,

and are views of a workflow at the different phases of its life cycle.

2.1.3 Scientific Workflow Models

Most scientific workflow models aim at representing specifications of workflows (i.e.,

workflow instances and templates) and the results obtained after an execution. This

section aims to illustrate some of the existing approaches with examples, focusing on

those models that link workflow templates, instances and execution traces together

with their metadata.

2.1.3.1 Workflow Template and Instance Specification Models

Workflow systems often declare their own model for specifying workflow instances or

templates. These models are usually different from one system to another, as they

depend on the particular system’s supported features or domain specific requirements

19

(e.g., control-oriented constructs, enabling easy access to external web services, etc.).

For example, Taverna has Scufl (Oinn et al., 2004), Pegasus uses DAX11, Kepler uses

MOML (Lee and Neuendorffer, 2000), Askalon uses AGWL (Fahringer et al., 2005),

etc. Some additional examples can be seen in (Deelman et al., 2009).

There have been efforts towards creating a common workflow language. In the

business workflow domain, Web Services BPEL (WS-BPEL) (Jordan et al., 2007)

(Barga and Gannon, 2007) was designed for specifying business processes using web

services. In the scientific workflow domain, the Data-Intensive Systems Process Engi-

neering Language (DISPEL) was created to “describe abstract workflows for distributed

data-intensive applications” (Atkinson et al., 2013). Another significant effort to de-

velop a common workflow language was lead by the SHIWA project (Krefting et al.,

2011), which developed the IWIR language (Plankensteiner et al., 2011) for represent-

ing workflows in a system-independent manner. Workflows represented in IWIR can be

partitioned so that each partition is executed in a different workflow execution engine.

2.1.3.2 Workflow Execution Trace Models

These are the models designed to represent the provenance trace of a workflow. Accord-

ing to the recent W3C standard, provenance can be defined as “a record that describes

the people, institutions, entities, and activities involved in producing, influencing, or

delivering a piece of data or a thing” (Moreau et al., 2013).

The notion of provenance has been widely discussed in related work for a variety

of domains, ranging from digital humanities12 to e-science (Simmhan et al., 2005). In

fact, several models have been proposed throughout the years to manage and repre-

sent generic provenance (Moreau, 2010). In an attempt to propose a common prove-

nance standard, the workflow community started the Provenance Challenges13, which

focused on discussing different approaches for representing the same provenance prob-

lem and testing their interoperability. After the Third Provenance Challenge14, the

Open Provenance Model (OPM) (Moreau et al., 2011) consolidated itself as a de facto

provenance standard and was adopted by a reasonable part of the community15. The

11http://pegasus.isi.edu/wms/docs/schemas/dax-3.4/dax-3.4.html
12http://www.getty.edu/research/tools/provenance/
13http://twiki.ipaw.info/bin/view/Challenge
14http://twiki.ipaw.info/bin/view/Challenge/ThirdProvenanceChallenge
15http://openprovenance.org/

20

http://pegasus.isi.edu/wms/docs/schemas/dax-3.4/dax-3.4.html
http://www.getty.edu/research/tools/provenance/
http://twiki.ipaw.info/bin/view/Challenge
http://twiki.ipaw.info/bin/view/Challenge/ThirdProvenanceChallenge
http://openprovenance.org/

interest in having a standard for provenance interchange vocabulary led to the creation

of the W3C Provenance Incubator Group16, which gathered the provenance require-

ments proposed by the scientific community in different domains (Groth et al., 2012)

and set the first steps towards the creation of a standard (Gil et al., 2010). It was

followed by the Provenance Working Group17, whose effort finally materialized in the

family of PROV specifications18, a set of W3C recommendations on how to model and

interchange provenance on the Web (Groth and Moreau, 2013).

Some workflow systems have started capturing their workflow executions by extend-

ing OPM and PROV models (most of them during the development of this thesis). Swift

was perhaps one of the first workflow systems to export to OPM (Gadelha Jr. et al.,

2011). The Taverna team followed with an experimental workflow export to OPM19,

but more recently they have moved to the Research Object model (Belhajjame et al.,

2012a) to represent workflow descriptions and provenance according to PROV. Wings

exports workflow executions following both OPM (Garijo and Gil, 2011) and PROV20.

Some other approaches have used VisTrails to capture provenance traces according to

PROV, using a more generic model (Missier et al., 2013). Systems like Pegasus or

Kepler have been integrated with provenance management stores like PASOA (Miles

et al., 2007) or Prov Manager (Marinho et al., 2012) to generically store provenance

traces according to OPM and PROV respectively. To this date, there is no standard

extension of OPM or PROV for representing scientific workflow execution traces.

Finally, other workflow systems like Galaxy, GenePattern or the LONI Pipeline

create logs of workflow execution following their own conventions.

2.1.3.3 Linking workflow templates, instances and executions

The models shown in the previous sections tackle the representation of workflow tem-

plates, instances and executions separately. However, they depend on each other. For

example, let’s consider a scientist who wants to create a scientific workflow for the

experiment he has been working on. The first step would be to complete a sketch of

the workflow, which would be used to complete a workflow template. The workflow

16http://www.w3.org/2005/Incubator/prov/wiki/W3C_Provenance_Incubator_Group_Wiki
17http://www.w3.org/2011/prov/wiki/Main_Page
18https://dvcs.w3.org/hg/prov/raw-file/tip/namespace/landing-page.html
19http://dev.mygrid.org.uk/wiki/display/tav250/Provenance+export+to+OPM+and+Janus
20http://www.opmw.org/ontology/

21

http://www.w3.org/2005/Incubator/prov/wiki/W3C_Provenance_Incubator_Group_Wiki
http://www.w3.org/2011/prov/wiki/Main_Page
https://dvcs.w3.org/hg/prov/raw-file/tip/namespace/landing-page.html
http://dev.mygrid.org.uk/wiki/display/tav250/Provenance+export+to+OPM+and+Janus
http://www.opmw.org/ontology/

template can then be implemented with specific algorithms using the input datasets se-

lected for the experiment, creating one or several workflow instances. Then, a workflow

instance may be executed one or several times, producing workflow execution traces

that may be successful or not.

The relationships among workflow templates, instances and executions are often

represented by different models with ontologies21. An ontology is defined as a “formal

specification of a shared conceptualization”, where conceptualization refers to “an ab-

stract model of some phenomenon in the world by having identified the relevant concepts

of that phenomenon”, formal means that “it should be machine-readable” and shared

means that “the ontology captures consensual knowledge” (Studer et al., 1998). Ontolo-

gies are usually implemented in RDFS (McBride et al., 2014) and OWL (McGuinness

and van Harmelen, 2004), which are represented using the Resource Description Frame-

work data model (RDF) (Klyne et al., 2004). RDF is a W3C recommendation that

specifies the relationships between resources using a labeled graph with RDF state-

ments. Each RDF statement consists on a triple with a subject node and an object

node, connected by a predicate. Figure 2.8 shows an example, in which a file (File1,

subject) is described with its creator (Bob, object) with the “createdBy” predicate.

Figure 2.8: RDF example: a file is described with its creator.

Since graphs are a common representation for scientific workflows, several models

have adopted RDF to represent their main concepts (Belhajjame et al., 2015; Cerezo,

2013; Missier et al., 2013). In addition, RDF provides a machine readable representation

of the workflow, making it easier to process. During the development of this thesis, some

models have been proposed to describe the links between scientific workflow templates,

instances or executions:

The Research Object ontologies consist of a family of specifications for de-

scribing aggregations of resources related to a scientific experiment (Belhajjame et al.,

21Ontologies are commonly referred to as vocabularies when they are not complex. See http://www.

w3.org/standards/semanticweb/ontology

22

http://www.w3.org/standards/semanticweb/ontology
http://www.w3.org/standards/semanticweb/ontology

2015). Scientific workflows play an important role, having two vocabularies for describ-

ing them. The workflow description vocabulary (wfdesc)22 defines workflow instances

and templates; and the workflow provenance vocabulary (wfprov)23 defines workflow

execution traces and how they link to the instances or templates. The vocabularies ex-

tend the PROV standard and support the definition of sub-workflows, but don’t make

a distinction between workflow instances and templates.

ProvONE is a recent PROV extension for capturing the “most important informa-

tion concerning scientific workflow computational processes”24. ProvONE is based on

D-PROV, another PROV extension that aims at representing the retrospective prove-

nance (workflow execution traces) and prospective provenance (workflow instances) of

scientific workflows (Missier et al., 2013). The model is similar to the Research Object

ontologies, but tries to be more generic by representing dependencies among processes

as links between ports or as channels.

Conceptual workflows have been designed to facilitate workflow abstraction and

design (Cerezo, 2013). The model proposes a conceptual level (what we refer to as

workflow template) which is then specified to an abstract level (workflow instance). A

similar effort has been described in the Wings system, defining generic and concrete

templates (Gil et al., 2009), but conceptual workflows are more generic by defining

constructs to represent and link loops and conditional branches in workflow templates

and instances. In both cases, the representation of workflow executions traces are out

of the scope of the model.

P-Plan is designed to capture “the plans that guided the execution of scientific

processes”25 (Garijo and Gil, 2012). Hence, it is a simple high level model extending

the PROV standard. P-Plan captures the main dataflow constructs and links them

to the workflow execution. Since it is a general purpose vocabulary, P-Plan has been

used for the description of laboratory protocols (Giraldo et al., 2014), description of

infrastructure of workflow steps26, scientific workflow invocation27 or social science

modeling(Markovic et al., 2014).

22http://purl.org/wf4ever/wfdesc
23http://purl.org/wf4ever/wfprov
24http://purl.org/provone
25http://purl.org/net/p-plan
26http://purl.org/net/wicus-stack
27http://purl.org/net/wf-invocation

23

http://purl.org/wf4ever/wfdesc
http://purl.org/wf4ever/wfprov
http://purl.org/provone
http://purl.org/net/p-plan
http://purl.org/net/wicus-stack
http://purl.org/net/wf-invocation

Other vocabularies aim to be more generic, in order to provide context to the whole

experiment that led to the scientific workflow. These vocabularies do not necessarily

attempt to describe any execution details, but rather a general purpose description that

serves as documentation of the steps of the workflow. They include:

The Investigation, Study, Assay Model (ISA) differentiates between three

concepts to describe biomedical research (Rocca et al., 2008). An assay represents the

most specific part of an experiment, i.e., measurements performed on subjects. A study

contains the experimental steps or sequence of steps and the investigation contains the

overall goals and means used for an experiment. An investigation may have one or

more studies, which themselves may consist of one or several assays. For each of these

concepts, the model aims to capture metadata such as references, names, protocols or

equipment.

The Ontology for Biomedical Investigations (OBI) defines a common frame-

work for representing experimental descriptions and methods in biomedical research

(Brinkman et al., 2010). OBI has been widely adopted and extended in the biomedical

domain, and although its main focus relies on identifying the different types of inputs,

outputs, roles and methods used by the community, it also defines basic relationships

for specifying the inputs and outputs of a certain step or protocol.

The EXPO Ontology presents an ontology for scientific experiments. Although

it is aimed at representing the scientific method (hypothesis, evaluation, interpretation

of results, etc.), the ontology has also specific steps for modeling scientific tasks like

those happening in a workflow along with their basic metadata (Soldatova and King,

2006).

Table 2.1 summarizes the scope and main features of the different approaches de-

scribed above.

2.1.3.4 Scientific Workflow Metadata

The final aspect for representing scientific workflows is their metadata. Workflow meta-

data often captures basic attribution and other aspects that are typical of scientific

workflows and their resources, such as the file size of the experiments, restrictions and

descriptions of the workflow steps, license, start and end time of the workflow execution,

whether an execution was successful or not, etc.

24

Table 2.1: Summary of the different approaches for representing WT, WI, WET, their

metadata and their connections. The asterisk (*) on the WT column indicates that the

model makes no distinction when representing WT and WI.

Approach Purpose

Control-

based

constructs

WT

constructs

WI

constructs

WET

constructs

Metadata

constructs

Research

Object

Scientific

workflows
No Yes* Yes Yes No

ProvONE
Scientific

workflows
No Yes* Yes Yes No

Conceptual

Workflows

Scientific

workflows
Yes Yes Yes No No

P-Plan
Scientific

processes
No Yes* Yes Yes No

ISA
Scientific

experiments
No Yes No No Yes

OBI
Scientific

experiments
No Yes No No Yes

EXPO
Scientific

experiments
No Yes No No Yes

As we show on Table 2.1, very few models provide descriptive metadata for work-

flow templates, instances or executions. Specifically, as models become more generic,

they contain less common metadata properties. When defining metadata, the models

often reuse existing vocabularies, instead of defining new terms. Some of the most pop-

ular reused vocabularies for this purpose are the Dublin Core vocabulary 28, aimed at

describing basic attribution and licensing; the SWAN-PAV ontology (Ciccarese et al.,

2013), defined to describe detailed attribution, authoring, contributions and versioning

of web resources; the FOAF vocabulary29, which describes those agents that partic-

ipated in the workflow; or the W3C PROV vocabulary for defining basic attribution

and responsibility among the participating agents.

28http://dublincore.org/documents/dcmi-terms/
29http://xmlns.com/foaf/spec/

25

http://dublincore.org/documents/dcmi-terms/
http://xmlns.com/foaf/spec/

2.1.4 Scientific Workflow Publication

The ability to share workflows among scientists is critical for proper repurpose and

reuse of existing workflows; as well as a means to provide attribution and feedback to

other scientists for their work. In this section we review the current approaches for

making a scientific workflow public.

2.1.4.1 Data Repositories

The simplest option for sharing scientific workflows is through data repositories and

digital archives. In fact, general-purpose data repositories are gaining popularity for

sharing the resources associated to a paper: input datasets, specific results, etc.

In this kind of repositories, workflows (and optionally, their associated resources)

are compressed in a single file and stored or archived. The advantage of this approach

is that the stored file becomes citable, as data repositories often provide a Digital

Object Identifier (DOI)30 for referring to them. The downside is that workflow bundles

can be created in very heterogeneous ways, and without concrete guidelines, users may

omit important information for proper workflow reusability. Some popular general data

repositories are FigShare31 and Dryad32.

2.1.4.2 Workflow Repositories

In order to facilitate workflow reuse and to provide use examples, some workflow sys-

tems have created repositories for publishing workflow templates and instances. Galaxy

has a catalog of public workflows33 that can be downloaded and imported to one’s

workspace. VisTrails can push workflow specifications to CrowdLabs (Mates et al.,

2011) in order to further document them. The LONI Pipeline also has a curated

catalog of public workflows 34 and components. The most well known repository of

workflows is probably myExperiment (Goderis et al., 2009), initially developed to store

Taverna workflows, but currently containing more than 2000 workflows from systems

like Kepler, the LONI Pipeline or RapidMiner35.

30http://www.doi.org/
31http://figshare.com
32http://datadryad.org/
33https://usegalaxy.org/workflow/list_published
34http://pipeline.loni.usc.edu/explore/library-navigator/
35https://rapidminer.com/

26

http://www.doi.org/
http://figshare.com
http://datadryad.org/
https://usegalaxy.org/workflow/list_published
http://pipeline.loni.usc.edu/explore/library-navigator/
https://rapidminer.com/

Most public repositories store only workflow templates, although myExperiment has

started moving towards capturing the context of experiments with Research Objects

(called “packs”). Packs are collections of aggregated resources relevant to a particular

experiment (e.g., executions, conclusions, hypothesis, diagrams, etc.).

The methodology for uploading a workflow into these repositories is usually through

their workflow management systems or by manual submission through their publicly

available APIs.

2.1.4.3 Science Gateways

Science gateways are applications, libraries of components, workflows and tools that

are shared and integrated through a portal. Most workflow systems often choose this

option for sharing workflows, as it can usually be combined with domain specific re-

sources like models and software libraries. Examples of science gateways can be seen

in (Filgueira et al., 2014) for the volcanology domain, in (Danovaro et al., 2014) for

hydro-meteorology research or in the LONI Pipeline36 for the neuro-image analysis

domain.

The main difference between a science gateway and a workflow repository is that

the former may provide the infrastructure to execute some of the shared components

through community portals.

2.1.4.4 Virtual Machines and Web Services

Finally, another solution adopted by scientists is to encapsulate their workflows as part

of virtual machines or web services that can be downloaded (or invoked) and then

executed. For example, (Chirigati et al., 2013) tracks the provenance of experiments

and then exposes the results and workflow specifications with a virtual machine. The

advantage of this approach is that anyone can easily reproduce the results claimed

by the scientist, since all the software dependencies are included as part of the virtual

machine. However, there are two main disadvantages. The first one is that the workflow

becomes a black box, hence very difficult to repurpose for other goals. The second one

is that this approach cannot always be considered, specifically when the datasets used

or produced by the experiment are large in size, or when the software uses non open

36http://pipeline.loni.usc.edu/explore/library-navigator/

27

http://pipeline.loni.usc.edu/explore/library-navigator/

source licenses, etc. Workflow reproducibility is a whole area of research, and is out of

the scope of this thesis.

2.2 Workflow Abstraction

There are several approaches for creating abstractions from scientific workflows (i.e.,

creating generalizations of steps by some of their common features). As we have shown

in the previous section, one possible way is based on the different stages of the workflow:

workflow templates are more abstract than workflow instances, which themselves may

be seen as representatives of a group of executions. Another possibility is based on the

granularity at which each stage can be presented to the user. For example, a workflow

execution trace may be simplified in part to facilitate understanding. In this section we

describe the most common types of workflow abstractions based on their granularity,

and give an overview on research developed to detect common workflow patterns.

2.2.1 Types of Abstractions in Scientific Workflows

Workflow templates and instances represent plans executed by a workflow engine.

Hence, some of the abstractions defined for planning tasks can also be applied to sci-

entific workflows. In this section we briefly define each of them with examples.

2.2.1.1 Skeletal planning

As stated in (Bergmann, 1992), a skeletal plan can be defined as a “sequence of ab-

stract and only partially specified steps which, when specialized to specific executable

operations, will solve a given problem in a specific problem context”. In this type of

abstraction, the number of steps in the abstract plan is the same as in the concrete

plan.

A particular case of this abstraction happens when only some of the steps of the

plan are abstract, in which case we refer to it as step abstraction. In step abstraction,

steps may be abstract classes of steps. These classes may be organized in a taxonomy

designed by domain experts, for example if the steps share similar constraints on the

conditions or effects. Figure 2.9 shows an example, where a generic workflow on the

top is specialized as two different workflows on the bottom of the figure, based on the

taxonomy of components depicted on the top right.

28

Figure 2.9: Skeletal planning abstraction based on a taxonomy. Two different templates

(at the bottom) are two possible specializations of the template on the top, based on the

taxonomy of components presented on the top right of the figure. Computational steps are

represented with rectangles, while inputs, intermediate results and outputs are represented

with ovals.

Some examples of this type of abstractions can be seen in scientific workflows.

Wings uses abstract templates to specify its workflows (Gil et al., 2009). The notion of

“abstract workflows” has also been discussed (Wood et al., 2012) for systems like SADI

(Wilkinson et al., 2009). Other workflow systems like Galaxy and the LONI Pipeline

define taxonomies of components for helping users build their workflows (implicitly

using step abstraction).

29

2.2.1.2 Predicate abstraction

In this type of abstraction, entire predicates are dropped at any given abstraction level

(Graf and Saidi, 1997). The intuition is that if a predicate requires less steps to be

accomplished then it can be placed in a lower abstraction level so that adding actions

to accomplish it will cause minimal disruption to the plan at higher levels. Ideally, the

abstraction layers are designed to preserve downward monotonicity, which implies that

any steps and orderings at higher layers of abstraction are unchanged as the plan is

elaborated at lower abstraction levels. In workflows, this would be akin to dropping

constraints or even inputs of steps at higher levels of abstraction. An example can be

seen in Figure 2.10, where the workflow on the right is abstracted as the workflow of the

left, dropping the optional inputs Dictionary (used to train the stemmer component)

and Clusters (which sets the number of clusters for the clustering algorithm).

Figure 2.10: Predicate abstraction example: the workflow on the left is an abstraction

of the workflow of the right. Two predicates (inputs Dictionary and Clusters) are omitted

in creating the abstraction.

30

2.2.1.3 Macro abstraction

These are abstractions where several computation steps can be compressed together

as one step in the abstract plan. The sub-steps do not disappear from the plan, they

are hidden to the user in the abstract plan and can be shown inside the abstracted

step. Figure 2.11 shows an example of a workflow in the LONI Pipeline, where two

steps (KL MI deform field and Interp Average pairs of 3) are abstracted as a single

step in the workflow on the left. Macro abstractions are a common feature in workflow

systems, as they help simplify workflows for users.

Figure 2.11: Macro abstraction example: two steps on the right are simplified as a single

step on the workflow in the left.

Macro abstractions may be created by users as sub-workflows (e.g., as in systems

like the LONI Pipeline and Taverna), or via algorithms that mine behavioral profiles

of groups of steps of the workflow automatically (Smirnov et al., 2012).

2.2.1.4 Layered abstraction

This type of abstraction represents conceptual levels of detail that may have a very loose

correspondence with one another. These abstractions can be seen as employing different

31

lenses to view the workflow depending on the perspective that users are interested in.

This kind of abstraction is very useful to provide an explanation of a workflow for

different purposes. For example, a scientist may be interested in seeing the main steps

of the flow, while a developer wants to see exactly the preprocessing and post processing

done in each step. An example can be seen in Figure 2.12, where a workflow instance (on

the left) is enacted by a workflow execution engine creating a new workflow on the right.

The enacted workflow is different from the workflow instance initially submitted, as it

executes the first step in a distributed infrastructure. Therefore, the FilterWords step

is separated in two parallel processes (FilterWords1 and FilterWords2). A different

workflow engine could have created a complete different instantiation from the workflow

instance on the left.

Figure 2.12: Layered abstraction example: the workflow of the left is an abstraction

of the workflow of the right, which results when a workflow execution engine enacts it.

Therefore the user’s view of the workflow (left) is different form the system’s view of the

workflow (right).

Some approaches have explored this type of abstraction. In ZOOM*Userviews

32

(Biton et al., 2007), the authors proposed to exploit workflow execution traces to show

different views to users according to their preferences. Conceptual workflows (Cerezo

et al., 2013) define a mapping to convert workflows defined in a conceptual level into

an intermediate representation that can be mapped itself to several target workflow

systems. Workflow systems such as Pegasus (Deelman et al., 2004) or ASKALON

(Wieczorek et al., 2005) often make use of this abstraction when mapping the workflow

instance to their distributed infrastructure.

2.2.2 Workflow Patterns

In Software Development, a pattern is defined as “the abstraction from a concrete

form which keeps recurring in specific non-arbitrary contexts” (Riehle and Züllighoven,

1996). This type of abstraction does not belong to any of the categories described in

the previous section, but has been studied extensively in related work.

Repositories of workflow patterns have been developed based on different prop-

erties of workflows. The most popular approach is based on the workflow structure

and constructs that are possible in different languages37 (van der Aalst et al., 2003a).

Other workflow patterns have been studied in terms of workflow resources (creation,

distribution, allocation, etc.) (Russell et al., 2004b) and workflow data (e.g., visibility,

interaction, transference, integration) (Russell et al., 2004a), including generic data

intensive usage patterns (Corcho, 2013). Additional classifications are based on the

intrinsic properties of the workflows (size, structure, branching factor, resource usage,

etc.) (Ramakrishnan and Plale, 2010) (Ostermann et al., 2008) and their environmental

characteristics (makespan, speedup, success rate, etc.) (Ostermann et al., 2008). The

viability of some of these workflow patterns has even been studied and discussed for

scientific workflows (Yildiz et al., 2009).

Workflow patterns represent common practices by the community, but do not al-

ways imply good practices for workflow design. For example, in (Cohen-Boulakia et al.,

2014) authors outline anti-patterns in scientific workflows, which basically consist of

redundancy and structural conflicts. Similarly, in (Velasco-Elizondo et al., 2013) the

authors use architectural abstractions (i.e., workflow patterns) to deal with data mis-

match issues between workflow steps (by suggesting the appropriate converters).

37http://www.workflowpatterns.com/

33

http://www.workflowpatterns.com/

Generic workflow patterns based on the functionality of workflow steps have been

explored superficially. In (Wassink et al., 2009), the authors perform an automated

analysis of workflow scripts from life sciences, in order to obtain the frequency of

different types of technical ways of instantiating workflow steps (e.g. service invocations,

local scientist-developed scripting, local ready-madescripts, etc.). The authors also

refine the category of local ready-made scripts with activity categories depending on

their functionality (e.g., data access or data transformation). (Starlinger et al., 2012)

extends the categories defined in (Wassink et al., 2009), identifying sub-categories at a

workflow step level by analyzing 898 Taverna workflows in myExperiment.

Problem Solving Methods (PSMs) are other types of generic patterns that explore

the functionality of the workflow steps in them. PSMs describe strategies to achieve

the goal of a task in an implementation and domain-independent manner (Gómez-Pérez

and Benjamins, 1999). PSMs are generic recipes, and some libraries have adapted them

to model the common processes in scientific domains (Gómez-Pérez et al., 2010).

Other efforts aim at developing patterns based on workflow step functionality. Their

goal is to categorize and group common functionality in a specific domain, and, in

this regard, they may be used for generalizing workflows. For example, the Software

Ontology (SWO)38 models some of the typical operations in research regarding software

functionality like data annotation, data visualization, image compression, etc. Other

systems like Galaxy and the LONI Pipeline follow a similar approach. They have

defined generic categories under which they group workflow libraries, such as “get

data”, “statistics”, “structural analysis”, etc.

2.3 Workflow Reuse

Scientific contributions are often built on previous existing work, and this also applies to

scientists designing and creating scientific workflows. A proper workflow representation

and abstraction enables better understanding of workflows created by other researchers,

but it is difficult for scientists to explore whole datasets of workflows by themselves.

In order to facilitate this task, several approaches have been developed through

the years for mining workflows for different purposes, ranging from workflow design

to workflow discovery. In this section we first describe previous analyses on scientific

38http://sourceforge.net/projects/theswo/

34

http://sourceforge.net/projects/theswo/

workflow reuse, and then we summarize existing techniques that help users to reuse

workflows.

2.3.1 Measuring Workflow Reuse

Scientific workflows can be considered as software artifacts that connect software com-

ponents together (workflow steps). The barriers for software reuse have been analyzed

in the literature (Boldyreff, 1989). Software engineering technologies have been com-

pared and contrasted in terms of abstraction, selection, specialization and integration

(Krueger, 1992), which, as we have shown in this the chapter, are common problems in

scientific workflows as well. When focusing in the scientific domain, the incentives for

software development in terms of reuse, collaboration and productivity (e.g., getting

credit for software) have been discussed in (Howison and Herbsleb, 2011).

Regarding scientific workflows, some requirements for their reuse are defined in

(Goderis, 2008). The main requirements consist on having a community open to work-

flow reuse, availability of reusable workflows (e.g., through a publishing and sharing

infrastructure that manages interoperable workflows) and efficient workflow discovery.

The benefits of workflow reuse have been discussed in (Goderis et al., 2005), but (to

our knowledge) there are not many studies on how users perceive workflow reuse. One

of the few user surveys in the state of the art is (Goderis et al., 2005), which consisted

on a questionnaire to 24 scientists from different institutions. According to the survey

there are three main types of workflow reuse. These are “for one’s own purposes”,

“from a group of collaborators” and “from third parties”. The third type of workflow

reuse was not reported by any of the participants in the survey. In (Sethi et al., 2012),

the authors further defend the significance of reusing workflow fragments as well, by

showing how certain parts of text analytics and image analysis workflows may be used

for video activity recognition (and viceversa).

Automatic analyses of workflow repositories have also attempted to classify and

quantify workflow reuse, with a special focus on the myExperiment repository and Tav-

erna workflows. In (Tan et al., 2010), the authors use 280 Taverna workflows and 118

services of the BioCatalogue portal to find the connections among them (shared invo-

cations and components). Furthermore, they apply social network analysis techniques

to derive the centrality and betweenness of the nodes in the network. Unfortunately,

the results show that “services are currently reused in an ad hoc style instead of a

35

federated manner”. The work presented in (Wassink et al., 2009) also performs auto-

matic analyses on Taverna workflows available in myExperiment, but with a corpus of

415 workflows. In this case, the authors divide the corpus on different categories of

components (beanshells, scripts, etc.), and analyze their reuse. The work described in

(Littauer et al., 2012) builds on (Wassink et al., 2009) to further analyze other char-

acteristics of workflows (e.g., versioning, complexity, downloads) and proposes good

practices for workflow reuse.

However, the most complete analysis of myExperiment is (Starlinger et al., 2012),

which details how workflows, sub-workflows defined by users and steps (divided in

different categories) are reused. The corpus consists of 898 workflows, and reuse is

differentiated regarding the authors who contributed to the creation of a particular

workflow. Reuse is common, and may happen in three main different manners: a

workflow is reused as a new workflow (duplication), a sub-workflow is reused as a sub-

workflow in another workflow, and workflows are reused as sub-workflows (or viceversa).

Although current approaches have analyzed reuse in a significant amount of work-

flows, the majority of the corpora have been designed in the same workflow system

(Taverna) and leave out of the scope of their analysis groups of commonly occurring

workflow steps that may not have been annotated as sub-workflows by users.

2.3.2 Workflow Mining for Reuse

There are several areas where mining approaches have been applied for different pur-

poses, ranging from planning (Yang et al., 2005) (e.g., use previous plans to optimize

a future execution) to database query pattern extraction (Lawrynowicz and Potoniec,

2014) (in order to obtain common queries that might help to optimize access to the

dataset). In this section we introduce an overview on the efforts that are related to

mining workflows, in particular to those that are data intensive (scientific workflows).

These efforts are focused on three main goals: mining for the exploration of workflow

repositories, mining for recommending or discovering existent workflows and mining to

extract new workflows from existent ones.

2.3.2.1 Exploration of repositories

Repositories of workflows tend to be large, and it is difficult for users to analyze each

entry individually. In order to address this issue, there are several efforts that try to

36

organize repositories for enabling better understanding. These efforts are based on

machine learning techniques, namely clustering and topic modeling.

Clustering techniques are used to group sets of workflows together according to

a given similarity metric. The main difference among the existing approaches is the

similarity metric between workflows, the clustering technique being used and the num-

ber of clusters to which a workflow may belong. If we follow a chronological order,

(Santos et al., 2008) started proposing two different metrics to define similarity among

two given workflows: the maximum common sub-graph shared among them and the

euclidean distance that separates both workflows when represented as vectors (consid-

ering the union of the names of the workflow steps in the workflow as the features of

the vectors). In (Silva et al., 2011) the authors followed the previous approach by con-

sidering the structure of the workflow (e.g., connection between input ports and output

ports) on its similarity measure. Both efforts use the K-means algorithm (MacQueen,

1967), commonly used for clustering on the information retrieval domain. Finally, in

(Montani and Leonardi, 2012) the authors propose to use an edit distance in business

workflows, taking also into account the temporal similarity of the workflow steps. In

this case, the clustering technique is based on an unweighed pair group method with

arithmetic mean, which allows for hierarchical clustering.

Topic modeling techniques are common in text mining to determine the probability

of a document belonging to a certain topic. A topic is not a single word, but a set of

words which have a high probability of appearing together. (Stoyanovich et al., 2010)

applies this paradigm to the workflow domain, using 2075 workflows from VisTrails

and 861 from Taverna. The “words” in this case are the tags used to describe the

workflow and the names of the workflow steps. As a result, a set of topics are derived,

and workflows are organized around them.

A key difference between clustering techniques and topic modeling techniques is that

clustering techniques are deterministic, while topic modeling techniques are probabilis-

tic. This means that, when re-executed, a probabilistic technique may provide similar

results but not necessarily the same ones obtained on a previous execution. The main

disadvantage of both techniques is that a manual adjustment of the algorithm is needed

in order to find the optimal number of topics or clusters depending on the similarity

threshold set for the experiments.

37

2.3.2.2 Recommendation and discovery of existing workflows

The second goal for workflow mining focuses on suggesting workflows to users. This

can be done in two different phases of the workflow life cycle (van der Aalst et al.,

2003b): during workflow design, by suggesting the next workflow steps to the user, or

during workflow diagnosis, when aiming to discover workflows similar to a particular

one.

There are several approaches for next step suggestion while designing workflows,

based on previous executions or templates. The most straightforward approach can

be seen in (Oliveira et al., 2008), where the authors propose a probabilistic method by

computing the relationships between components in pairs and suggesting the next most

probable component. The approach proposed in (Koop, 2008) is more refined, by using

paths in previous workflows to recommend the most likely next step. The suggestion

may be either upstream or downstream the current fragment. Finally, (Leake and

Kendall-Morwick, 2008) relies on case-based reasoning approaches to mine provenance

traces in order to suggest users the next (single) step when editing new workflows. This

technique uses a similarity metric, based on an edit distance combined with a structural

comparison of the workflows.

Regarding workflow discovery, most approaches aim to deliver similar workflows

to a given one. The similarity metric is once again critical, and there has been work

that demonstrates that structural based approaches can outperform annotational ones

(Starlinger et al., 2014a). In (Goderis, 2008), the authors perform several experiments

comparing label-based approaches and sub-graph isomorphism techniques and perform

benchmarks for workflow discovery on that basis (Goderis et al., 2009). In (Bergmann

and Gil, 2014) the authors focus on structure according to a set of constraints set by

the user (e.g., having a specific input or output type). In this regard, this approach

is able to add specific requirements to the workflow the user is looking for. Finally, in

(Starlinger et al., 2014b), the similarity metric is based on a direct comparison of the

workflows by decomposing them into different layers, which provides fast results. It is

worth mentioning that some of the similarity metrics used for clustering repositories

may also be used for suggesting new workflows as well.

38

2.3.2.3 Deriving new workflows from existent corpora

The third goal for workflow mining aims to extract workflows from previous executions

or templates. In prior work this has been explored in two different ways: by deriving

an abstract workflow from a set of execution logs or by proposing new workflows from

a repository of workflow templates (based on, for example, commonly used structures).

Log mining has been explored in both business and scientific workflows. In the

business domain, (Herbst and Karagiannis, 1998) proposed to use hidden Markov mod-

els to find an approximation of a workflow from a set of execution traces. Other work

aims at obtaining workflow patterns through process mining. In fact, the term pro-

cess mining “refers to methods for distilling a structured process description from a

set of real executions” (van der Aalst et al., 2003b). A detailed analysis of different

approaches for process mining and research challenges can be read in (van der Aalst

et al., 2003b). Some exemplar approaches can be found in (van der Aalst et al., 2005),

where the resultant workflows are represented as Petri Nets, and (Rozinat and van der

Aalst, 2006), which introduces a whole framework for process mining. In the scientific

workflow domain (Gómez-Pérez and Corcho, 2008) mines provenance traces to map

them against a problem solving method library. The goal of the work is similar to the

aforementioned approaches in business workflows, but in this case the authors aim to

generalize the provenance and to help understand the traces.

Case-based reasoning is often used to find substitute workflows for a given one. In

(Müller and Bergmann, 2014) the authors discuss the adaptability of workflows and

look for substitutes according to user needs. Another approach presents an algorithm

that combines control flow and dataflow of workflow traces, reasoning to generalize

and approximate a given workflow (Yaman et al., 2009). This is part of the POIROT

project (Burstein et al., 2009) for creating an architecture for reasoning and learning

components for workflows. Finally, (Smirnov et al., 2012) also generalizes workflows to

group common sets of components based on existing behaviors in the business domain.

During the development of this thesis, graph mining techniques have started to be

used to extract common patterns using the myExperiment repository. An overview of

the problem by extracting patterns with different metrics has been proposed in (Kamg-

nia Wonkap, 2014). 258 Taverna workflows were analyzed in (Diamantini et al., 2012),

39

as a first approximation using inexact graph mining techniques. Recently, (Garćıa-

Jiménez and Wilkinson, 2014a) has followed up by enriching 530 workflows with domain

specific knowledge in the biomedical domain. However, the lack of a gold standard to

measure precision and recall makes these approaches difficult to validate at the moment.

As happened with the approaches designed for exploring repositories, the main

difference between case-based reasoning, graph mining and process mining is that while

process mining is based on a network of probabilities, the other two approaches always

produce patterns that are found in the input workflow corpus. Figure 2.13 illustrates

the difference between the results of a process mining and a graph mining approach,

using as input the three workflows depicted on top. The fragments produced by a graph

mining technique can be seen on the right, while the network of probabilities extracted

from the workflows can be seen on the left. Although both approaches mine patterns,

they are used for different purposes.

2.4 Summary

In this chapter we have described the most relevant related work in the areas of workflow

representation, abstraction and reuse. On each of the areas, we have also introduced the

main concepts that will be used throughout the thesis along with the general limitations

of each approach.

Most of the described approaches focus on either representation, abstraction or

reuse, but none of them tackles the three areas as part of the same problem. Very

few models consider linking abstractions and patterns to the templates or execution

traces themselves; even in those approaches developed in parallel to this thesis. For

example (Cerezo, 2013) links conceptual workflows to the workflow instances, but does

not tackle the execution trace representation. Models like the Research Object and

ProvONE address the template and execution representation and linking, but avoid

dealing with abstractions of processes. To date, there are barely any approaches that

use domain knowledge to extract abstract patterns that may help reusing and exploring

workflows on a given repository. There is also a lack of a common simple model that

can be used to represent the basic workflow functionality of all workflow systems for

mining purposes, or that represents workflows based on their step functionality.

40

Figure 2.13: Difference in output: while process mining returns a network of probabilities,

a graph mining approach focuses on the possible fragments found in the dataset. In the

figure, the three workflows on the top lead to the probability network on the bottom left

and to the two fragments on the bottom right. Inputs and outputs of each step have been

omitted for simplicity.

Current mining approaches also present some limitations. Topic modeling, cluster-

ing and mining techniques may miss potential links between fragments of two dissimilar

workflows. Graph mining or process mining techniques extract common workflow pat-

terns, but they currently ignore whether these patterns are useful for reuse and how

they can be used to link different workflow fragments together. Additionally, most

of the approaches described for scientific workflows have been tested only in Taverna

workflows. Further work is needed to analyze how users would interact in other type

41

of environments, e.g., smaller communities like a research lab, students of a university

or a company.

In the next chapter we present our work objectives and hypothesis, relating them

to some of the limitations that we have identified in the current state of the art.

42

Chapter 3

Research Objectives

The main goal of the research presented in this thesis is to facilitate workflow un-

derstanding and reuse by analyzing and abstracting an existent corpus of scientific

workflows. This translates into three lines of work regarding scientific workflows. The

first one is workflow abstraction, which refers to the ability of a system to generalize

workflows (or workflow steps) by their common functionality. Workflow abstraction is

key for simplifying workflows and for finding relations between them.

The second line, workflow understanding, relates to the ability of users to clearly

determine the functionality of each of the steps (or group of steps) of the workflow.

Workflow understanding benefits from workflow abstraction, as it helps simplifying

the workflow at hand, and can be enhanced by including proper knowledge structure

to documentation and examples on the target workflow. Workflow understanding is

crucial to disseminate someone’s work within the scientific community.

The third line is workflow reuse, closely related with the previous two. Having

a clear understanding of the workflow functionality and its relationships with other

workflows may help users decide whether a given workflow (or any of its sub-parts) can

be adapted from a previous experiment or not.

This chapter introduces our main hypothesis (Section 3.1), its associated research

challenges (Section 3.2) and defines our research methodology, research and technical

goals (Section 3.3).

43

3.1 Research Hypotheses

We define our main hypothesis as follows:

Hypothesis 1 Scientific workflow repositories can be automatically analyzed to extract

commonly occurring patterns and abstractions that are useful for workflow developers

aiming to reuse existing workflows.

Our hypothesis can be divided into three different sub-parts, which overlap with the

workflow understanding, reuse and abstraction aspects respectively. First, by creating

a catalogue of the most typical domain-independent scientific workflow patterns based

on the functionality of workflow steps we can help users understand workflows better,

independently of the workflow system where they were defined (H1.1).

Second, by detecting commonly occurring patterns and abstractions automatically

we can find the implicit relationships between the workflows of a repository (H1.2).

Furthermore, for this purpose we hypothesize that the use of graph mining techniques

(H1.2.1) and the exploitation of domain specific metadata (H1.2.2) are good ap-

proaches for detecting and generalizing (or abstracting) common fragments automat-

ically.

Finally, by highlighting those patterns that are potentially useful for users designing

workflows we believe that we can help users reuse workflows (H1.3).

A summary of the hypotheses and how they deal with workflow abstraction, under-

standing and reuse can be found in table 3.1

3.2 Open Research Challenges

Our hypotheses can be related to several research challenges. First, in order to deter-

mine a common format to deal with templates and provenance of workflows, we need

to address the workflow representation heterogeneity in scientific workflows. Second, in

order to find common reusable patterns, we must handle the different levels of work-

flow abstraction and the difficulties for workflow reuse of a given corpus. Finally, by

detecting the common reusable patterns automatically we tackle the lack of support

for workflow annotation. Each of these research challenges are further described below,

and tackled throughout the thesis.

44

Table 3.1: Hypotheses and their respective addressed workflow research areas.

Hypothesis
Workflow

Research Area

H1: Scientific workflow repositories can be automatically

analyzed to extract commonly occurring patterns and

abstractions that are useful for workflow developers

aiming to reuse existing workflows

Abstraction,

understanding,

reuse

H1.1: It is possible to define a catalog of common domain

independent patterns based on the common functionality

of workflow steps

Abstraction,

understanding

H1.2: It is possible to detect commonly occurring

patterns and abstractions automatically

Abstraction,

reuse

H1.3: Commonly occurring patterns are potentially useful

for users designing workflows
Reuse

3.2.1 Workflow Representation Heterogeneity

As discussed in Chapter 2, a plethora of scientific workflow systems have been cre-

ated to design, reuse, explore and execute scientific workflows for different scientific

communities. Each community often has its own requirements for their experiments,

which have led to the proliferation of heterogeneous formats for representing scientific

workflows (e.g., for stream processing, distributed environments) specific built-in cata-

log support, cloud support, domain specific metadata capture, provenance exploration,

etc. Despite some efforts to come up with a common workflow language, currently

there is no standard model for representing scientific workflows and their metadata

(RCRepresent1).

Furthermore, besides uploading resources individually to a public repository, there

are no general guidelines or methodologies for authors on how to expose a corpus of

scientific workflows and their associated contents on the Web (RCRepresent2).

3.2.2 Inadequate Level of Workflow Abstraction

Workflows may contain several scientifically-significant analysis steps, combined with

other data preparation or result delivery steps (e.g., filtering, cleaning, etc.) that are

auxiliary and not central to the science data analysis. In fact, studies have shown

45

that over half of the steps of workflows consist on data preparation steps that increase

their complexity and obfuscate their main functionality (Garijo et al., 2012). There-

fore in many cases it is difficult to determine which are the main significant processing

steps of the workflow (RCAbstract1), even when a textual description of the workflow

functionality exists in a publication or other documentation. In this regard, patterns

have been defined in other work to capture typical control flow properties on workflows

(van der Aalst et al., 2003a). However, there are no catalogs on the typical abstrac-

tions that can be found in scientific workflows based on their basic step functionality

(RCAbstract2).

3.2.3 Difficulties of Workflow Reuse

One of the key aspects of workflows is their potential shareability. Scientists often

include workflows as sub-workflows (Starlinger et al., 2012) when the workflow sys-

tem supports them. Several repositories of workflows like myExperiment, the LONI

Pipeline, Crowdlabs or Galaxy store templates, metadata and sometimes even execu-

tions of past experiments. However, it is difficult to determine the relation between dif-

ferent workflows regarding their functionality (RCReuse1) and unless common reused

workflow fragments are explicitly exposed by users as sub-workflows, it is not easy to de-

tect which workflows or workflow fragments are potentially useful for reuse (RCReuse-

2).

3.2.4 Lack of Support for Workflow Annotation

Workflow authors have to describe manually the functionality of their workflows, their

relationships to other workflows, their metadata and their inputs and outputs. There

are currently no approaches for facilitating these annotations in a semi-automatic way

(RCAnnot1), even for the typical operations in workflows (e.g., formatting and merg-

ing inputs). Therefore, the textual annotations on workflows (besides basic metadata

like creator, date and main purpose) are very few, and no standard is followed for

describing workflow functionality and metadata.

A summary of the challenges tackled in this work and how they map to the hy-

potheses is presented in table 3.2.

46

Table 3.2: Open research challenges and their related hypotheses.

Research Challenge Hypotheses

RCRepresent-1: There is no standard model for representing

scientific workflows and their metadata
H1.1, H1.2

RCRepresent-2: There are no standard methodologies for

publishing a corpus of scientific workflows and their

associated resources in the Web

H1.1

RCAbstract-1: It is difficult to determine which steps

perform the main significant processing steps

in a scientific worflow

H1.1

RCAbstract-2: There are no catalogs of the typical

abstractions that can be found in scientfic workflows

based on their basic step functionality

H1.1

RCReuse-1: It is difficult to determine the

relationship between different workflows

regarding their functionality

H1.2

RCReuse-2: It is not easy to detect which workflows

or workflow fragments are potentially useful for reuse
H1.3

RCAnnot-1: There are currently no approaches for

assisting scientists with workflow annotation
H1.2

3.3 Research Methodology

The work presented on this thesis has been performed in an exploratory manner, fol-

lowing a layered approach motivated by the hypotheses. On each layer, the work has

been validated experimentally, helping to refine the results obtained in previous layers.

Figure 3.1 shows a roadmap of the thesis work, where each layer represented on the

left corresponds to a general problem. On the center and right of the figure we have

specified our approach to tackle each of the layers and the evaluation followed to vali-

date such approach. From top left to bottom right, the layers stand for the models we

need for providing workflow descriptions reusing existing standards, validated through

competency questions (Gruninger and Fox, 1994); the workflow abstraction effort for

defining a catalog of typical abstractions in workflows (validated by comparing our pro-

posal with workflow corpora from different systems); and the mechanisms developed to

47

automatically detect some of these abstractions on different workflow corpora (evalu-

ated by defining concrete metrics and user feedback). We describe each of the layers

next, indicating the technical objectives (i.e., objectives related to the development of

software or analysis of existing solutions for a given challenge) and research objectives

(i.e., those objectives aiming at finding new solutions for existing challenges) for each.

Figure 3.1: Roadmap of the thesis work, organized by the different problems, the ap-

proach followed to tackle each one and its proposed evaluation.

Workflow Representation and Publication: On a first layer, depicted as the top

layer in Figure 3.1, we identify the requirements and develop the models to represent

workflow templates and their associated executions (RO1). The development is guided

by the reuse of existing standards like the W3C Provenance Model, or commonly used

vocabularies like the Open Provenance Model. The developed models are then used to

adapt an existing methodology for publishing content in the web to the scientific workflow

domain (RO2). As a result, we produce a corpus of workflows which are accessible

and easy to explore and exploit. The corpus also allows validating the requirements

established for the models, helping to refine them accordingly.

48

Workflow Abstraction and Reuse: In our second layer we first perform a manual

analysis on the published workflow corpus expanding it with the workflows available

in other online repositories like myExperiment, CrowdLabs and Galaxy. The analyses

aim at determining whether workflows in different domains and workflow systems share

common functionality among their steps, producing as an outcome a catalog of common

workflow abstractions (RO3). The catalog is validated and refined with each new

analyzed workflow, until no further abstractions can be obtained.

We then analyze the current practices of users in workflows (and their fragments)

in terms of workflow reuse, and we relate the results to the abstractions obtained in the

catalog (RO4). This allows us to focus on the automatic detection of those abstractions

that are relevant for workflow reuse.

Automatic Detection and Annotation of Workflow Abstractions: On our

bottom layer we bridge the gap between a corpus of workflows and the catalog of

abstractions defined on our second layer. We apply graph mining techniques to detect

potential abstractions automatically (TO1), define filtering techniques for refining the

obtained results (RO5) and propose metrics to validate our results against a corpus

of annotated workflows (RO6). As a result, we develop a system capable of finding

common patterns automatically (TO2), and we validate it with further feedback from

the users. Additionally, we propose a model for describing workflow fragments and

relate them to the workflows where they were found (RO7).

Table 3.3 summarizes the research objectives (ROs), technical objectives (TOs) and

the research challenges from Table 3.2 that they tackle.

49

Table 3.3: Research and technical objectives and their related challenges.

Research Objective
Research

Challenge

RO1: Define semantic models that represent workflow templates

and executions, linking them together and capturing their basic

metadata. The models should be based on existing standards

RCRepresent-1

RO2: Define or adapt a methodology for publishing workflows

and their resources in the Web
RCRepresent-2

RO3: Define a catalog of common domain independent

abstractions in scientific workflows

RCAbstract-1,

RCAbstract-2

RO4: analyze the current practices of users in workflows

in terms of workflow reuse, and we relate the results

to the catalog

RCAbstract-1

RCAbstract-2

RO5: Define methods to filter non relevant fragment candidates
RCReuse-1,

RCReuse-2

RO6: Define metrics for assessing the usability of

a workflow fragment

RCReuse-1,

RCReuse-2

RO7: Define a a model for describing workflow fragments

and relate them to the workflows where they were found
RCAnnot-1

TO1: Characterize the different types of existing graph mining

algorithms, their features, their limitations

and available implementations

RCReuse-2

TO2: Develop a framework for applying existing graph mining

approaches on workflows, along with the means to refine

and filter the results provided by the different algorithms

RCReuse-1,

RCReuse-2,

RCAnnot-1

50

Chapter 4

Scientific Workflow

Representation and Publication

This chapter presents the Open Provenance Model for Workflows1 (OPMW), our model

to describe scientific workflows by capturing all their dataflow and dependencies, to-

gether with our approach for their publication. In doing so, we reuse existing standards

and methodologies, which aim to make our results reusable and interoperable with other

alternative approaches.

4.1 Scientific Workflow Model

We represent scientific workflows as labeled directed acyclic graphs (LDAGs). The

nodes of the graph represent the steps, inputs, outputs and intermediate results and

the edges represent the usage and generation dependencies among them. This choice

of model is motivated by the amount of scientific workflow systems using this or very

similar notation (as described on Chapter 2, some examples are Wings, the LONI

Pipeline, Taverna, Galaxy, VisTrails, etc.). In addition, a graph based model enables

the possibility of extending Semantic Web standards and reusing existing technologies

to model and expose workflow information. In order to create a simple model, we focus

on capturing data intensive workflow representations from a bottom up perspective,

i.e., the most simple common constructs shared among all workflow systems. Therefore,

1http://www.opmw.org/ontology/

51

http://www.opmw.org/ontology/

control constructs like loops and optional branches have been left out of the scope of

the model.

Our model requirements, which have guided our development process, can be orga-

nized under three main categories:

• Workflow template representation requirements, which tackle the model-

ing of the workflow plan and its metadata. This includes the workflow template

and workflow instance stages, introduced in Section 2.1.2.

• Workflow provenance representation requirements, which refer to the

modeling of the execution of the workflow, its inputs, intermediate and final

results. Provenance is crucial to determine the chain of events that led to a result

of a scientific workflow, and which were the sources that influenced it.

• Workflow attribution representation requirements, which capture who

created and collaborated in the creation of the workflow, its execution and doc-

umentation. Attribution is key for acknowledging the authors appropriately be-

cause it allows them to get credit for the work they have done. For example, the

scientist responsible for designing the workflow (or a fragment of the workflow)

may be different from the scientist who is responsible for its execution on a certain

experiment.

The rest of the section describes how we have extended or reused existing vocabu-

laries and standards to create OPMW and address each of the requirement categories

described above. An Ontology Requirement Specification Document (ORSD) (Suárez-

Figueroa, 2010) has been created for each of our proposed vocabularies, containing the

competency questions (Gruninger and Fox, 1994) and the terms used to address them.

The ORSD can be seen in the Annex A.

4.1.1 Representing the Provenance of Workflow Executions: The Open

Provenance Model and W3C PROV

We use the W3C PROV standard and OPM (mentioned in Section 2.1.3.2) as founda-

tional vocabularies and extend them to represent workflow executions as provenance

records. In this section we briefly describe the core concepts of OPM and PROV that

are relevant to our work, along with their main similarities.

52

4.1.1.1 The Open Provenance Model

OPM models the resources for which we want to obtain the provenance (e.g., an input

of a workflow, an intermediate result, an output, etc.) as artifacts, which represent

immutable pieces of state. The steps that use and produce artifacts are known as

processes (action or series of actions performed on artifacts), and the entities that

control those processes are agents. The relationships between artifacts, processes

and agents are modeled in a provenance graph with five main causal edges: used

(a process used some artifact), wasControlledBy (an agent controlled some process),

wasGeneratedBy (a process generated an artifact), wasDerivedFrom (an artifact was

derived from another artifact) and wasTriggeredBy (a process was triggered by another

process). OPM also introduces the concept of roles to assign the type of activity that

artifacts, processes or agents played when interacting with one another, and the notion

of accounts and provenance graphs. An account represents a particular view on the

provenance of an artifact based on what was executed. A provenance graph groups

sets of related OPM assertions. OPM does not specify any concept for the modeling of

plans, so it can only be used to describe workflow executions and it cannot be used to

describe workflow instances or workflow templates.

OPM is available as two different ontologies that are built on top of each other.

One is the OPM Vocabulary (OPMV)2, a lightweight RDF vocabulary implementation

of the OPM model that only has a subset of the concepts in OPM but facilitates

modeling and query formulation. Figure 4.1 (from the online specification3) shows an

overview of the main OPMV concepts, i.e., agents, processes and artifacts and their

joint relationships. The other ontology is the OPM Ontology (OPMO)4, which covers

the full functionality of the OPM model, and can be used to represent OPM concepts

that are not in OPMV, such as Account or Role. OPMO also includes the possibility

of adding metadata to the relationships themselves (e.g., time of usage of an artifact

in an activity) through a n-ary relationship pattern (Noy et al., 2006).

2http://purl.org/net/opmv/ns
3http://open-biomed.sourceforge.net/opmv/img/opmv_main_classes_properties_3.png
4http://openprovenance.org/model/opmo

53

http://purl.org/net/opmv/ns
http://open-biomed.sourceforge.net/opmv/img/opmv_main_classes_properties_3.png
http://openprovenance.org/model/opmo

Figure 4.1: OPMV overview, extracted from its specification.

4.1.1.2 The W3C PROV Standard

The PROV model (with prefix prov) is heavily influenced by OPM. PROV models

the resources as entities (which can be mutable or immutable), the steps using and

generating entities as activities, and the individuals responsible for those activities

as agents. As shown in Figure 4.2 (from the online specification5), the relationships

are also modeled in a provenance graph with seven main types of edges: used (an ac-

tivity used some entity), wasAssociatedWith (an agent participated in some activity),

wasGeneratedBy (an activity generated an entity), wasDerivedFrom (an entity was de-

rived from another entity), wasAttributedTo (an entity was attributed to an agent),

actedOnBehalfOf (an agent acted on behalf of another agent) and wasInformedBy (an

activity used the entity produced by another activity).

PROV also keeps the notion of roles to describe how entities, activities and agents

behaved in a particular event (usage, generation, etc.); and provides the means to

qualify each of those roles using an n-ary pattern. Unlike OPM, PROV allows stating

the plan associated to a certain activity, although the plan definition itself is out of the

scope of the model (since it is not something that necessarily happened, for example,

if a step of a plan failed).

5http://www.w3.org/TR/prov-o/#starting-points-figure

54

http://www.w3.org/TR/prov-o/#starting-points-figure

Figure 4.2: PROV overview, extracted from its specification.

PROV statements can be grouped in sets called bundles, which are entities them-

selves (thus allowing for their provenance to be described). The PROV standard is

available as an ontology (PROV-O) (Lebo et al., 2013).

4.1.1.3 Comparison Between OPM and PROV

There is a very clear correspondence between OPM and PROV, and this facilitates the

reuse of workflows represented in one language by tools that consume the other.

Figure 4.3 illustrates the commonalities between OPM and PROV that are relevant

to our work. Entities and artifacts are depicted as ovals, activities and processes as

boxes and agents as pentagons following the W3C notation6. Both models represent

resources being used and generated by processes or activities which are controlled by an

agent responsible for its execution. Entities (or artifacts, respectively) can be derived

from other entities. Also, in OPM processes might be triggered by other processes,

while in PROV activities might receive an input created by another activity (being

informed by the other activity). We exploit these commonalities to integrate traces

that comply to each of the models.

6http://www.w3.org/2011/prov/wiki/Diagrams

55

http://www.w3.org/2011/prov/wiki/Diagrams

Figure 4.3: The commonalities between PROV (left) and OPM (right) facilitate mappings

across both representations.

4.1.2 Representing Workflow Templates and Instances: P-Plan

We cannot use a provenance language like OPM or PROV to represent workflow tem-

plates and workflow instances: a provenance model describes things that have already

happened, while templates and workflow instances are plans that will be executed at

some point in time. Therefore we need a language that can represent process models

or plans that when executed lead to a provenance trace that can be expressed in OPM

or PROV.

P-Plan7 (Garijo and Gil, 2012) is an extension of PROV for representing scien-

tific processes (e.g. laboratory protocols (Giraldo et al., 2014), workflow infrastruc-

ture (Santana-Pérez and Pérez-Hernández, 2015), social computation (Markovic et al.,

2014), etc.), and we use it to represent scientific workflows. Figure 4.4 shows an

overview of the P-Plan vocabulary. In order to distinguish between the classes and prop-

erties of PROV and P-Plan, we have added prefixes to them (“prov:” and “p-plan:”

respectively). A plan in P-Plan is a subclass of plan in PROV. The plan steps repre-

sent the planned execution activities. Plan steps may be bound to a specific executable

step (correspondsToStep relationship) or refer to a class of steps, providing an ab-

straction layer over the execution. As a result, a plan step could be carried out in

different ways in different executions of the same plan. A step may not have a corre-

7http://purl.org/net/p-plan#

56

http://purl.org/net/p-plan#

sponding activity in the execution trace, (for example if there is an execution failure).

A plan variable represents the inputs of a step and can have properties (i.e., type,

restrictions, metadata, etc.). Plan steps may be preceded by plan steps (isPrecededBy

relationship), and have variables as input (hasInputVar relationship). Variables are

output of the plan steps (isOutputvarof relationship) and may be bound to the inputs

or outputs of executable steps (correspondsToVariable relationship). Both steps and

variables are associated to a plan with the isStepOfPlan and isVariableOfPlan re-

lationships respectively. The relation of the plan with agents involved on its execution

is not specified in P-Plan, since it can be modeled with PROV. All the statements

involved in the execution of the plan are grouped as part of a plan bundle (subclass of

a bundle in PROV), which is derivedFrom the plan.

Figure 4.4: Overview of P-Plan as an extension of PROV.

Finally, plans may be included as part of other plans, e.g., when a set of steps are

used several times through different plans. In order to capture this behavior, P-Plan

defines the relationships isSubPlanOfPlan, which allows linking a plan to another, and

the relationship isDecomposedAsPlan, which specifies how a step of a plan is expanded

57

itself as another plan. When this happens, the step representing the sub-plan becomes

a multiStep. An example is shown in Figure 4.5, where a plan with two steps is as

part of another plan.

Figure 4.5: Sub-plan representation in P-Plan: A plan (P2) with two steps is contained

as the third step of another plan (P1) with 3 steps.

4.1.3 OPMW

Workflow templates, instances, and executions can be represented with the OPMW

model8 (Garijo and Gil, 2011). OPMW extends P-Plan for addressing the template

representation requirements, and PROV and OPM for the provenance representation

requirements. OPMW supports the representations of workflows at a fine granularity

with a lot of details pertaining to workflows that are not covered in those more generic

languages. OPMW also allows the representation of links between a workflow template,

a workflow instance created from it, and a workflow execution that resulted from an

instance. Finally, OPMW also supports the representation of roles and attribution

8http://www.opmw.org/ontology/

58

http://www.opmw.org/ontology/

metadata about a workflow. Figure 4.6 shows the relationships between the differ-

ent vocabularies and how OPMW extends PROV, OPM and P-Plan. Further details

on linking between workflow templates, instances and executions, role modeling and

workflow attribution in OPMW are described below.

Figure 4.6: OPMW and its relationship to the OPM, PROV, and P-Plan vocabularies.

4.1.3.1 Linking templates, instances and executions in OPMW

In OPMW, a workflow template is a subclass of a P-Plan’s plan (since it is a par-

ticular type of plan), a workflow template process is a subclass of P-Plan’s step

and a workflow template artifact extends the P-Plan’s variable (since both of

them refer to a particular domain). On the execution side, each workflow execution

process (subclass of PROV’s activity and OPM’s process) is bound to a workflow

template process via the correspondsToTemplateProcess relationship (subprop-

erty of P-Plan’s correspondsToStep). Similarly, each workflow execution artifact

(subclass of PROV’s entity and OPM’s artifact respectively) is linked to its ab-

stract workflow template artifact with the correspondsToTemplateArtifact re-

lationship (subproperty of P-Plan’s correspondsToVariable). Finally, the workflow

execution account containing all the provenance statements of the execution is linked

to the workflow template that contains all the assertions of the template with the -

correspondsToTemplate relationship.

Figure 4.7 shows an example of the OPMW vocabulary extending OPM, PROV

and P-Plan. Each vocabulary concept and relationship is represented with a prefix

to help understand its source (OPMW, P-Plan, PROV, OPMV or OPMO). In the

59

figure, a workflow template with one sorting step, an input and an output (on the top

right of the figure, represented using P-Plan) is linked to its provenance trace on the

bottom right of the figure (depicted with PROV and OPM). Each activity and artifact

is linked to its respective step and variable. Additional metadata of the variables (e.g.,

constraints), steps (e.g., conditions for execution) activities (e.g., used code), artifacts

(e.g., size, encoding), account (e.g., status) and template (e.g., associated dataflow

graph) is modeled with OPMW, but has been omitted from the figure for simplicity.

As the figure illustrates, there is a clear correspondence between workflow templates

(on the top) and workflow execution traces (on the bottom). The workflow instance

is implicitly represented, as it can be derived from both the workflow template and

the workflow execution trace: the workflow instance would have the same structure

as the workflow template, using the workflow inputs and the references to the specific

algorithms of the workflow execution trace.

Figure 4.7: Example of OPMW as an extension of PROV, OPM and P-Plan. A workflow

execution (bottom right) is linked to its workflow template (top right). Other details like

attribution metadata have been omitted to simplify the figure.

60

4.1.3.2 Role Capture in OPMW

Workflow steps consume inputs and produce outputs with different roles, which may

be crucial to understand how the execution process was carried out. For example,

consider the execution of a component for removing duplicate genes that is depicted

in Figure 4.8. The component had two datasets of genes as inputs and two datasets of

genes as outputs. One of the inputs had the role knownGenes, the other had the role

foundGenes. One of the outputs had the role of discoveredGenes and the other output

was discardedGenes. All the inputs and outputs were datasets of genes, and their role

labels are the identifiers that describe how each data was related to the process carried

out. Thus, the knownGenes role qualifies the usage relationship in which the input

datasetA and the process removeDuplicates were involved.

Figure 4.8: Example of roles: an executed workflow step used two datasets of genes

(Dataset A, Dataset B) and produced two datasets of genes (Dataset C, Dataset D). Each

dataset played a different role in the process.

In OPM and PROV this qualification of relationships is captured through an n-ary

relationship pattern (Suárez-Figueroa et al., 2007), linking an instance of a role to the

usage or generation edges. However, this option adds complexity to the model, as it

forces to introduce an indirection through intermediary resources in order to qualify

61

the relationship. An example can be seen in Figure 4.9, where we qualify in PROV (on

the left) and OPM (on the right) the usage relationship between removeDuplicates and

datasetA to introduce the role.

Figure 4.9: Qualifying a usage relationship in PROV (on the left of the figure) and OPM

(on the right). Both models use an n-ary pattern (Usage and Used) to link datasetA with

the removeDuplicates step and the knownGenes role.

Instead, we extend the usage or generation properties of both vocabularies with

the role. The extension is not part of OPMW itself but part of the domain specific

vocabulary used to describe the workflow steps. Figure 4.10 shows an overview of

this approach, illustrating the example of Figure 4.8. The prefix ex has been used

to identify the relationships extending OPM and PROV to identify the role (e.g.,

ex:usedAs knownGenes). As shown in the figure, all the role subproperties are used to

link the respective datasets with the process in a simpler manner than in Figure 4.10.

Additional information of the property can be added as metadata description of the

property (e.g., label, description, etc.).

4.1.3.3 Workflow Attribution in OPMW

Attribution is crucial for scientists who design, create and publish workflows, and

OPMW can be used to represent such metadata in workflow templates, instances,

and executions. For this, OPMW reuses terms from the Dublin Core (DC) Metadata

Vocabulary9, namely author, contributor, rights and license. OPMW also defines addi-

9http://dublincore.org/documents/dcmi-terms/

62

http://dublincore.org/documents/dcmi-terms/

Figure 4.10: Role capture in OPMW: the roles of the inputs and outputs used and gen-

erated by the activity removeDuplicates extend the OPM and PROV usage and generation

properties.

tional terms for referring to the start and end of the whole execution of the workflow,

the size of the produced files, the status of the final execution, the tool used to de-

sign the workflow, the tool used to execute the workflow, etc. Figure 4.11 shows an

example, where a template created by an agent (Phil) and later modified by another

agent (Daniel) using a workflow editor (Wings) has been successfully executed using

two workflow execution systems (Pegasus and Condor).

4.2 Scientific Workflow Publication

As we have shown in the related work section, scientists make their workflows public

using repositories like myExperiment, Galaxy or the LONI Pipeline. This normally

63

Figure 4.11: Example showing attribution metadata capture in OPMW.

follows a manual process, which relies on the users to describe the workflow and pro-

vide additional metadata. Furthermore, this only makes accessible the workflow itself,

and to explore each workflow step it is necessary to download it locally. In this sec-

tion we describe our approach for publishing workflows and their executions as linked

web resources, along with its benefits and showing a functional example in the Wings

workflow system (Gil et al., 2011).

64

4.2.1 Workflows as Linked Data Resources

Publishing the templates and execution traces of scientific workflows is a crucial step

for reuse, reproducibility and understanding. In order to be able to reference all the

resources of a workflow template and its associated workflow executions properly, we use

Universal Resource Identifiers (URIs) (Berners-Lee et al., 2005) following the Linked

Data principles10 (Bizer et al., 2009). URIs provide the mechanism to refer to the

different resources of a workflow unambiguously, while the principles consist on a set

of rules or expectations which indicate how the URIs should behave when someone

(human or machine) accesses them.

The Linked Data principles state (Bizer et al., 2009): 1) that we should “use URIs

as names for things”, 2) that we should “use HTTP URIs so that people can look up

those names” (making those URIs resolvable and available in any browser), 3) that we

should “provide useful information when someone looks up a URI ” (by showing the

resources that are related to the URI) and 4) that we should “include links to other

URIs”, so that whoever is exploring the data can discover other resources. When a

URI complies with the four principles, it becomes a Linked Data URI.

Using Linked Data URIs enables several important advantages to the publication

of scientific workflows:

• Linking to third party web resources, which could be used for the input of

scientific workflows. For instance, referring to proteins in the Protein Data Bank

by using their published URI;

• Get linked from other applications by pointing to the URIs that we publish,

which include both the workflows and the data generated by them;

• Produce interoperable results within different systems without having to

define particular catalog structures and access interfaces;

However, publishing Linked Data is not straightforward. There are several decisions

and naming conventions to take into consideration when making the URIs accessible.

In the following section we present a Linked Data publication methodology adapted to

publish scientific workflows.

10http://www.w3.org/DesignIssues/LinkedData.html

65

http://www.w3.org/DesignIssues/LinkedData.html

4.2.2 A Methodology for Publishing Scientific Workflows as Linked

Data

Although there are publications that introduce and explain the Linked Data generation

and publication process (Heath and Bizer, 2011), there are no methodologies that indi-

cate the steps to follow in the scientific workflow domain. Therefore, we have adapted an

existing methodology used in the publication of governmental data (Villazón-Terrazas

et al., 2012, 2011) and other domains like energy consumption (Radulovic et al., 2015)

to achieve our purpose.

The methodology consists on five main steps that are described as follows:

• Specification, which consists on an effort to identify the set of data sources to

use, decide on their URI design and agree on a license for the resulting dataset.

• Modelling, where the users decide which vocabularies should be used to expose

the data.

• Generation, which summarizes the process of transforming the data from their

heterogeneous formats to RDF with the help of existing tools; cleaning the data

and linking it with other existent sources.

• Publication, where the resulting dataset and its metadata is made available by

using a triplestore (i.e., a database for the storage and retrieval of RDF (Villazón-

Terrazas et al., 2011)).

• Exploitation, which consists on the usage of the published data through browsers

for enabling their consumption manually or automatically.

Many of the steps of the methodology can be easily adapted to scientific workflows.

For the specification step, the set of data sources to use is reduced to deciding the

workflow management systems we want to integrate. From each workflow management

system it is necessary to identify how they specify workflow templates, workflow in-

stances and execution traces, as those are the files that will have to be transformed and

linked to each other when publishing the data.

The URI design is almost the same as in the original methodology. The base URI

should be a URL under a domain of our control, the URIs for the ontology terms

should have the word “ontology” on their schema and the URIs for the assertions or

66

instances should have the word “resource” followed by the class name of the instance.

In the scientific workflow domain we may want to distinguish different releases of the

execution traces. Therefore we have included an optional parameter indicating the

dataset name under which the data is made public:

Base URI = http://mydomain.org

Ontology URI = http://mydomain.org/ontology

Assertion URI = http://mydomain.org/[dataset/]resource/ClassName/instanceNa-

me

Regarding the appropriate license, publishers should first discuss the privacy issues

and requirements of the data about to be released. In some domains privacy is a concern

(e.g., for some workflows processing genomic data), in those cases an open license would

not be appropriate. However, there are many areas of science where privacy is not an

issue and that would benefit tremendously of an open license for sharing both data and

workflows as Linked Data. Since the goal of publishing a scientific workflow is to make

it available for others to reuse and repurpose, we recommend to use an open license.

Several catalogs of licenses are already available on the Web11 12 13, and can be used

for selecting the most appropriate one.

For the modeling step, we propose to use and adapt the OPMW vocabulary intro-

duced in Section 4.1.3, although other more recent PROV based vocabularies like the

Research Object ontologies (Belhajjame et al., 2015) or ProvONE14 could be used as

well.

The generation step may be considered the most complex step in the whole process,

as it depends on the features of the workflow system. Normally the templates, instances

and execution traces can be exported from the workflow system and have to be mapped

to the representation model chosen in the modeling step. Although several tools are

proposed in the methodology to help in the conversion (Villazón-Terrazas et al., 2011),

it is often necessary to develop a script that performs the transformation. The script

should create the appropriate URIs to refer to the resources, instead of relying on the

local IDs proposed by the workflow system. A very important aspect of this step is

that templates, instances and traces have to be linked to each other according the

11http://datahub.io/es/dataset/rdflicense
12http://creativecommons.org/
13http://opendatacommons.org/licenses/
14http://purl.org/provone

67

http://datahub.io/es/dataset/rdflicense
http://creativecommons.org/
http://opendatacommons.org/licenses/
http://purl.org/provone

representation model in order to be able to exploit these relationships later. In our

methodology we exclude linking workflow inputs to other datasets of the Linked Open

Data cloud, as we focus on making public the workflow contents for their reusability.

Finally, the publication step and exploitation step are followed as in the original

methodology by using the set of tools proposed in (Villazón-Terrazas et al., 2011). We

illustrate the whole methodology with an example in the next section.

4.2.3 Linked Data Workflows: An Example

In order to describe how each of the steps can be applied in practice, we have applied

our methodology successfully to the Wings workflow system (Gil et al., 2011).

For the specification step, we chose to export and link workflow templates and

execution traces out of the logs produced by the system. All the URIs generated by

our system are “Cool URIs”15, following the W3C recommendations. This means that

they are produced under a domain under our control, they are unique, and they are

not going to change. Each URI identifies a different resource that can be individually

accessed and dereferenced with content negotiation (i.e., the same URI can handle

requests for users (returning HTML) and machines (returning RDF)). By following our

methodology, we decided to apply the following URI naming scheme:

Base URI = http://www.opmw.org/

Ontology URI = http://www.opmw.org/ontology/

Assertion URI = http://www.opmw.org/export/resource/ClassName/instanceName

As for the license, we chose the Creative Commons Attribution-ShareAlike 3.016,

which allows anyone to reuse the published data if proper attribution is provided.

The modeling step is performed with the OPMW vocabulary. Then, in the genera-

tion step, Wings execution traces and instances are converted automatically to OPMW

with a transformation script17. Camel case notation is used for composing the identi-

fiers of classes and instances, and a MD5 encoding (Rivest, 1992) is used to generate a

unique identifier for each resource when necessary (e.g., a used file, an execution step,

etc.).

15http://www.w3.org/TR/cooluris/
16http://creativecommons.org/licenses/by-sa/3.0/
17https://github.com/dgarijo/WingsProvenanceExport

68

http://www.w3.org/TR/cooluris/
http://creativecommons.org/licenses/by-sa/3.0/
https://github.com/dgarijo/WingsProvenanceExport

For the publication step, the RDF files are loaded into a triple store and made public

through a public endpoint (i.e., an access point for both human users and machines).

We have selected Openlink Virtuoso18 as our triple store because of its robustness,

support from the community and mechanisms to create a public access. An additional

file store is needed to store the files referred to in the links available in the triple store

(inputs, intermediate results and outputs of the workflows). The file store is available

in our local servers (http://www.opmw.org).

Now the endpoint can be exploited through generic visualizing tools like the linked

data browser Pubby19 or the workflow explorer WExp20 (which we developed to explore

the available data easily), but it can also be accessed programmatically from other

applications. The access point for a workflow is simply a URI (of a workflow template

or an execution), and all the components and datasets in the workflow can be accessed

from it.

For example, a template called “Aquaflow edm” would have the URI “http://www-

.opmw.org/export/resource/WorkflowTemplate/AQUAFLOW EDM” (template names are

unique in Wings) and type WorkflowTemplate, (i.e. http://www.opmw.org/ontology/-

WorkflowTemplate). As shown in Figure 4.12, by simply resolving the URI in a browser,

a user would see an HTML page21 with the descriptions involving that URI, i.e., the

provenance of the template (contributor, license, primary source, documentation, etc.),

the steps and variables that belong to the template, the executions associated to the

template and the rest of its metadata. If we edit the request headers to ask for a

machine-readable representation, we would receive the same information in the appro-

priate syntax (e.g., Turtle22 or RDF/XML23, depending on the request). This approach

can be used to access any resource (by resolving its URI) from any template or exe-

cution stored in the repository. If a user or program aims to perform a more complex

query (e.g., returning all the stored templates with at least two executions), they may

issue it to the public SPARQL endpoint24, which will check and return the results in

18http://virtuoso.openlinksw.com/
19http://wifo5-03.informatik.uni-mannheim.de/pubby/
20http://purl.org/net/wexp
21http://www.opmw.org/export/page/resource/WorkflowTemplate/AQUAFLOW_EDM
22http://www.w3.org/TR/turtle/
23http://www.w3.org/TR/rdf-syntax-grammar/
24http://opmw.org/sparql

69

http://virtuoso.openlinksw.com/
http://wifo5-03.informatik.uni-mannheim.de/pubby/
http://purl.org/net/wexp
http://www.opmw.org/export/page/resource/WorkflowTemplate/AQUAFLOW_EDM
http://www.w3.org/TR/turtle/
http://www.w3.org/TR/rdf-syntax-grammar/
http://opmw.org/sparql

the desired format. Some query examples and pointers to resources can be browsed

online25.

Figure 4.12: Different approaches for accessing workflow resources: a user may request

to resolve a URI of a workflow by browsing a web page (HTML representation). Instead,

a machine would request a machine readable format like RDF/XML or Turtle. For both

machines and human users, more complex queries about resources may be issued through

the public endpoint.

4.3 Summary

In Section 4.1.3 we have described OPMW, the model we developed to represent sci-

entific workflow templates, instances and execution traces along with a methodology

to make them public as linked data resources. OPMW is aligned to existing standards

like PROV and reuses well-known models like OPM. In addition, we tested and val-

idated OPMW by successfully answering our competency questions and by including

the model as part of the WEST workflow ecosystem (Garijo et al., 2014d), where a set

of heterogeneous tools for workflow design, analysis and execution use it as an interme-

diate representation. Thus, OPMW is interoperable with applications consuming both

PROV and OPM models and addresses the first research objective of this thesis (RO1,

definition of a model based on standards that represents and links workflow templates,

execution and their associated resources).

25http://opmw.org/node/6

70

http://opmw.org/node/6

OPMW was designed to represent the most simple workflow constructs that are

common to most scientific workflow systems (i.e., the relation between workflow tem-

plates, instance and executions, usage and generation of inputs, intermediate results

and outputs and their key metadata), leaving more complex constructs like conditional

branches or loops out of scope of the model. The rationale behind this decision is that a

simpler representation may enable a better understanding (and hence, adoption) among

the community, facilitating retrieving key metadata of each input and workflow step

of the workflow and helping to understand the dataflow. In this regard, OPMW was

designed to expose workflow information on the Web in a simple manner. As described

in Section 2.1.3, there are more complex models for workflow interchange between dif-

ferent workflow systems (e.g., BPEL, SHIWA) to which OPMW can be mapped for

exploiting this information.

Table 4.1 shows a comparison between OPMW and other recent approaches for

representing scientific workflows and their relationships. On the one hand, the most

similar approaches are the Research Object (Belhajjame et al., 2015) and ProvONE26

models, which aim to provide a simple representation of workflows. In essence, the

difference among the models is small, and part of the reason for the overlap is that

they have been developed in parallel. Some of the differences are that the RO and

ProvONE models have support for explicitly modeling sub-workflows and use data

links to specify the connections between components of workflows. Instead, OPMW

connects input data and output data to the workflow steps directly, in order to simplify

the overall representation. Additionally, OPMW has explicit relationships for capturing

workflow metadata. Since all these vocabularies extend the PROV standard, their

representations are compatible at a higher level of abstraction.

On the other hand, the Conceptual Workflow model (Cerezo, 2013) is a top-down

approach, with a different scope than OPMW. Rather than providing a simple repre-

sentation between workflow templates and execution traces, the Conceptual Workflow

model studies how an abstract process can be transformed into a specific workflow.

The scope is therefore in modeling and representing the relationship between abstract

workflow templates and instances, which may follow a layered abstraction.

In section 4.2.2 we described a methodology that addresses the second research

objective of this thesis (RO2, definition of a methodology for publishing workflows and

26http://purl.org/provone

71

http://purl.org/provone

Table 4.1: Comparison between OPMW and other scientific workflow vocabularies for

representing workflow templates, instances and execution traces. The asterisk (*) on the

WT column indicates that the model makes no distinction when representing WT and WI.

Approach Domain

Control-

based

constructs

WT

constructs

WI

constructs

WET

constructs

Metadata

constructs

Research

Object

Scientific

workflows
No Yes* Yes Yes No

ProvONE
Scientific

workflows
No Yes* Yes Yes No

Conceptual

Workflows

Scientific

workflows
Yes Yes Yes No No

OPMW
Scientific

workflows
No Yes* Yes Yes Yes

their resources on the Web). The methodology allows the publication of whole sets

of workflows and their associated resources automatically, simplifying this task for the

user. Following our methodology, we created a repository of online accessible workflows

and traces which will be used in the next stages of our work. To our knowledge, this is

the first repository of fully resolvable linked scientific workflows and executions27.

27accessible at http://www.opmw.org/sparql

72

http://www.opmw.org/sparql

Chapter 5

Workflow Abstraction and Reuse

As stated in Chapter 3, one of our hypotheses aims to determine whether patterns and

abstractions can be obtained from a repository of workflows (H1.1). In particular, our

goal is to find those abstractions that capture generic features of groups of workflows

(or workflow fragments) independently from their contexts. For example, one way of

achieving abstraction is by publishing workflow templates and linking them to their

provenance executions traces. The templates act as a high level abstraction of a set of

executions, grouping them as entities with the same original plan. Other types of ab-

stractions may be obtained with the different types of workflow abstractions introduced

on Chapter 2.2, such as macro abstraction, skeletal planning or layered abstraction.

However, even after defining these abstractions, workflows may be difficult to under-

stand due to their their complex nature. A workflow may contain several scientifically-

significant analysis steps, combined with auxiliary data preparation or result deliv-

ery activities, and in different implementation styles. This difficulty in understanding

stands in the way of reusing workflows by potential adopters. In this chapter we aim

to address this issue by performing several analyses, from both abstraction and reuse

perspectives.

In Section 5.1, we characterize the domain independent conceptual abstractions for

workflow steps that can be found in scientific workflows upon manual inspection. We

refer to these abstractions as workflow motifs, and we have defined them after analyzing

workflows manually from several workflow systems. Motifs are provided through (i) a

characterization of the kinds of data-operation activities that are carried out within

workflows, which we refer to as data-operation motifs, and (ii) a characterization of

73

the different manners in which those activity motifs are realized/implemented within

workflows, which we refer to as workflow-oriented motifs.

In Sections 5.2 and 5.3 we explore how users reuse workflows and workflow frag-

ments, analyzing whether those motifs related to workflow reuse are relevant for users

or not. The analyses were performed from different perspectives. One analysis con-

sists on an automatic processing of workflows, while the other one surveys users on the

usefulness of reusing workflows and workflow fragments.

5.1 Workflow Motifs

In order to define a catalog of common domain independent abstractions in scientific

workflows (objective RO3 of this thesis) we performed a manual analysis of the current

practices in scientific workflow development. The objectives of the analysis were the

following:

1. To reverse-engineer the set of current practices in workflow development through

an empirical analysis.

2. To identify workflow abstractions that would facilitate understandability and

therefore effective reuse.

In this section we present the results of the empirical analysis, performed manu-

ally over 260 workflow descriptions from four different workflow management systems.

Based on this analysis, we propose a catalog of common workflow motifs.

5.1.1 Experimental Setup

We used workflows from Taverna (Wolstencroft et al., 2013), Wings (Gil et al., 2011),

Galaxy (Goecks et al., 2010) and VisTrails (Scheidegger et al., 2008). The choice of

these systems was due to the availability of workflow corpora through repositories (as

introduced in Section 2.1.4.2, myExperiment (Roure et al., 2009) for Taverna, Crowd-

labs (Mates et al., 2011) for VisTrails and the public endpoint we created in Section

4.2.2 (Garijo and Gil, 2011) for Wings) and portals (for Galaxy1), but also because of

their core similarities:

1https://main.g2.bx.psu.edu/

74

• They provide similar workflow modeling constructs. The selected workflow sys-

tems are data flow oriented, which is consistent with our models, and they operate

on large and heterogeneous data.

• All of them are open-source scientific workflow systems, initially focused on per-

forming in-silico experimentation on the life sciences (Taverna, Galaxy, VisTrails)

and geosciences (Wings) domains. Taverna, Wings and VisTrails now also have

workflows across other different domains like astronomy, machine learning, mete-

orology, etc.

• All of these systems can interact with third party tools and services, and they

include a catalog of components for performing different operations with data.

Despite being similar, we can still find some differences among the selected systems.

In particular, VisTrails has explicit mechanisms for the basic control constructs (e.g.,

conditionals and looping), while Taverna, Wings and Galaxy are observers of the pure

data flow paradigm (although there are implicit ways of implementing such control

structures).

The variety of environments in which these systems operate highlights some other

differences as well. While Taverna allows users to specify workflows that make use of

third party services (i.e., an open environment), Wings requires that the resources and

the analysis operations are made part of its environment prior to be used in experiments

(i.e. controlled environment). However, the differences between these systems are not

a significant differentiating factor, as Taverna allows more control to be added to the

environment through the addition of plug-ins, and Wings can establish connection to

third party services via custom components. VisTrails and Galaxy may be positioned

at an intermediate point, since they provide access to external web-services but also

build on a comprehensive library of components.

A summary of the commonalities and differences among the workflow systems in-

cluded in the analysis can be seen in Table 5.1.

5.1.2 Workflow Corpus Description

For our analysis, we have chosen 260 heterogeneous workflows in a variety of domains.

We analyzed a set of public Wings workflows (89 out of 132 workflows), part of the

75

Table 5.1: Summary of the main differences in the features of each workflow system:

explicit support for control constructs (i.e., conditional, loops), whether the user interface

is web-based or not, whether the environment is open or controlled, and the execution

engine used.

Workflow

System

Control

Constructs
GUI

Environment

type
Engine

Taverna No Desktop/Web Open/Controlled Taverna

Wings No Web Controlled

Pegasus,

Apache

OODT

Galaxy No Web Open/Controlled Galaxy

VisTrails Yes Desktop/Web Open/Controlled VisTrails

Taverna set (125 out of 874 Taverna2 workflows in myExperiment), a set of Galaxy

workflows (26 out 145 of workflows) and part of the VisTrails set (20 out of 274 work-

flows).

• For Wings, we analyzed all workflows from drug discovery, text mining, domain

independent, genomics and social network analysis domains.

• For Taverna we analyzed workflows that were available in myExperiment (Roure

et al., 2009). We determined the groups/domains of workflows by browsing the

myExperiment group tags2 and identifying those domains which contained work-

flows that were publicly accessible at the time of the analysis. For the Taverna

dataset we analyzed cheminformatics, genomics, astronomy, biodiversity, geo-

informatics and text mining domains. The distribution of workflows to domains

is not even, as it is also the case in myExperiment. Taverna is the workflow system

with the largest public collection of workflows, in order to obtain a manageable

subset of workflows for manual analysis, we made random selections from each

identified domain.

• For Galaxy we chose all the documented workflows available in the public work-

flow repository3 (i.e., those workflows with annotations explaining the function-

ality of their components). Since Galaxy is specialized in the biomedical domain,

2http://www.myexperiment.org/groups
3https://main.g2.bx.psu.edu/workflow/list published

76

most of the workflows are from the genomics domain, although three of them do

text analysis operations in files.

• For VisTrails we chose a set of documented workflows available in Crowdlabs

and tutorials, which include domains in medical informatics and genomics. It is

worth mentioning that some workflows are domain independent (machine learning

workflows, visualization and rendering of datasets, annotation of texts, etc.), so

they have been included under a new category.

When selecting workflows for this analysis we made sure to include workflows that

were developed with the intention of backing actual data-intensive scientific investiga-

tions. We didn’t include any example or testing workflows, which are used for demon-

strating the capabilities of different workflow systems. A summary of the number of

workflows analyzed from each domain can be seen in Table 5.2, while Table 5.3 pro-

vides additional information on the size of workflows analyzed in terms of the range

and average number of analysis tasks.

Table 5.2: Number of workflows analyzed from Taverna (T), Wings (W), Galaxy (G) and

VisTrails (V).

Domain No of workflows
Source

T W G V

Drug Discovery 7 0 7 0 0

Astronomy 51 51 0 0 0

Biodiversity 12 12 0 0 0

Cheminformatics 7 7 0 0 0

Genomics 90 38 28 23 1

Geo-Informatics 6 6 0 0 0

Text Analysis 45 11 31 3 0

Social Network Analysis 5 0 5 0 0

Medical Informatics 7 0 0 0 7

Domain Independent 30 0 18 0 12

TOTAL 260 125 89 26 20

77

Table 5.3: Maximum, minimum and average size in terms of the number of steps within

workflows per domain.

Domain Max. Size Min. Size Avg. Size

Drug Discovery 18 1 7

Astronomy 33 1 7

Biodiversity 12 1 4

Cheminformatics 20 1 9

Genomics 53 1 6

Geo-Informatics 14 3 8

Text Analysis 15 1 5

Social Network Analysis 7 3 6

Medical Informatics 29 8 4

Domain Independent 20 1 6

5.1.3 Methodology for Workflow Analysis

Our analysis was performed based on the workflow template, documentation, metadata

and traces available for each of the workflows within the corpus studied. Each workflow

was inspected using the associated workbench/design environment. Documentation on

workflows is provided within workflow descriptions and in repositories in which the

workflows are published. We performed a bottom-up manual analysis that aimed to

surface two orthogonal dimensions regarding workflow steps in workflows: 1) outline

what kind of data-operation activity is being undertaken by a workflow step and 2)

how that activity was implemented. For example, a visualization step (data oriented

activity) can be implemented in different ways: via a stateful multi-step invocation,

through a single stateless invocation (depending on the environmental constraints and

nature of the services), or via a sub-workflow.

The only automated part of the data collection was associated to the workflow size

statistics for Taverna workflows. The myExperiment repository provides a REST API4

that allows retrieving information on Taverna workflows. Using this facility we were

able to automate the collection of partial statistics regarding the number of workflow

steps and the number of input/output parameters of Taverna workflows.

4http://wiki.myexperiment.org/index.php/Developer:API

78

Rather than hypothesizing possible motifs up front, we built up a set of motifs as we

progressed with the analysis. For each workflow we recorded the number of occurrences

of each motif according to the documentation, and metadata descriptions provided by

the original authors (independently of the workflow system it belonged to). In order to

minimize misinterpretation and human error, the motif occurrences identified for each

workflow were cross-validated by at least another colleague. Whenever there was a

conflict in the annotation, the metadata and documentation associated to the workflow

was reviewed again, discussing the possible interpretations until agreement.

5.1.4 A Motif Catalogue for Abstracting Scientific Workflows

We divided motifs into two categories: data-operation motifs (i.e., the motifs related

to the main functionality undertaken by the steps of the workflow), and workflow-

oriented motifs (i.e., how the data-operation motifs are undertaken in the workflow).

An overview of the motif catalog is provided in Table 5.4. In this section we describe

each type of motif in detail.

5.1.4.1 Data-Operation Motifs

Data Preparation

Data, once it is retrieved, may need several transformations before being able to be

used in a workflow step. The most common activities that we have detected in our

analysis are described below.

Combine: Data merging or joining steps are commonly found across workflows. The

combine motif refers to the step or group of steps in the workflow aggregating informa-

tion from different inputs. An example can be seen in Figure 5.1, where the results of

two branches are merged for presenting a single output result.

Filter: The datasets brought into a pipeline may not be subject to analysis in their

entirety. Data could further be distilled, sampled or could be subject to extraction of

various subsets.

79

Table 5.4: Overview of our catalog of workflow motifs.

Data-Operation Motifs

Data Preparation

Combine

Filter

Format Transformation

Input Augmentation

Output Extraction

Group

Sort

Split

Data Analysis

Data Cleaning

Data Movement

Data Retrieval

Data Visualization

Workflow-Oriented Motifs

Inter-Workflow Motifs

Atomic Workflows

Composite Workflows

Workflow Overloading

Intra-Workflow Motifs

Internal Macros

Human Interactions

Stateful (Asynchronous) Invocations

Format Transformation: Heterogeneity of formats in data representation is a known

issue in many scientific disciplines. Workflows that bring together multiple access or

analysis activities usually contain steps for format transformations, sometimes called

“Shims” (Hull et al., 2004), that typically preserve the contents of data while converting

its representation format.

80

Input Augmentation: Data access and analysis steps that are handled by external

services or tools typically require well formed query strings or structured requests as

input parameters. Certain tasks in workflows are dedicated to the generation of these

queries through an aggregation of multiple parameters. An example of this is provided

in the workflow of Figure 5.2: For each service invocation (e.g. getJobState) there are

steps (e.g. getJobState Input) that are responsible for creating the correctly formatted

inputs for the service.

Output Extraction: Outputs of data access or analysis steps could be subject to

data extraction to allow the conversion of data from the service format to the workflow

internal data carrying structures. This motif is similar to the format transformation

and filter motifs, and is associated with steps that perform the inverse operation of

input augmentation. An example is given in Figure 5.2, where output extraction steps

(e.g. getJobState output) are responsible for parsing the XML message resulting from

the service (getJobState) to return a singleton value containing solely the job state.

Group: Some steps of the workflow reorganize the input into different groups or

classify the inputs on a given collection of data items. For example, grouping a table

by a certain category or executing a SQL GROUP-BY clause on an input dataset.

Group is different from combine, as the former may reorganize the information in an

input without the need to aggregate it from several sources.

Sort: In certain cases datasets containing multiple data items/records are to be sorted

(with respect to a parameter) prior to further processing. The sort motif refers to those

steps. Figure 5.1 shows an example where the inputs resulting from the data analy-

sis (comparisonResults) are sorted (ComparisonResultsV2 component) before being

merged in a subsequent step.

Split: Our analysis has shown that many steps in the workflows separate an input

(or group of inputs) into different outputs. For example, the splitting of a dataset into

different subsets to be processed in parallel in a workflow.

81

Data Analysis

This motif refers to a broad category of tasks in diverse domains, and it is relevant be-

cause it often represents the main functionality of the workflow. An important number

of workflows are designed with the purpose of analyzing or evaluating different fea-

tures of input data, ranging from simple comparisons between the datasets to complex

protein analysis to see whether two molecules can be docked successfully or not. An

example is given in the workflow of Figure 5.2 with a processing step named warp2D,

and the steps named SMAPV2 in Figure 5.1 with a ligand binding sites comparison of

the inputs. These steps carry on the main functionality of the workflow, but they are

surrounded by other data preparation and filtering steps.

Data Cleaning/Curation

We have observed the steps for cleaning and curating data as a separate category from

data preparation and filtering. Typically these steps are undertaken by sophisticated

tooling/services, or by specialized users. A cleaning/curation step essentially preserves

and enriches the content of data (e.g., by a user’s annotation of a result with additional

information, detecting and removing inconsistencies on the data, etc.).

Data Movement

Certain analysis activities that are performed via external tools or services require the

submission of data to a location accessible by the service/tool (i.e., a web or a local

directory respectively). In such cases the workflow contains dedicated step(s) for the

upload/transfer of data to these locations. The same applies to the outputs, in which

case a data download step is used to chain the data to the next steps of the workflow.

The data deposition of the workflow results to a specific server would also be included

in this category. In Figure 5.2, the DataUpload step ships data to the server on which

the analysis will be done.

Data Retrieval

Workflows exploit heterogeneous data sources, remote databases, repositories or other

web resources exposed via SOAP or REST services. Scientific data stored in these repos-

itories are retrieved through query and retrieval steps inside workflows. Certain tasks

within the workflow are responsible for retrieving data from such external sources into

82

the workflow environment. We also observed that certain data integration workflows

contain multiple linked retrieval steps, being essentially parametrized data integration

chains. Data retrieval is different from data movement, as it refers to those steps of the

workflow selecting particular data to be consumed by the workflow (through a query,

REST API, etc.) instead of performing a bulk upload of the workflow resources.

Data Visualization

Being able to show the results is as important as producing them in some workflows.

Scientists use visualizations to show the conclusions of their experiments and to take

important decisions in the pipeline itself. Therefore, certain steps in workflows are

dedicated to generation of plots, graphs, tables and XMLs or CSV file outputs from

input data. This category is essentially for result delivery of the experiment results.

5.1.4.2 Workflow-Oriented Motifs

We divide this category into two different groups, depending on whether motifs are

observed among workflows, by analyzing the relations of the workflow with other work-

flows (inter workflow motifs); or within workflows, by exploring the workflow itself

(intra workflow motifs).

Inter Workflow Motifs

Atomic Workflows: A significant number of workflows perform an atomic unit of

functionality, which does not require to be decomposed in smaller workflow fragments.

Typically, these workflows are designed to be included in other workflows as sub-

workflows, part of a larger experiment. Atomic workflows are the main mechanism

of modularizing functionality within scientific workflows.

Composite Workflows: This motif refers to those workflows including one or more

workflows as a sub-workflow. The usage of sub-workflows appears as a common practice

for reusing modular functionality from multiple workflows. It is important to note

that there are two ways in which this motif may appear in a collection of workflows:

highlighted explicitly by the creator of the workflow (i.e., the user deliberately included

other workflows as part of the one being designed) or detected implicitly by the analysis

83

(i.e., a given workflow was created without any sub-workflows, but there are other

existing workflows on the collection that are equivalent to fragments of the current

workflow). The latter is common in systems were the creation of sub-workflows is not

included among the features of the workflow system.

Workflow Overloading: Our analysis has shown that authors tend to deliver multi-

ple workflows with the same functionality, but operating over different input parameter

types. An example is performing an analysis over a string input parameter versus per-

forming it over the contents of a specified file, generalizing a workflow to work with

collections of files instead of single inputs, etc. Overloading is a response to the hetero-

geneity of environments, directly related to workflow re-use (as most of the functionality

of the steps in the overloaded workflow remains the same).

Figure 5.1: Sample motifs in a Wings workflow fragment for drug discovery. A comparison

analysis is performed on two different input datasets (SMAPV2). The results are then

sorted (SMAPResultSorter) and finally merged (Merger, SMAPAlignementResultMerger).

84

Intra workflow motifs

Internal Macros: This category refers to those groups of steps in the workflow that

correspond to repetitive patterns of combining tasks. An example can be seen in Figure

5.1, where there are two branches of the workflow performing the same operations in

the same order (SMAPV2 plus SMAPResultSorterV2 steps).

Human Interactions: We have observed that some scientific workflows systems in-

creasingly make use of human interactions to undertake certain activities within work-

flows. These steps are often necessary to achieve some functionality of the workflow that

cannot be (fully) automated, and requires human computation to complete. Typical

examples of such activities are manual data curation and cleaning steps (e.g., anno-

tating a Microsoft Excel file), manual filtering activities (e.g., selecting a specific data

sub-set to continue the experiment), etc.

Stateful/Asynchronous Invocations: Certain activities such as analyses or visual-

izations could be performed through interaction with stateful (web) services execution

(i.e., that allow for creation of jobs over remote grid environments). Such activities

require invocation of multiple operations at a service endpoint using a shared state

identifier (e.g. Job ID). An example is given in the workflow of Figure 5.2, where the

service invocation warp2D causes the creation of a stateful warping job. The call then

returns a job ID, which is used to inquire about the job status (getJobStatus), and to

retrieve the results (DownloadResults).

The workflow motif catalog is available as an ontology for annotating workflows5.

Usage examples can be seen in the ontology documentation6.

5.1.5 Workflow Analysis Results

In this section we report on the frequencies of the data-operation and workflow-oriented

motifs within the workflows selected for our analysis. We also discuss how they are

correlated with the workflow domains. The data resulting from this analysis is available

5http://purl.org/net/wf-motifs
6http://vocab.linkeddata.es/motifs/version/14062013/

85

http://purl.org/net/wf-motifs
http://vocab.linkeddata.es/motifs/version/14062013/

Figure 5.2: Sample motifs in a Taverna workflow for functional genomics. The workflow

transfers data files containing proteomics data to a remote server and augments several

parameters for the invocation request. Then the workflow waits for job completion and

inquires about the state of the submitted job. Once the inquiry call is returned the results

are downloaded from the remote server.

online7. A detailed explanation of the frequencies for each domain and for each workflow

system can be seen in (Garijo et al., 2014a).

Figure 5.3(a) illustrates the distribution of data-operation motifs across the do-

mains. The analysis of this figure shows the predominance of the data preparation

motif, which constitutes more than 50% of the data-operation motifs in the majority of

domains. This is an interesting result as it implies that data preparation steps are more

common than any other activity, specifically those that perform the main (scientifically-

7Results available at http://dx.doi.org/10.6084/m9.figshare.1598104, http://purl.org/net/

ro-motifPaper#inputs

86

http://dx.doi.org/10.6084/m9.figshare.1598104
http://purl.org/net/ro-motifPaper#inputs
http://purl.org/net/ro-motifPaper#inputs

(a) Distribution of data-operation motifs per domain.

(b) Distribution of data preparation motifs per domain. The social network analysis

domain is not included, as it does not have any data preparation motifs.

Figure 5.3: Distribution of the data-operation and data preparation motifs by domain.

significant) functionality of the workflow. The abundance of these steps is one major

obstacle for understandability, since they burden the documentation function and cre-

ate difficulties for the workflow re-user scientists. The social network analysis domain

87

is an exception, as it consults, analyzes and visualizes queries and statistics over con-

crete data sources without performing any data preparation steps. Figure 5.3(a) also

demonstrates that within domains such as genomics, astronomy, medical informatics

or biodiversity, where curated common scientific databases exist, workflows are used as

data retrieval clients against these databases.

Drilling down to data preparation, Figure 5.3(b) shows the dominance of filter, input

augmentation and output extraction motifs for most domains. Input augmentation and

output extraction are activities which can be seen as adapters that help plugging data

analysis capabilities into workflows. Their number is higher in workflows relying on

third party services, i.e., most Taverna domains (biodiversity, cheminformatics, geo-

informatics); while filtering is higher in Wings, Galaxy and VisTrails workflows. Figure

5.3(b) also demonstrates how the existence of a widely used common data structure for

a domain, in this case the VOTable in astronomy8, reduces the need for domain-specific

data transformations in workflows.

Some of the differences between the systems are reflected in the motifs results.

As displayed in the comparative Figure 5.4 for the life sciences domain (a general

domain shown in Table 5.5 including the genomics, drug discovery, biodiversity, chem-

ical informatics and medical informatics domains), in Wings, Galaxy and VisTrails

input augmentation and output extraction steps are much less required (around 30%,

20% and 20% respectively versus almost 50% in Taverna) as the inputs are either

controlled (Galaxy, VisTrails) or strongly typed (Wings) and the data analysis steps

are pre-designed to operate over specific types of data. In Figure 5.5(a) we observe

that Wings workflows do not contain any data retrieval or movement steps, as data

is pre-integrated into the workflow environment (data shipping activities are carried

out behind the scenes by the Wings execution environment) whereas in Taverna the

workflow carries dedicated steps for querying databases and shipping data to necessary

locations for analysis. Galaxy and VisTrails also include components to retrieve content

from external datasets into the environment (2% and 10% respectively), although we

didn’t find steps for moving the data of intermediate steps to external services among

the set of workflows analyzed. In the case of Galaxy this happens because most data

retrieval and moving steps are performed transparently to the workflow execution (in-

dividual components are used to retrieve the data to the user domain, and that data is

8http://www.ivoa.net/Documents/VOTable/

88

Figure 5.4: Distribution of the data preparation motifs in the life sciences workflows.

Table 5.5: Distribution of the workflows from Taverna (T), Wings (W), Galaxy (G) and

VisTrails (V) in the life sciences domain.

Domain No. of workflows Source

Drug Discovery 7 W

Biodiversity 12 T

Cheminformatics 7 T

Genomics 90 T (38), W(28), G (23), V (1)

Medical Informatics 7 V

Total 123

then used as input of the workflow); while in VisTrails the main analysis steps of the

analyzed workflow set were performed using custom components.

Another interesting finding is the amount of visualization steps found in the life

sciences domain (Figure 5.5(a)). One feature of VisTrails and Galaxy are the tools

included for the visualization of workflow results. In VisTrails workflows almost 40%

of the motifs found are visualization steps, but this percentage is very reduced in

Galaxy (less than 5%). This is due to a separate visualization tool in Galaxy9 which

reduces the need for visualization steps in the workflows. As shown in Figure 5.5(a),

the visualization steps in Taverna and Wings are considerably smaller (around 2% and

9https://main.g2.bx.psu.edu/visualization/trackster

89

(a) Distribution of the data-operation motifs in the life sciences workflows.

(b) Distribution of the workflow-oriented motifs in the life sciences workflows.

Figure 5.5: Distribution of motifs in the life sciences workflows.

90

10% respectively).

The impact of the difference in the execution environments of the analyzed workflow

systems is also observed on the workflow-oriented motifs, as can be seen in Figure 5.5(b).

Stateful invocations motifs are not present in Wings, Galaxy and VisTrails workflows,

as all steps are handled by a dedicated workflow scheduling framework/pipeline system

and the details are hidden from the workflow developers. In Taverna’s default configu-

ration, there are no execution environments or scheduling frameworks prescribed to the

users. Therefore the workflow developers are 1) either responsible for catering for vari-

ous different invocation requirements of external resources, which may include stateful

invocations requiring execution of multiple consecutive steps in order to undertake a

single function 2) they can develop specific plug-ins that wrap-up stateful interactions

and boiler plate steps.

Regarding workflow-oriented motifs, Figure 5.6 shows that human interaction steps

are increasingly used in scientific workflows, especially in the biodiversity and chemin-

formatics domains. Human interaction steps in Taverna workflows are handled either

through external tools (e.g., Google Refine10), facilitated via a human-interaction plug-

in, or through local scripts (e.g., selection of configuration values from multi-choice

lists). However, we observed that several boiler-plate set-up steps are required for the

deployment and configuration of external tooling to support the human tasks. These

boiler plate steps result in very large and complex workflows. Wings and VisTrails

workflows do not contain human interaction steps. Galaxy is an environment that is

heavily based on user-driven configuration and invocation of analysis tools (some pa-

rameters and inputs of the workflows can even be changed after the execution of the

workflow has started). However, based on our definition of Human Interactions, i.e.

analytical data processing undertaken by a human, the Galaxy workflows that we have

analyzed do not contain any human computation steps either.

The workflow overload motif also plays a relevant role, appearing in almost 10% of

the analyzed workflows. Workflows containing this motif are considered advanced forms

of sub-workflow development. By executing workflows in different settings, authors

provide overloaded versions of the same functionality in different workflows to increase

the coverage on target uses.

10https://code.google.com/p/google-refine/

91

https://code.google.com/p/google-refine/

Figure 5.6: Distribution of workflow-oriented motifs grouped by domain.

Finally, Figure 5.6 shows a large proportion of the composite workflows and internal

macro motifs, up to more than 60% in some domains. This confirms that the use of sub-

workflows (or repetitions of sets of steps among a group of workflows) is an established

best practice for modularizing functionality and reuse. Sub-workflows can also be

used to encapsulate the preparation steps and multi-step service invocations within

“components” (Davies, 2011), in order to reduce obfuscation. However, users usually

have to identify these sub-workflows with common functionality by hand. Ideally, a

workflow system would suggest ways to simplify a workflow based on other published

workflows, instead of relying on users to do so. We will address this point in Chapter

6.

5.1.6 Summary

The main findings of our analysis can be summarized as follows:

• We identified 6 major types of data-operation motifs and 6 types of workflow-

oriented motifs that are used across different domains. From the former group,

the most common motif is the data preparation, highlighting that an important

effort in the creation of the workflow is dedicated to tool integration and data

92

operation activities. Regarding workflow-oriented motifs, the amount of internal

macro motifs and composite workflows indicate that reuse is a common practice

among scientists publishing their workflows.

• Some differences in the motif distribution are caused due to the features of the

workflow systems. The frequency by which the motifs appear depends on the

differences among the workflow environments and differences in domains. For

instance, data preparation motifs are correlated with the type of execution en-

vironment for which the workflow is designed. In a workflow system such as

Taverna, many steps in the workflow can be dedicated to the moving and re-

trieval of heterogeneous datasets, and stateful resource access protocols. On the

contrary, in a workflow system such as Wings, VisTrails and Galaxy we notice

that some data preparation motifs, such as data moving, are minimal and in

certain domains absent.

According to the analysis, common workflow fragments seem to be crucial for under-

standing how different workflows relate to each other and for creating different types of

abstractions, which should have an impact on workflow reuse. Here we hypothesize that

it is possible to detect commonly occurring workflow fragments automatically (H1.2),

and that they can be useful for potential reusers (H1.3). Thus, in an effort to un-

derstand in depth the relation between workflows, workflow fragments and their reuse

among the workflow corpora, the following sections perform two types of analysis. The

first one, on Section 5.2, details an automatic analysis exploring over more than 850

unique workflows in order to confirm the findings found manually. The second analysis,

in Section 5.3, aims to explore the user perspective on workflow fragment reuse and

usefulness, highlighting the common practices of a community of users.

5.2 Analysis of Workflow and Workflow Fragment Reuse

Given the results obtained in the manual analysis presented in Section 5.1, we explore

in this section how workflows are reused among a collection of workflows. Furthermore,

we analyze how workflow fragments defined by users (as sub-workflows) are reused in

other workflows. In order to do so, we first introduce the corpus used in the analysis,

and then we analyze how many of the workflow fragments (and workflows) defined by

93

users actually appear in other workflows. The analyses is made from two perspectives:

reuse in a corpus mainly designed by single users and reuse in a corpus with workflows

from many users.

It is worth mentioning that the corpus used on this analysis is different from the one

presented in the motif analysis presented in Section 5.1, and there are several reasons for

this decision. The first one is to test whether the high number of composite workflows

found in the previous workflow corpus is consistent with the reuse analysis on a corpus

from a different workflow system. Similarly, the second reason is that most workflow

reuse analyses presented in the state of the art (Chapter 2) are from the Taverna

workflow system, and we wanted to confirm whether workflow reuse was also common

in other workflow systems or not. The third reason is the amount of available workflows

from the workflow system being explored, the LONI Pipeline (described in Chapter 2).

Finally, the fourth reason is the lack of support for sub-workflow creation by some of

the systems considered in the motif manual analysis, which would reduce considerably

the corpus, as we want to assess the reuse of user-defined workflow fragments as well.

5.2.1 Experimental Setup

We performed our analysis on 6815 workflows created with the LONI Pipeline workflow

system. From these workflows, 854 are unique, obtained after applying a simple filter to

remove duplicates and single step workflows. Additionally, we have selected the LONI

Pipeline because it has two features that are of interest for this work:

• Grouping tools that allow users to define a “grouping” of components in a

workflow. A grouping is a user-defined sub-workflow, which can be copied/pasted

in different workflows and annotated. Groupings are shown in workflows as single

steps which can be explored (and expanded) when necessary, following a macro

abstraction.

• A public library of components identified in a unique way with well defined

functionality, which allows users to reuse popular components, although they can

create their own.

Figure 5.7 shows an example of a workflow with groupings defined by scientists using

the LONI Pipeline. The figure shows a minimal deformation target (MDT) pipeline to

94

Figure 5.7: An example of a workflow in the LONI Pipeline, with workflow steps (compo-

nents) shown as circles. Outputs are shown as triangles while the input (linearly registered)

is a smaller circle. The connections among steps represent the dataflow. Users can select

sub-workflows to create groupings of components (shown with dashed lines), which can be

reused in the same workflow and in others (shown as rectangular components).

serve as an unbiased average brain template for neuro-imaging studies. The grouping,

which has been expanded in the figure (on top right) contains three steps and another

grouping (compose vector fields).

5.2.1.1 Workflow Corpus

The workflows are distributed among four different corpora. Originally, we obtained

two corpora from two different users, containing all the workflows created by them or

in collaboration with other people. A third corpus contains the runs of 62 unique users

submitted to the LONI Pipeline servers during January 2014. Finally, on a second

iteration of our analysis, another user incorporated more workflows to the experiment.

The main features of each corpus are described below:

1. User Corpus 1 (WC1) A set of 790 workflows (441 workflows after filtering du-

95

plicated structures and single-step workflows) designed mostly by a single user.

Some of the workflows are the result of collaborations with other users, which

produced different versions of workflows originally produced by this user. The

domain of the workflows is in general medical imaging (brain image understand-

ing, 3D skull imaging, genetic modeling of the face, etc.), and some are still used

by the LONI Pipeline community. Other workflows were designed for a specific

purpose and are not reused anymore.

2. User Corpus 2 (WC2) A set of 113 well-documented workflows (94 after filtering)

created, validated and curated by one user, sometimes in collaboration with oth-

ers. Most of the workflows have been made public for others to reuse, and range

from neuro-imaging to genomics. Some of the workflows were developed as early

as 2007, and many of them are being used in different institutions.

3. Multi-user Corpus 3 (WC3) A set of 5859 workflows (269 after filtering), sub-

mitted to LONI pipeline for execution by 62 different users over the time lapse

of a month (Jan 2014). The number of filtered workflows descends drastically

from the input corpus as many of the executions are of the same workflow or are

one-step workflows designed for testing.

4. User Corpus 4 (WC4) A set of 53 workflows (50 after filtering), designed mainly

by a single user. The domains of the workflows are focused also on medical

imaging (ranging from genomics to neuro-image analysis), and contain workflows

that have been reused or are versions of other workflows of the corpora. Some of

these workflows are large (more than 90 steps).

Table 5.6: Corpus overview.

Corpus Original size Size after Filtering

WC1 (Single User) 790 441

WC2 (Single User 113 94

WC3 (Multi User) 5859 269

WC4 (Single User) 53 50

96

In all four corpora, workflows are likely to reuse components from the public library,

what allows groupings to be reused across different workflows. Table 5.6 provides an

overview of the size of each corpus before and after filtering.

5.2.1.2 Analysis Methodology

The analysis was performed in an automated way for each corpus, once duplicate work-

flows and single-step workflows had been removed. In order to have a full notion on

how workflows and groupings are reused, we performed two independent sub-analysis

respectively.

In both analyses, each workflow or grouping was transformed to a labeled graph

(according to P-Plan) and compared against another in terms of its steps. Since in the

LONI Pipeline each component has a unique identifier, we use them to label the nodes

of the graph (the label becomes the type of the workflow step). Therefore, two nodes

are the same if they have the same label (i.e., the same type). Both analyses follow a

similar approach. First, an initial pass over the dataset gathers the different workflows

or groupings to compare. Then, a second iteration compares each graph (workflow or

grouping) against all the workflows of the corpus, annotating those workflows where

the graph is found. The method to do this comparison is by transforming each graph

to a SPARQL query (i.e., the standard language for querying RDF data (Harris et al.,

2013)) and issue it against the target workflow. Further details of this approach are

described in Chapter 6, where we use it to find workflow fragments in workflows.

It is worth mentioning that with our approach we compare whether a workflow or a

grouping is included in another workflow regardless of the grouping annotations made

by users in the target workflow. That is, if a grouping consists on three steps A, B and

C where C consumes the output of B and B consumes the output of A; and we find

these steps in a workflow with the same dependencies among them, we consider that the

grouping is found in that workflow (even if the steps A, B and C of the workflow have

not been annotated as a grouping by a user). This is a key difference with other related

work, where reuse is measured just in terms of the explicit workflows and sub-workflows

created by users.

Similarly to what happens with workflows, if a grouping is duplicated we will only

consider it once, and single-step and empty groupings are not considered for reuse.

Groupings are not further compared against groupings, just against workflows.

97

5.2.2 Workflow Reuse Analysis Results

Table 5.7 shows how workflows are reused in the corpora, while tables 5.8 and 5.9 refer

to the distribution and reuse of the groupings.

As we already suspected, a significant portion of the workflows are reused

(an average of 25.5% of the workflows are reused in the four corpora) considering those

workflows that have been reused at least one time in the rest of the corpus. The more

workflows the corpus has (as in the first and third corpora), the more workflows are

reused. This makes sense, as the workflows of each corpora are designed for the same

domain, and many have overlapping functionality.

Table 5.7: Reuse of workflows (wfs) for each corpus.

Corpus
Unique filtered

workflows

Reused wfs.

(f>=2)

Total times wfs.

are used in corpus

Most occur

of a wf.

WC1 441 175 1638 94

WC2 94 13 43 9

WC3 269 106 619 25

WC4 50 7 19 5

As shown in table 5.8, the total number of groupings is more than twice than the

number of unique groupings, indicating that it is a common practice adopted by the

users of the workflow system. Also, groupings are not found alone in workflow corpora.

It is common to find more than four groupings in a workflow (when a workflow uses

groupings).

Table 5.9 illustrates how groupings are heavily reused, more than workflows

are reused. A range of 44% to 65% of the unique groupings are reused in other

workflows for the four corpora, and the number of times they are used in a corpus is

much higher than the total number of groupings defined by users. This suggests that

some users include in their workflows steps that other users have defined as groupings.

The number of workflows with groupings is higher when a single user created the

corpus (309 out of 441, 41 out of 94 and 17 out of 50 from corpus WC1, WC2 and

WC4 versus 70 out of 269 of corpus WC3). In WC1, WC2 and WC4 the creators of

the workflows are experienced users who know their previous workflows and are likely

98

to reuse them, while the high number of users contributing to WC3 makes it difficult

for all of them to be aware of the workflows from other colleagues.

Another interesting fact is the size of the groupings, being up to 92 in corpus

WC4 and down to 0 in corpora WC2 and WC4. After exploring several workflows

showing this practice, we have realized that the high number of steps for some groupings

happens because users sometimes declare a whole workflow as a grouping. A possible

explanation is that this would either facilitate copying and pasting the grouping into

other templates, or help organizing the workflow for the creator: when workflows are

too complex, users often separate their functionality in several smaller workflows. Then,

each smaller workflow is declared a grouping and copied and linked in a bigger workflow.

Regarding the minimum size of groupings, we have discovered that sometimes work-

flow creators group unused inputs or outputs in workflows, leading to groupings of 0

steps. A possible explanation to groupings of size 1 is that the workflow creators anno-

tate extra instructions when using a specific component in a workflow (in our analysis

only groupings of size bigger than one are considered, shown in the unique multi-step

grouping column of Table 5.8).

Table 5.8: Statistics and distribution of groupings in the corpora.

Corpus
Total

qroup.

Unique

multi-step

qroup.

Wf with

qroup.

Avg.

group.

per wf

Max nof

steps in

qroup.

Min n of

steps in

qroup.

WC1 1379 146 309 4 56 1

WC2 294 87 41 7 39 0

WC3 277 79 70 4 60 1

WC4 245 40 17 14 92 0

Table 5.9: Reuse of groupings (group) for each corpus.

Corpus
Unique filtered

groupings

Reused group.

(f>=2)

Total times group.

are used in corpus

Most occurrences

of a grouping

WC1 146 65 1842 176

WC2 87 40 227 29

WC3 79 47 246 24

WC4 40 26 103 7

99

In summary, our automated analysis confirms what our manual analysis initially

highlighted: workflow reuse is a common practice. However, it is less frequent than

grouping reuse. Groupings not only identify commonly reused fragments of workflows,

but also seem to be used to modularize and simplify them for a better understanding.

Groupings are widely reused independently of the users that have contributed to the

corpora, although their number is higher when single users contribute to the corpus.

After seeing the results of the analysis, we believe that suggesting some of these com-

monly used groupings may be beneficial for users designing and visualizing workflows.

Thus, in order to explore this possibility, we present in the following section a user

survey on workflow reuse and discuss the results.

5.3 Workflow and Workflow Fragment Reuse: User Sur-

vey

Although some workflow reuse analysis and benefits have been introduced in Section

2.3, there are barely any studies that ellaborate on the reasons that users give for reusing

workflows and workflow fragments. In this section we aim to understand such reasons

by discussing the results of a survey on workflow reuse performed in labs that use the

LONI Pipeline to create workflows. The LONI Pipeline community of users provides

a great opportunity to study how workflow fragments are used in practice, whether

they improve reuse or not, and the barriers that users find in reusing workflows and

workflow fragments.

5.3.1 Experimental Setup

We selected the LONI Pipeline as our system of choice for this analysis for three main

reasons. First, the automatic analysis described in Section 5.2 has shown that it is

a workflow system with a high rate of reused workflows and groupings. Second, the

LONI Pipeline defines the ability to define groupings, as introduced in Section 5.2,

allowing users to define and reuse groups of steps that could be copied and pasted in

new workflows. Finally, the third reason is the interest of the community for exploring

workflows and their fragments. Workflow mining tools like the Workflow Miner11 have

11http://pipeline.bmap.ucla.edu/products-services/workflow-miner/

100

been developed for helping users browsing how different workflow components depend

on each other in a catalog of workflows.

The fact that the LONI Pipeline includes tools to create, mine and view workflow

groupings is an indication that users and/or developers have found a need for reusing

workflow fragments. In our analysis, we set out to understand the current level of

adoption, the perceived benefits, and the barriers regarding reuse of workflows and

workflow fragments.

We created a survey and sent it to the mailing list of users of the LONI Pipeline.

We included users who use the LONI Pipeline system installed at the University of

Souther California (USC), but due to time limitations we did not include many other

users that have downloaded the system and run it themselves in their own servers.

The survey was conducted on-line, and the responses were anonymous. The complete

survey can be found in Annex B, while the the responses are available online12.

The survey included two kinds of questions. Some questions presented a choice of

answers using a five-level Likert scale (Likert, 1932). For example, for the question

“Is reusing workflows from others useful?” we offered five answers: very often, often,

sometimes, occasionally, and never. Other questions offered a list of possible answers

and allowed users to provide their own answers. For example, for the question “Why

is reusing previously created workflows useful?” the list of possible answers included

“It saves time”, “Workflows give a high-level diagram that helps remember what was

done”, and “Other”. If the latter was chosen, respondents could provide text with their

own reasons. Respondents could do more than one selection.

It is worth mentioning that the survey tackles the issue of workflow reuse gradually.

First, it issues questions regarding the reusability of software. Then it asks for the

reusability of methods (i.e., workflows) and ends up prompting questions regarding the

reusability of fragments of those workflows. This way we ensure that we cover all the

possible aspects of workflow reuse.

5.3.2 User Survey Report

We received a total of 21 responses from the users in the lab, ranging from students

to experienced users and programmers. In this section we discuss the results of the

survey, highlighting in boldface our findings.

12http://dx.doi.org/10.6084/m9.figshare.1572327

101

http://dx.doi.org/10.6084/m9.figshare.1572327

5.3.2.1 Writing and Sharing Code

We wanted to have some reference for comparing the responses about workflow sharing,

so the survey included some questions about code sharing. Figure 5.8 shows responses

regarding the importance of writing code and reusing code. Writing code is consid-

ered very important for this area of research. Sharing code is not considered

to be as important. These answers imply that the responders are well aware of the

importance and value of their software.

Figure 5.8: Distribution of the answers regarding the utility of writing and sharing code

and the utility of the workflow system.

5.3.2.2 Adopting a Workflow System

Figure 5.8 also shows responses regarding the workflow system basic utility in creat-

ing workflows for their work. The overwhelming majority of responders found

the workflow system useful. This perhaps reflects a self-selection bias of the user

population that responded, but is nevertheless useful to put in perspective the survey

responses and the conclusions of this study. Figure 5.9 shows the most usual sizes of

workflows according to the respondents. Workflows of fewer than 10 steps seem to

be the most common. We asked for the reasons not to use the workflow system. We

assumed that even users of the workflow system may not use it for all their analyses.

We offered one choice and then free text answers. Two respondents selected the given

102

choice of “It takes time to learn to create workflows”. Free-form answers included “Mi-

nor changes to underlying scripts or tuning of parameters may require more work than

just editing scripts themselves,” and “Sometimes it is easier to run a certain command

in loops or batches or to edit the various input/output parameters (file names, paths,

options, etc.) on the command line, rather than clicking through the workflow GUI ”.

Overall, all respondents seem to find utility in the workflow system.

Figure 5.9: Preferred size of created workflows.

5.3.2.3 Using Workflows

Figure 5.10(a) shows the survey answers regarding the utility of creating and sharing

workflows. Respondents responded overwhelmingly that creating workflows is very

useful, but, although useful, the reuse of workflows was seen as less useful.

Therefore, reuse is not the only reason why workflows are created. Reusing workflows

from a user’s prior work is considered as useful as reusing workflows from others.

When asked “Why is creating workflows useful?”, respondents were given the choices

shown in Table 5.10. The number of respondents that selected each choice is also shown

in that table. The benefits of workflows that the majority of respondents

agreed with include time savings, organizing and storing code, having a

visualization of the overall analysis, and facilitating reproducibility. Many

respondents agreed to other benefits that included debugging complex code, and en-

couraging the adoption of standard ways to do things. Free-form responses included:

103

“Workflows are mainly used for population studies so that you can run many subjects in

the same time, and it is easy to pass around to someone who doesn’t know how to code”,

“The main reason is that it is easy to send a prepared pipeline to another researcher and

they can usually figure out how to use it, regardless of their programming knowledge”,

“It’s a really intuitive visualization of the underlying code. Sort of brings the code ’to

life’ !” and “Parallelizing without having to use the Sun Grid Engine script”.

Table 5.10: Survey results concerning why it is useful to create workflows.

Workflows save time 13

Easier to track and debug complex code 9

Convenient way to organize/store code 11

Help write more organized code 6

Help make code more modular/reusable 4

Help make methods more understandable 8

Visualization of overall analysis 11

Workflows facilitate reproducibility 10

Table 5.11a shows responses for the question of why it is useful to reuse workflows

in new analyses. Overwhelmingly, users found that using workflows saves them

time. They also found the visualization of the workflow useful. Free form answers

included: “We often re-run the exact same or very similar analysis steps on our data

(e.g., pre-processing, statistical tests), so often we only need to change the inputs and

outputs (and maybe some parameters)”.

Table 5.11b shows responses for why it is useful to share workflows with others.

The overwhelming majority of respondents said workflows are useful for both non-

programmers and for teaching new students. It also saves them time because

they do not need to re-implement code. No free form answers were specified.

Table 5.11c shows answers for why are workflows not shared. Respondents did not

offer very overwhelming reasons for not sharing workflows. Free form answers included

“The best pipelines to share are the ones that have all the kinks worked out, so we can

explain how to edit the input and output file names and then the person can just run

it”.

Table 5.11d shows responses for why it is not useful to reuse workflows from oth-

ers. Respondents did not offer very overwhelming reasons for not reusing workflows

104

from others. Free form answers included “Documentation can be easily fixed by adding

comments or providing a verbal/written explanation along with the pipeline”.

Table 5.11: Survey results with multiple choice answers concerning benefits of sharing

workflows.

a Is reusing workflows in new analyses useful?

Saves time 19

Gives a diagram of what was done 13

b Why is it useful to share workflows with others?

Non-programmers can use them 20

New students can easily learn 19

No need for others to re-implement code 14

Adoption of standard ways to do things 9

c Why are workflows not shared?

Others would not want to use them 1

Others ask too many questions to the creators 2

Workflows from others are difficult to understand 3

It is difficult to understand how to prepare data for a workflow 3

d Why is it not useful to reuse workflows from others?

Workflows from others are difficult to understand 4

It is difficult to understand how to prepare data for a workflow 2

Workflows created by others are too specific 1

It is hard to take workflows created by others and make them work 2

5.3.2.4 Using Groupings

Figure 5.10(b) shows the answers regarding the utility of sharing and reusing groupings.

As with workflows, reuse is not the only reason why groupings are created.

Unlike workflows, reusing groupings from one’s own work is more useful than

reusing groupings from others.

Table 5.12 shows the results for the multiple-choice questions about groupings.

Most respondents agreed that groupings help simplify workflows. Groupings

also make workflows more understandable by others. Like workflows, groupings

105

(a) Distribution of the answers regarding the utility of sharing and reusing workflows.

(b) Distribution of the answers regarding the utility of sharing and reusing groupings.

Figure 5.10: Utility of workflows and groupings.

save time. Groupings also make code more modular and more understandable,

more so than workflows. Groupings are seen as useful to non-programmers and

students. Very few respondents gave any reasons for not sharing groupings and not

reusing groupings from others. A free-form answer for why groupings are not used

was “It is a pain to dissect when debugging to know where things failed”. For why are

groupings not shared, one respondent selected that it is hard to explain what they do,

and a free form answer was “Others want a finished product, not pieces that they have

to put together on their own”.

106

In summary, if we compare the responses in Figures 5.10(a) and 5.10(b) and Tables

5.11 and 5.12, workflows are considered generally more useful than groupings.

However, more respondents said that groupings help make their code more

modular and understandable.

Table 5.12: Survey results with multiple choice answers concerning benefits of sharing

groupings.

a Why is creating groupings useful?

Visualization of the analysis 10

To simplify workflows that are complex overall 12

To make workflows more understandable to others 12

b Is reusing groupings in new analyses useful?

Groupings save time 12

Help make code more modular/reusable 10

Help make methods more understandable 7

c Why is it useful to share groupings with others?

Non-programmers can use them 12

New students can easily learn 11

No need for others to re-implement code 9

Adoption of standard ways to do things 6

d Why are groupings not shared?

Others would not want to use them 0

Others ask too many questions of the creators 1

Workflows from others are difficult to understand 4

It is difficult to understand how to prepare data for a grouping 1

e Why is it not useful to reuse groupings from others?

Groupings from others are difficult to understand 2

It is difficult to understand how to prepare data for a grouping 3

Groupings created by others are too specific 1

It is hard to take groupings created by others and make them work 4

107

5.4 Summary

In this chapter we defined the scope of the workflow abstractions tackled in our work,

focusing on those related to workflow reuse. We defined a catalog of common workflow

motifs, which are domain independent conceptual abstractions of workflow steps, by

doing an empirical analysis on a corpus from four different workflows systems. This ad-

dresses the third research objective of this thesis (RO3, define a catalog of domain inde-

pendent abstractions in scientific workflows) and contributes to the research challenges

RCAbstract-1 (difficulty on determining which are the significant steps of a workflow),

RCAbstract-2 (absence of catalog of abstractions based on workflow step functionality)

and RCAnnot-1 (facilitate workflow annotation). The results of the analysis highlight

that three motifs in particular are widely used among the corpora: atomic workflows,

composite workflows and internal macros, which indicate that workflow reuse is a com-

mon practice among scientists of different domains.

We have attempted to confirm and understand further two aspects of workflows

and workflow fragments: reuse and usefulness. Therefore we have performed analyses

on another workflow system (the LONI Pipeline), different from the ones explored in

the manual analysis, with an active community of users and a significant corpus of

workflows.

We first performed an automated analysis of workflows to measure reuse, based on

the sets of steps users have defined in the corpora (user groupings). We also performed

a user survey on 21 users to find out their opinion with respect of workflow and sub-

workflow sharing and reuse. The results speak for themselves: the workflow reuse rate

is high (with a minimum of 12% and increasing up to 30% in cases where the size of the

collection is more than 200 workflows), and the grouping reuse rate is even higher (44%

to 65% of the groupings are reused). It is interesting that users consider workflows

more useful than groupings from the point of view of reuse, although they recognize

that groupings help modularizing and understanding their code better.

Given that users tend to reuse groupings and workflows, our hypothesis is that

by mining commonly used fragments of workflows we can discover new groupings or

even workflows that are useful for them when designing workflows. Hence, in the

next chapter we describe our approach for detecting these common workflow fragments

automatically.

108

Chapter 6

Workflow Fragment Mining

As we showed in the survey described in Section 5.3, common groupings are helpful

mechanisms for simplifying workflows and helping their understanding to users. How-

ever, currently the grouping definition is completely manual. Unless published online

and documented, the only way to explore other people’s groupings is to individually

download their workflows and explore them locally. As shown in Chapter 3, we hypoth-

esize that by mining an existing workflow corpus we will be able to extract common

sub-workflows and suggest them as potential useful groupings to users. In this chap-

ter we introduce our approach for detecting automatically common sub-workflows of

a workflow corpus, which we refer to as common workflow fragments, defined as in

Definition 2 below and using (Jiang et al., 2012) as reference.

Definition 2 A workflow fragment Wf = (N,A,LN , LA, ϕN , ϕA) of a workflow

W = (V,E,LV , LE , ϕV , ϕE) is a connected sub-workflow of W, i.e., N ⊆ V with LN ⊆
LV and ∀v ∈ NϕN (v) = ϕV (v) and A ⊆ E with LA ⊆ LE and ∀a ∈ AϕA(a) = ϕE(a).

Given a workflow fragment wf, a corpus of workflows C=(c1, c2, ..., cn) and function

F: < wf,C > → N that calculates the number of times wf appears in C, a common

workflow fragment is a workflow fragment which appears at least f times on the

workflow corpus (with F(wf)=f and f ≥ 2). There are two ways in which F could count

the occurrences of a workflow fragment wf in a corpus. If F considers all the occurrences

of wf in C, then we refer to F as frequency. If F counts only one occurrence of a

workflow fragment per workflow, (i.e., F =| ci |
/
wf ⊆ ci) then we refer to F as

support.

An overview of our approach for workflow fragment mining is shown in Figure 6.1.

This approach is implemented in FragFlow as an open source framework and it is

109

available online1.

First, a data preparation step is necessary to filter and format the workflow corpora

according to the models proposed in Chapter 4 (Section 6.1). Then we apply different

graph mining techniques (further described on Section 6.2.1), and filter the results to

produce a set of candidate common workflow fragments (Section 6.3). Finally, the

fragments are visualized, linked to the workflows of the corpus where they appear and

statistics with their frequency and size are calculated (Section 6.4 and 6.5).

Figure 6.1: An overview of our approach for common workflow fragment mining. The

rectangles represent major steps, while the ellipses are the inputs and results from each

step. Arrows represent where an input is used or produced by a step.

1https://github.com/dgarijo/FragFlow, http://dx.doi.org/10.5281/zenodo.11219

110

https://github.com/dgarijo/FragFlow
http://dx.doi.org/10.5281/zenodo.11219

6.1 Data Preparation

FragFlow takes as input a workflow corpus, which may integrate worfklows from one

or more workflow systems represented with OPMW’s labeled directed acyclic graphs

(LDAGs, see Chapter 4). Other serializations are supported, but OPMW’s facilitates

the conversion of workflows to each of the formats needed by the tools introduced in

the following sections.

In this step workflows are converted to a simplified LDAG format. For each LDAG,

the labels of the vertices in the graph corresponds to the types of the step in the

workflow, while the edges capture the dependencies between different steps (using the

P-Plan vocabulary). Data dependencies are removed to simplify the graph and reduce

the overhead of the graph mining techniques applied in further steps. An example can

be seen in Figure 6.2, where the full workflow in the left is represented as the LDAG in

the middle, which is itself represented with P-Plan as shown in the right. By removing

the data dependencies, four nodes in the graph are eliminated. Workflows are processed

at their lowest granularity, i.e., groupings and other user annotations are ignored.

Duplicated workflows are removed from the input corpus. This is necessary for

reducing the noise of the sample and avoiding obtaining misleading common workflow

fragments. For example, if the source of the corpus are the monthly executions sub-

mitted to a server, then it is likely to have workflows that were submitted several times

for execution (hence, repeated). If duplicated workflows are not removed, the most

common fragments would be the most frequently executed workflows, which would not

indicate fragments that are reused a lot.

Single step workflows are also removed, as they are not meaningful workflow frag-

ments. Single step workflows are often run for testing individual components, which

are then plugged into a bigger workflow.

6.2 Common Workflow Fragment Extraction

The second step of FragFlow is the graph mining algorithm. Our approach for detecting

common fragments in a corpus of workflows relies on the application of existing graph

mining techniques. In this section we introduce an overview of the main different graph

mining approaches related to the problem of sub-graph mining, along with their features

and the candidate algorithms adopted in the thesis. For a detailed explanation of these

111

Figure 6.2: Simplifying workflows: by removing the data dependencies on the input graph

of the left, we reduce the overhead for graph mining algorithms (middle and right).

and other similar techniques for graph and tree mining we refer the reader to (Jiang

et al., 2012).

6.2.1 Frequent Sub-graph Mining

When representing workflows as graphs, finding the common workflow fragments of

an input corpus is an adaptation of the Frequent Sub-graph Mining (FSM) problem,

also referred to as Frequent Sub-graph Matching in the literature (Jiang et al., 2012).

The objective of FSM is “to extract all the frequent sub-graphs, in a given data set,

whose occurrence counts are above a specified threshold” (Jiang et al., 2012). The main

difference with our case is that we are not interested in obtaining all the workflow

fragments, just those that are useful for potential reuse. Hence, we first mine all the

common workflow fragments and then we filter them with the techniques explained in

section 6.3.

The core of FSM is (sub)graph isomorphism detection, a problem with NP-Complete

112

complexity (Cook, 1971). In our case, we will base our work on the definitions intro-

duced in (Jiang et al., 2012), briefly summarized in Definition 3.

Definition 3 A graph G1 = (V1, E1, LV1 , LE1 , ϕV1 , ϕE1) is isomorphic to another

graph G1 = (V2, E2, LV2 , LE2 , ϕV2 , ϕE2) if there is a bijective function f : V1 → V2

which maps all the vertices of G1 to all the vertices of G2 and viceversa, i.e., (i)

∀v ∈ V1, ϕV1(v) = ϕV2(f(v)) (ii) ∀e = (u, v) ∈ E1 ⇔ ∀(f(u), f(v)) = e′ ∈ E2 and (iii)

∀ (u,v) ∈ E1 ϕE1(u, v) = ϕE2(f(u), f(v)). We say that G1 is sub-graph isomorphic

to G2 if and only if there is a sub-graph g ∈ G2 that is isomorphic to G1.

There are two main types of FSM approaches that are relevant to our work: inexact

FSM techniques (which can find generic workflow fragments, although may not deliver

all the existing frequent sub-graphs in the corpus) and exact FSM techniques (which

discover all the possible frequent sub-graphs in the input corpus). These techniques

are either frequency based or support based depending on the algorithm implementing

them. We describe and discuss them further bellow.

6.2.1.1 Inexact FSM Techniques

These are techniques that use approximate measures to calculate the similarity between

two graphs and detect the commonalities among them (Jiang et al., 2012). Figure 6.3

shows an example with three workflows (on top) in which an inexact mining technique

is applied (in this case, an iterative graph clustering approach). The most common

patterns detected by the technique can be seen in the lower part of the figure. Fragment

1 has an exact match in the three workflows, but the second fragment found groups two

very similar parts of the workflow together (a connection from a step A to Fragment

1).

In general, these techniques apply heuristics to detect the most common workflow

fragments efficiently. However, the solution provided is not always complete. Therefore,

these techniques may not identify all the possible common fragments in the corpus of

graphs.

There are many existing inexact graph mining algorithms, which have been devel-

oped for different domains (detection of molecules in genomics and chemistry, grammar

learning, etc.). Some common examples are SUBDUE (Cook and Holder, 1994; Holder

et al., 2002), which uses a graph clustering approach by applying various metrics to

113

Figure 6.3: Example of an inexact graph mining technique applied to three different

workflows (on top of the figure). The results can be seen in the lower part of the figure.

reduce the input graph on each iteration of the algorithm; GREW (Kuramochi and

Karypis, 2004b), which uses a similar approach by contracting the edges of the input

graph while rewriting it and adding special heuristics to find longer and denser frag-

ments; or SIGMA (Mongiovi et al., 2010), which uses a set-covered based approach by

associating a feature set with each edge of the candidate fragment. An extended list of

other algorithms can be found in (Jiang et al., 2012).

6.2.1.2 Exact FSM Techniques

These are techniques that aim to deliver all the possible frequent sub-graphs included in

a graph corpus. Since these techniques look for all possible solutions, the computational

overhead may be excessive in some cases, specially when the size of the common sub-

graphs grows. An example of results from this technique can be seen in Figure 6.4,

where it is applied to three different workflows (we have ignored single step fragments

for simplicity). In the results, we can see that the pattern A followed by B (A→ B),

which is included in A→ B → C with the same number of occurrences, is returned as

a solution as well.

114

Exact FSM techniques are more common than inexact FSM approaches. Exact FSM

techniques can be based on breadth first search (BFS) or depth first search (DFS) of

the graph. Well stablished examples of BFS are the Apriori Graph Mining algorithm

(AGM) (Inokuchi et al., 2000), which uses and adjacency matrix to represent graphs

in combination with an efficient level-wise search to discover common sub-graphs; or

the FSG algorithm (Kuramochi and Karypis, 2001), which builds on the Apriori algo-

rithm by adding a sparse graph representation to reduce storage and computation and

incorporating optimizations for the generation of candidates. Common DFS examples

are gSpan (Yan and Han, 2002), which uses a canonical representation for encoding

each sub-graph and set a lexicographic order for efficiently applying the DFS strategy;

or Gaston (Nijssen and Kok, 2004), which detects the common sub-graphs by detect-

ing first common paths, transforming them to trees and evolving them into graphs.

Additional exact graph mining techniques are described in (Jiang et al., 2012).

Figure 6.4: Example of an exact match graph mining technique applied to three different

workflows (on top of the figure). The results can be seen in the lower part of the figure.

115

6.2.1.3 Exact FSM versus inexact FSM techniques

Both exact and inexact FSM techniques have advantages and disadvantages. On the

one hand, inexact FSM techniques tend to find smaller but highly frequent patterns,

including some interesting patterns not detected by exact graph mining techniques.

However, they might not identify all potential useful workflow fragments since the

results they provide are incomplete.

On the other hand, exact FSM techniques identify all possible fragments in the

input corpus. However, when the frequent sub-graph size in the input dataset is high,

exact FSM techniques might return too many fragment candidates, while consuming

significant computational resources. Adjusting the parameters of the search (e.g., fre-

quency of the desired workflow fragments) is important in order to obtain the best

results.

6.2.1.4 Frequency-based versus support-based techniques

Another important aspect is how each technique considers the graphs of the input

corpus. Some approaches are frequency-based (see Definition 2), i.e., they consider

each candidate structure based on the number of times it appears, while others are

support-based (see Definition 2), i.e., they only consider a candidate structure once

per input graph. An example is depicted in Figure 6.5: if we consider our threshold

for detecting fragments to be at least two occurrences, the two step fragment A → D

would not be recognized by a support based approach, since it only occurs on Workflow

3. However, since it appears two times, a frequency based approach would consider the

sequence of steps as a candidate fragment. Similarly, the fragment A → B would be

considered to have occurred three times on a frequency based approach (two times on

the first workflow and one on the second), while on a support based approach it would

occur only two times. Both techniques produce valuable workflow fragments, and are

worth considering for detecting common workflow fragments.

6.2.2 Frequent Sub-graph Mining in FragFlow

FragFlow integrates three different existing techniques for extracting common workflow

fragments, one inexact graph mining approach with two different heuristics and two

exact graph mining techniques. These techniques were selected due to several reasons:

116

Figure 6.5: Example of a support-based approach versus a frequency-based approach. In

a support-based approach, the occurrences of the fragment A→ B are two (one occurrence

in the first workflow and another one on the second workflow), while in a frequency-based

approach the occurrences would be three (two times in the first workflow and one in the

second).

• Technique features: the algorithm represents a type of technique that could pro-

vide different results than other integrated graph mining technique (i.e., inexact

graph mining techniques with different heuristics, exact mining techniques versus

inexact mining techniques, etc.). In this work we have tried to use techniques that

could retrieve different types of patterns. Table 6.1 includes the different tech-

niques we have taken into account, based on the discussion presented in Section

6.2.1.

• Availability: the algorithm is open source and available for download, as the focus

of the work is not to reimplement algorithms described in papers.

• Documentation: the algorithm is documented or has guidelines describing how to

use it, providing examples, details on the input format, additional configuration

parameters, etc. Some of the algorithms described in the state of the art are

117

domain-specific and not trivial to reuse without a proper documentation.

• Input/output representation: the input of the algorithm follows a standard or

conforms to well used representation.

As shown in Table 6.1, FragFlow integrates two different heuristics of the SUB-

DUE algorithm (Cook and Holder, 1994) as inexact graph mining technique, the gSpan

algorithm (Yan and Han, 2002) as exact match depth first search technique and the

FSG algorithm (Kuramochi and Karypis, 2004a) as exact match breadth first search

technique. All the currently integrated inexact FSM techniques are frequency based,

while exact FSM techniques are support based. The rest of this section provides details

on each of the integrated approaches.

Table 6.1: Frequent sub-graph mining algorithms integrated in FragFlow.

Algorithm Mining type Occurrences Search Strategy

SUBDUE Inexact Frequency N/A

FSG Exact Support BFS

gSpan Exact Support DFS

6.2.2.1 SUBDUE

This algorithm was created to detect the most common and repetitive substructures

within structural data (Cook and Holder, 1994). SUBDUE uses a hierarchical graph

clustering approach by detecting on each iteration of the algorithm the most adequate

candidate structure and compressing the input graph with it. Each candidate structure

is selected by applying an heuristic, which determines the benefits of reducing the total

graph with that candidate structure. SUBDUE uses two main heuristics, which we

have used in our analyses:

1. Minimum description length (MDL): heuristic based on the minimum description

length introduced by Risannen (Rissanen, 1978). At each iteration, the best

candidate substructure is chosen by trying to minimize I(S) + I(G | S), where

S is the substructure, G is the input graph, I(S) is the bits necessary to encode

the substructure and I(G | S) is the number of bits necessary to encode G with

respect of S (Cook and Holder, 1994). After the candidate has been chosen, the

118

algorithm compresses the graph and continues iterating until no further reduction

can be applied.

2. Size: at each iteration, the best fragment is chosen according to how the over-

all size of graph collection is reduced. That is, this heuristic aims to minimize

size(S) + size(G | S), where S is the substructure, G is the input graph, size(S)

is the number of vertices plus the number of edges of the substructure and

size(G | S) is the number of vertices plus the number of edges of G with re-

spect of S. Thus, the most repetitive and the bigger the candidate substructure

is, the more possibilities it has to be selected.

SUBDUE has been updated through the years with different implementations to

make it able to operate with incremental data (Coble et al., 2005) (Coble et al., 2006)

or to allow it to recognize recursive structures (e.g., for concept learning) (Holder et al.,

2002). Even though more recent efforts have outperformed it, SUBDUE is recognized

in the literature as one of the most common algorithms for inexact sub-graph mining

(Jiang et al., 2012). In this work, we have used the implementation available on the

SUBDUE project website2, slightly tuned to produce additional metadata with the

results3.

6.2.2.2 FSG

Algorithm that uses a breadth first strategy based on the level-by-level expansion

adopted by the Apriori algorithm (Inokuchi et al., 2000).

FSG (Kuramochi and Karypis, 2004a) was designed to work efficiently on undirected

labeled graphs and scale reasonably well to very large graph datasets. FSG tackles the

problem of common sub-graph detection by applying the following approach: first, it

gathers all the single-edged and double-edged graphs. Then the algorithm iterates gen-

erating candidate sub-graphs (whose size is one edge greater than the previous frequent

ones) counting their frequencies and pruning any candidates that do not satisfy the

minimum support constraint (i.e., established minimum number of occurrences). The

algorithm stops when no further sub-graphs are generated in an iteration (Kuramochi

and Karypis, 2004a).

2http://ailab.wsu.edu/subdue/
3https://github.com/dgarijo/FragFlow/tree/master/SUBDUE_TOOL

119

http://ailab.wsu.edu/subdue/
https://github.com/dgarijo/FragFlow/tree/master/SUBDUE_TOOL

For efficiency, FSG uses a canonical representation of the graphs, i.e., a unique

code to represent the graph without depending on the order of its vertices and edges.

Unfortunately, this causes some of the fragments mined to be on an incorrect order

when applied to directed graphs (or LDAGs, as it is our case). In order to solve this

issue, we match the resulting fragments against those workflows were they were found

and fix the directionality of the fragment. We use the FSG implementation included

in the PAFI framework4.

6.2.2.3 gSpan

One of the most popular exact FSM techniques (Jiang et al., 2012), and the first one

designed using a DFS strategy. The gSpan algorithm (Yan and Han, 2002) uses a

canonical labeling system (a DFS lexicographic order) where each graph is assigned

a minimum DFS code. By doing this, gSpan turns the problem of finding common

sub-graphs to finding their respective minimum DFS codes. Based on the code, a

hierarchical graph is constructed and traversed, discovering all the most frequent sub-

graphs. Finally, gSpan applies pre-pruning, post-pruning and partial count pruning

to improve its performance (Yan and Han, 2002). In our work, we use the gSpan

implementation available on the ParSeMiS framework5.

6.3 Fragment Filtering and Splitting

The next step in FragFlow is filtering and splitting workflow fragments. The FSM

algorithms introduced in the previous section may return many results, including frag-

ments that overlap or that are included as part of other fragments. In order to present

to users only those fragments considered to be useful, we filter and refine the initial

results by introducing different classes of fragments, as described in Definition 4.

Definition 4 Given a workflow fragment wf, we denote it as a candidate workflow

fragment if it was produced by applying different FSM algorithms to a workflow corpus.

The order of a workflow fragment is a function o : wf → N which returns the number of

vertices in the workflow fragment (o(wf) = |V (wf)|). Fragments where o(wf) > 1 are

referred to as multi-step workflow fragment. Finally, if we have a set of workflow

4http://glaros.dtc.umn.edu/gkhome/pafi/overview/
5https://github.com/timtadh/parsemis

120

http://glaros.dtc.umn.edu/gkhome/pafi/overview/
https://github.com/timtadh/parsemis

fragments Wf = (wf1, wf2, ..., wfn), we denote as multi-step filtered fragments

(Mff) those multi-step workflow fragments that are not part of bigger workflow fragment

with the same number of occurrences, i.e., wfi ∈ Mff (1 ≤ i ≤ n) ⇔ (a) o(wfi) > 1,

(b) ∀wfj ∈ Wf, (1 ≤ j ≤ n), j 6= i, wfi ⊆ wfj ⇒ F (wfi) 6= F (wfj) (where F stands

for the frequency or support as defined in Definition 2).

Figure 6.6 shows an example, where five fragments are represented (f0, f1, f2, f3

and f4). As all the fragments have been produced by applying FSM techniques, all of

them are considered as candidate fragments. Candidates f1 to f4 have more than one

steps, and are thus considered multi-step fragments. From this group, two fragments

are part of other fragments (f1 is included in f2 and f3 in f4). However, the frequency

of f1 is equal to f2, while f3 occurs more times than f4. Therefore, f2, f3 and f4 are

considered multi-step filtered fragments, while f1 is not.

Figure 6.6: Types of fragments for filtering FSM results.

Our interest is to present to the user only the multi-step filtered fragments, that is,

fragments that have several steps and occur more than a minimum amount of times.

Single step fragments are not relevant, as they are already the minimum pieces of

functionality when creating a workflow. By filtering multi-step fragments we maximize

121

the size of the fragments presented to the user without removing those common smaller

fragments that are included as part of bigger fragments.

After filtering, the candidate fragments are splitted according to their category

(multi-step or multi-step filtered). This helps selecting the group of fragments to visu-

alize, calculate statistics or link to the original corpus.

6.4 Fragment Linking

Once the workflow fragments have been filtered, the next step in fragFlow is to bind

each fragment to its occurrences in the original workflow corpus, so as to make explicit

the conexion between workflows and their common fragments. This section introduces

first the model used to represent and bind fragments to results by extending the P-Plan

ontology; and then it describes how the different fragments are bound to the workflows

of the original corpus.

6.4.1 Workflow Fragment Representation

We created the Workflow Fragment Description Ontology (Wf-fd6) to represent work-

flow fragments and link them to their occurrences in a workflow dataset. Wf-fd was built

by extending the P-Plan ontology, as workflow fragments are always part of a workflow

template (a plan in P-Plan). Figure 6.7 shows an overview of the model, highlighting

the extended terms and how the workflow fragment representation benefits from P-Plan.

In order to differentiate between the classes and properties of both models, we use the

p-plan and wffd prefixes respectively. In Wf-fd, a WorkflowFragment is a subclass of

P-Plan’s plan. A workflow fragment has steps (reusing the step concept in P-Plan)

which represent the individual data manipulation steps of a particular fragment. The

order among the steps is also captured with the P-Plan property isPrecededBy between

fragment steps.

In Wf-fd there are two types of workflow fragments. On the one hand, a detected

result workflow fragment is a workflow fragment found after applying FSM tech-

niques or manual analyses on a workflow dataset. It identifies a unique fragment

that can be found in a workflow dataset (e.g., a workflow fragment result provided

by any of the graph mining techniques presented in Section 6.2.1). On the other hand,

6http://purl.org/net/wf-fd

122

http://purl.org/net/wf-fd

a tied workflow fragment represents how a detected result workflow fragment

was found in the workflow dataset, pointing to the particular steps of the workflows

that correspond to the fragment.

Figure 6.7: Wf-fd overview, extending the P-Plan ontology.

An example is represented in Figure 6.8, where two fragments (resultF1 and re-

sultF2) are found found two times (linked through their respective tied result workflow

fragments) in the workflows Workflow 1 and Workflow 2. As the figure shows, resultF2

is composed of two steps with types and <C>, while resultF1 is composed by

the step <A> followed by the fragment resultF2. This relationship is represented with

the wffd:isPartOfWorkflowFragment relationship.

ResultF2 is represented with a P-Plan’s multiStep (step2F1) in resultF1. The ad-

ditional step (step2F1) is necessary as the fragment resultF2 could be part of many

other fragments, and including it directly as part of resultF1 would lead to inconsis-

tencies when representing the rest of the results. For example, if we want to represent

the three fragments depicted in Figure 6.9 and we don’t make use of a multiStep

step, the modeling would result as shown in Figure 6.10(a), which is inconsistent (the

precedence relationship in R2 would not be properly represented) and adds complexity

for retrieving fragments based on their isPrecededBy relationship. Instead, if we use

the modeling proposed in Figure 6.10(b) (i.e., using the mutliStep to model fragment

inclusion in other fragments), the fragments would be represented properly and their

123

Figure 6.8: Wf-fd example. Two fragments (resultF1 and resultF2) are found twice

on the workflows Workflow1 and Workflow2. Their respective tied workflow fragments

indicate where in each of the workflows the fragments were found. Also, resultF2 is part

of resultF1, being recorded appropriately.

retrieval could be done by using just the isPrecededBy relationship.

This representation also allows each fragment to point to the specific steps of the

workflow where it was found (foundAs), as well as the workflow itself (foundIn).

Thanks to the model and the reuse of P-Plan, we enable queries to retrieve additional

metadata for each fragment and workflow step (e.g., number of times that a fragment

has been detected in a workflow, how the fragment was found, etc.).

6.4.2 Finding Fragments in Workflows

Once the final set of fragments has been obtained and refined, we link them to the

original workflow corpus, represented with the Wf-fd ontology. Since the FSM ap-

proaches do not always indicate where the fragments were found, we use a generic

124

Figure 6.9: Three sample fragments. Arrows represent the dependencies among the steps.

simple method to link the obtained results of both exact and inexact FSM techniques

to the input workflow corpus: we create queries from each fragment.

At this stage the input workflows are already represented in P-Plan from previous

steps. Thus, workflow fragments detected by exact FSM techniques are trivial to trans-

form to queries: each node is transformed to a step in P-Plan, and each dependency

among two steps is represented with the isPrecededBy relationship. As an example,

the fragment depicted in Figure 6.11(a), is transformed to the query below (expressed

in SPARQL):

SELECT ?wf ?stepA ?stepB ?stepC WHERE{

?stepA a <A>.

?stepB a .

?stepC a <C>.

?stepA p-plan:isStepOfPlan ?wf.

?stepB p-plan:isStepOfPlan ?wf.

?stepC p-plan:isStepOfPlan ?wf.

?stepC p-plan:isPrecededBy ?stepA.

?stepC p-plan:isPrecededBy ?stepB

}

Workflow fragments detected with inexact mining techniques are more complex to

transform. For example, consider the fragment represented on the top of Figure 6.11(b)

(Fragment 1), where step A is followed by Fragment 2 (composed of two steps B and

C). Fragment 1 represents that step A is followed by Fragment 2, but it does not

125

(a) Inconsistent model: Modeling the fragments of Figure 6.9 without using p-plan:Multi-

Step.

(b) Consistent model: Modeling the fragments of Figure 6.9 using p-plan:MultiStep.

Figure 6.10: Inconsistent and consistent modeling of the fragments depicted in Figure

6.9.

126

(a) A simple fragment example ob-

tained by an exact FSM technique.

(b) Transforming inexact FSM fragments to

queries. The fragment on top of the figure can

be transformed in two different ways, shown in

the middle of the figure.

Figure 6.11: Transforming fragments obtained with exact FSM techniques (left) and

inexact FSM techniques (right).

specify if step B or C (due to the inexact mining approach). Therefore, we try both

possibilities, translating the fragment to the two possible interpretations shown on the

bottom of the figure. Both interpretations queries are issued within the same query as

follows (represented in SPARQL):

SELECT ?wf ?stepA ?stepB ?stepC WHERE{

?stepA a <A>.

?stepB a .

?stepC a <C>.

?stepA p-plan:isStepOfPlan ?wf.

?stepB p-plan:isStepOfPlan ?wf.

?stepC p-plan:isStepOfPlan ?wf.

?stepC p-plan:isPrecededBy ?stepB.

{

?stepB p-plan:isPrecededBy ?stepA.

}UNION{

?stepC p-plan:isPrecededBy ?stepA.

}}

127

The answers for each query (or union of queries in the case of inexact mining) are

all the possible bindings within all workflows, showing how and where each fragment

was found in each of the workflows of the original corpus.

6.5 Fragment Statistics and Visualization

Once the fragments have been filtered and bound to the workflow corpus, the next

step in FragFlow is to produce statistics and visualizations of the fragments. For this

purpose we created scripts for calculating the minimum frequency of the fragments and

number of times they were found on the corpus, which is particularly useful for the

evaluation of our approach (as we describe in Chapter 7). Additionally, we created a

graph-based visualization for a collection of fragments, helping users understand the

shape and dependencies of each fragment.

6.6 Summary

In this chapter we have introduced our approach for extracting workflow fragments by

reusing different graph mining techniques. In doing so, we have proposed a way to

clean the input workflow dataset to avoid incorrect results and we have characterized

and selected existing graph mining techniques that broaden the types of fragments

being found by our approach. This addresses the technical objective of this thesis TO1

(characterize the different types of existing graph mining algorithms, their features, their

limitations and available implementations).

We have also introduced a set of novel techniques to filter irrelevant fragments and

link the results to the parts of the input corpus where they occur, thus addressing

the technical objective TO2 (develop a framework for applying existing graph mining

approaches on workflow templates and executions, along with the means to refine and

filter the results provided by the different algorithms).

It is worth mentioning that our effort has been driven towards usefulness rather than

efficiency, as the second was not part of the scope of this thesis. For example, if the

number of workflows of the input corpus is high, doing a SELECT query retrieving how

a complex fragment was found on the corpus might be too time consuming. In those

cases, our approach could be divided into smaller sub-problems (e.g., issuing queries

128

against single workflows instead of workflow dataset) or simplifying our approach (e.g.,

issuing ASK queries instead of SELECT queries). Improving the performance and

efficiency of our approach is future work.

In the next section we will assess usefulness of our results by performing three

evaluations on two different workflow systems.

129

130

Chapter 7

Evaluation

In this chapter we evaluate our hypotheses by describing the results of our approach

for automatically detecting abstractions on scientific workflows. Given that H1.1 (i.e.,

it is possible to define a catalog of common domain independent patterns based on the

functionality of workflow steps) has already been addressed in Section 5.1 by defin-

ing a catalog of common workflow motifs, in this chapter we focus on evaluating H1.2

(it is possible to detect commonly occurring patterns and abstractions automatically)

and H1.3 (commonly occurring patterns are potentially useful for users designing work-

flows).

First, Section 7.1 defines the evaluation metrics associated to each hypothesis, and

then Sections 7.2 and 7.3 describe the results obtained on each of the evaluations.

Finally, section 7.4 summarizes our contributions with respect to each hypothesis.

7.1 Evaluation Metrics

There are different techniques to identify patterns in a workflow corpus, as we have

described on Chapter 6. In order to evaluate our hypotheses H1.2 and H1.3, we need

to assess the genericity and usefulness of our proposed frequent workflow fragments.

However, to our knowledge there are no standard metrics that define if a given workflow

pattern is generic or useful. Therefore we propose a metric for assessing frequent generic

fragments and two for evaluating fragment usefulness, as described in Definition 5.

These metrics will be adapted and used later for performing independent evaluations,

as they have different requirements on the input corpus.

131

Definition 5 A workflow fragment is generic if it appears in two or more workflows

with different levels of abstraction.We consider a workflow fragment to be useful if it

has been reused and annotated by one or several users designing workflows (either as a

workflow or as a sub-workflow).

7.1.1 Occurrence and Generalization Evaluation Metrics

Our proposed metric aims to confirm whether a workflow fragment is commonly oc-

curring and generic. In order to do so, we compare our proposed fragments to those

motifs from our catalog that are related to workflow reuse, i.e., internal macros and

composite workflows. Internal macros detect the reused parts of a workflow among

the workflow itself, and therefore a fragment matching an internal macro is commonly

occurring. Composite workflows indicate that a target workflow is composed by other

existing workflows. Hence, any fragment matching those sub-workflows is commonly

occurring. Additionally, these motifs may apply a step abstraction to relate workflows

with the same abstract functionality, and we can use them to assess the genericity of

our proposed fragments. For measuring our results, we use precision (Pmotifs) and

recall (Rmotifs), defined as:

Pmotifs =
|F ∩M |
|F |

Rmotifs =
|F ∩M |
|M |

Where F represents the resultant set of fragments and M stands for the set of motifs

we are looking for (in this case, M would represent either the set of internal macros

in the corpus or the sub-workflows included in any composite workflow in the corpus).

Precision and recall values range from 0 (low) to 1 (high). In order to be able to apply

this metric, a workflow corpus with annotated motifs is necessary.

7.1.2 Usefulness Evaluation Metrics

In this case, the first metric we propose aims at comparing whether the workflow frag-

ments found by our approach match those fragments or workflows designed and reused

by users (i.e., user groupings). We also measure our results in terms of precision and

recall for this task. On the one hand, the precision measures how many of the common

132

fragments correspond to the reused groupings and workflows identified by users. On

the other hand, the recall identifies the percentage of detected reused structures out of

the total reused groupings and workflows. Since our focus is to detect useful workflow

fragments, we prioritize precision over recall. The recall measure is relevant, but some

of the reused groupings or workflows may have a low frequency and may avoid detecting

higher frequent fragments, motivating our decision.

It is worth mentioning that workflows are considered in the metric as well. Some

workflows are reused as part of other bigger workflows in the workflow corpus and our

fragments may correspond to them. Precision (Pgroup) and recall (Rgroup) metrics are

defined as:

Pgroup(overlap) =
|F ∩ (G ∪W)|

|F |

Rgroup =
|F ∩ (G ∪W)|
|G ∪W |

Where F represents the set of proposed fragments, G stands for the set of user-

defined groupings and W corresponds to the set of reused workflows. The intersection

between fragments and the union of all groupings and workflows is calculated by mea-

suring which fragments overlap with a grouping or a workflow. The overlap term stands

for the percentage of steps that are equal between our proposed fragments and group-

ings or workflows when calculating |F ∩ (G ∪ W)|, with P(100%) meaning that the

fragments found are exactly the same as one of the the groupings or workflows defined

by users. Figure 7.1 shows an example by comparing the overlap of two fragments

against the same grouping. The fragment on the left (Fragment1) is equal to Group-

ing1 (overlap 100%), while in Fragment2 only two steps out of three are the same (with

an overlap of 66%). This additional measure determines how similar our fragments are

with respect to a user-defined grouping or workflow, and helps identifying whether our

fragments are close to what they defined or not. As in the last metric, precision and

recall values range from 0 (low) to 1 (high). A requirement for applying this technique

is to have a workflow corpus with user-defined groupings specified. Note that the over-

lap is not introduced for the recall (Rgroup), as it could lead to inconsistent results: if

the number of candidate fragments similar to the groupings and workflows designed by

133

users is higher than the number of groupings and workflows, then the recall would be

superior to 1.

Figure 7.1: Overlap example: two fragments are compared against the same grouping.

Fragment1 is exactly the same as Grouping1, while only two out of three steps of Fragment2

are equal to Grouping1 (hence 66,6% overlap).

For the second metric, we rely on on user feedback. Thus, we target the accuracy

(Acc) of our results, defined as:

Acc =
|FA|
|F |

Where |FA| stands for the number of fragments the user found useful and |F |
represents the total number of fragments proposed to the user.

Table 7.1 shows a summary of our proposed metrics and their requirements for

evaluation, which will be applied on the following sections on different user corpora.

Table 7.1: Proposed metrics with their requirements for evaluation.

Metric Requirement for evaluation

Pmotif , Rmotif Workflow corpus annotated with motifs

Pgroup, Rgroup Workflow corpus annotated with user-defined groupings

Acc Workflow corpora and respective user feedback.

134

7.2 Workflow Motif Detection and Workflow Generaliza-

tion

In this section we describe the results of applying our first metric (Pmotifs and Rmotifs)

to an input corpus of workflows in order to test our hypothesis H1.2 (it is possible to de-

tect commonly occurring patterns and abstractions automatically). Therefore, general-

ization of workflows is applied (using a step abstraction) to determine whether abstract

workflow patterns can be mined successfully. Section 7.2.1 describes the experimental

setup of the evaluation, while sections 7.2.2 and 7.2.3 elaborate on the results obtained

by applying inexact and exact graph mining techniques. The evaluation presented here

is based on our previous results (Garijo et al., 2013a), which have been further refined.

7.2.1 Experimental Setup

We have selected a dataset that contains 22 workflow templates in the domain of text

analytics (17 after removing one-step workflows), specified using the Wings workflow

system (Gil et al., 2011). The templates are annotated according to the Open Prove-

nance Model for Workflows (OPMW) and belong to the Wings corpus presented in

Section 5.1. This specific domain and dataset have been selected for our experiment

for two main reasons:

• They contain abstract and specific templates in the same domain, which provide

some alternatives for generalization of workflows. This means that some specific

templates may share commonly occurring steps with other templates of the corpus

after applying a step abstraction (i.e., after a generalization of their steps).

• They have been manually analyzed, before and after generalizing the workflows

(as described in (Garijo et al., 2012)), so as to identify all internal macros motifs

and workflows part of a composite workflow motif. The annotations highlight

maximal motifs, i.e., if an internal macro consists on 4 steps, it has been annotated

only once, without including the three-step and two-step possible internal macros

contained. An example can be seen in Figure 7.2, where a workflow for document

classification has an internal macro with six steps (appearing two times, one on

each branch of the workflow). The internal macro annotated would be the one

highlighted in the figure, and all the possible combinations of its sub-workflows

135

ignored. Motif annotations are required by the reusability metrics tested in this

section, and we use them in our evaluation to assess the workflow fragments found.

Figure 7.2: Example of an internal macro, annotated with a dashed line. The internal

macro consists on the sequence of steps that are included on each branch, ignoring all the

possible 2, 3, 4 and 5 sub-workflows included on it.

We apply inexact and exact FSM techniques for detecting the desired motifs, as

described in Section 6.2.2. For detecting internal macros, we run the FSM algorithms

on each template separately, while for detecting those workflows included in composite

workflows we run the FSM techniques over the whole corpus. It is important to note

that the techniques that are support-based will not be able to find any internal macros,

as they only consider one occurrence of a fragment per input graph, and internal macros

aim to find the common parts of a single workflow.

136

Table 7.2: Summary of the manual analysis on the Wings corpus.

No Generalization Generalization

Templates
Filtered

Templates
Int. Macro

Wf in Comp.

Workflow.
Int. Macro

Wf in Comp.

Workflow.

22 17 3 2 5 7

Table 7.2 summarizes the detected motifs on the input corpus, before and after

generalizing all the steps of the workflows (more details can be found in Annex C.1).

The table shows how the size of the corpus and the number of motif annotations are

not big, as the corpus had to be extended from the motif analysis to annotate all

internal macros and workflows in composite workflows when generalizing the corpus.

However, we consider the corpus significant enough for validating our hypothesis and

analyzing our results in detail because the annotated motifs are based on commonly

reused patterns. Furthermore, having a smaller corpus might highlight the limitations

of the applied algorithms when some common patterns overlap.

The evaluation will assess whether we can obtain a high recall on the proposed

results, rather than a high precision: we aim for an automatic detection of all the

internal macros and workflows part of composite workflows on the input corpus. More

precision in our results may avoid finding all the abstractions we are looking for.

7.2.2 Evaluation of the Application of Inexact FSM techniques

We apply the SUBDUE-MDL and SUBDUE-Size techniques described in Section 6.2.2

to the input corpus. The description of the results for each motif can be found below.

7.2.2.1 Internal Macro Results

Table 7.3 shows the precision and recall of the results obtained for the inexact FSM

techniques on the input corpus (both returned the same results). The table shows the

results according to the generalization (i.e., using the input corpus as is (no generaliza-

tion) and after applying step abstraction (generalization)); and the type of fragment:

candidate (raw result returned by the inexact FSM technique), multi-step (fragments

with more than one step) and multi-step filtered (product of applying our filtering

techniques described on Section 6.3). All the fragments are obtained assuming the

137

minimum frequency (i.e., a minimum of 2 occurrences on the analyzed structure). Due

to the size of the corpus, we avoid comparing the results at different frequencies, as the

results would not differ significantly.

Table 7.3: Inexact FSM techniques for the detection of internal macro motifs, using the

templates without and with generalization of their steps.

SUBDUE MDL/Size

No Generalization Generalization

Fragment type Pi.macro Ri.macro Pi.macro Ri.macro

Candidate 0,13 1,0 0,19 1,0

Multi-step 0,22 0,67 0,36 0,8

Multi-step filtered 1,0 0,67 1,0 0,8

As the results show, all the internal macros are detected with the candidate frag-

ments for the non generalized and generalized corpus (Ri.macro = 1,0). However, one of

the annotated internal macros is not detected when applying our filtering techniques

(1 out of 3 in the non-generalized corpus and 1 out of 5 in the generalized corpus).

Figure 7.3 shows the explanation of this result. On the left, the workflow where the

internal macro has been annotated is depicted. On the right we can see its reduced

form, showing just the dependencies among the different steps. It turns out that the

internal macro consists of just a one step fragment (Stemmer), which is filtered by our

approach (on the multi-step filtered fragments) since one-step fragments are just single-

step components and are already available for a workflow designer as atomics pieces of

functionality. Therefore, although the internal macro is not detected, the behavior of

our results is the desired one. Note that in our motifs and fragments we don’t consider

overlapping structures, that is why the Vocabular component is not included as part of

the internal macro.

Regarding the precision, the best results are obtained on the multi-step filtered

fragments (Pi.macro = 1,0). In this case, this is due to the nature of the motif we are

looking for. We explore every workflow by itself, so the number of fragments found

tend to be reduced and included on each other.

Finally, a key finding of our results is that they show how our approach can handle

both generalized workflows and non-generalized workflows. As shown in Table 7.2,

138

Figure 7.3: Workflow where the internal macro annotated could not be detected. When

transforming the workflow to its reduced form, the internal macro is just a one-step frag-

ment, which is ignored.

when applying generalization, two new internal macros are detected in the corpus.

Both of them are found by our approach.

7.2.2.2 Composite Workflow Results

Tables 7.4 and 7.5 show the results obtained after applying both SUBDUE-MDL and

SUBDUE-Size metrics on the corpus respectively.

Table 7.4: Inexact FSM techniques for the detection of workflows in composite workflow

motifs, using the templates as they are and with generalization and the SUBDUE MDL

evaluation. The asterisk represents the results when a target workflow is included as part

of a bigger detected fragment.

SUBDUE MDL

No Generalization Generalization

Fragment type Pc.wf Rc.wf Pc.wf Rc.wf

Candidate 0,14 0,50 0,67 (1,0)* 0,57 (0,86)*

Multi-step 0,14 0,50 0,67 (1,0)* 0,57 (0,86)*

Multi-step filtered 0,14 0,50 0,67 (1.0)* 0,57 (0,86)*

139

Table 7.5: Inexact FSM techniques for the detection of composite workflow motifs, using

the templates as they are and with generalization and the SUBDUE Size evaluation. The

asterisk represents the results when a target workflow is included as part of a bigger detected

fragment.

SUBDUE Size

No Generalization Generalization

Fragment

type
Pc.wf Rc.wf Pc.wf Rc.wf

Candidate 0,03 (0,07)* 0,50 (1,0)* 0,15 (0,22)* 0,57 (0,86)*

Multi-step 0,11 (0,22)* 0,50 (1,0)* 0,57 (0,86)* 0,57 (0,86)*

Filtered

multi-step
0,125 (0,25)* 0,50 (1,0)* 0,57 (0,86)* 0,57 (0,86)*

Some of the results on the table include a second measure in brackets with an

asterisk. The measure indicates the precision or recall when the target workflow reused

in a composite workflow has not been detected, but it is included as part of a bigger

fragment which has been detected by the applied FSM technique. We decided to include

this measure for two main reasons. The first one is because the workflows designed by

users may not correspond entirely with how they are reused in other workflows. The

second reason is due to the algorithm used by the graph mining techniques, tending to

maximize the size of the patterns found when they overlap. An example can be seen

in Figure 7.4, where three workflows are depicted. The one on the left (Workflow 1) is

reused on the other two workflows. The workflow in the middle is also reused on the

workflow of the right (Workflow 3). Since Workflow 1 is included on a bigger reused

workflow (Workflow 2), the graph mining technique may select the bigger fragment

(Workflow 2) instead of Workflow 1, depending on its frequency on the rest of the

corpus.

Due to this overlapping issue, our results for detecting workflows included in the

composite workflow motifs are not as good as those obtained for internal macro motifs.

The best results are obtained by the SUBDUE-Size technique, with one out of two de-

tections (50%) for non generalized workflows (the other composite workflow is detected

as part of a bigger fragment) and four out of seven (57%) detections in generalized

workflows (which increase to six out of seven (86%) if we consider those fragments

140

Figure 7.4: Fragment inclusion: The workflow on the left is included in the workflow on

the middle which itself is included on the one on the right. If maximal patterns are chosen

by the applied FSM technique, Workflow 1 may not be detected as a common workflow

fragment.

overlapping with the target workflow). The results demonstrate that, up to a rea-

sonable percentage, inexact FSM fragments are a good technique for detecting which

workflows are part of composite workflows, even if not all of them are detected.

It is worth mentioning that even taking into consideration those results included in

bigger fragments, there are target workflows that are not detected by the algorithm.

This can be explained by further analyzing the overlapping issue and the way SUBDUE

operates. SUBDUE reduces each candidate fragment in the input dataset on each

iteration. If a fragment overlaps with another and the algorithm chooses one to reduce,

the other candidate might not be detected. Figure 7.5 shows an example where three

workflows have two overlapping fragments. Workflow 1 and Workflow 2 share a three

step fragment (highlighted with a dotted line). Workflow 2 and Workflow 3 share a

two step fragment. Due to the overlap between the two fragments, if SUBDUE decides

to reduce the bigger one, the smaller fragment will not be detected. Some of these

issues disappear when applied to bigger corpora, as the smaller patterns tend to be

more frequent and are detected even if there are overlapping issues.

Finally, precision is better for the SUBDUE-MDL technique, which produced less

results than SUBDUE-Size. As was the case with the internal macros, by generalizing

141

Figure 7.5: Fragment overlap in SUBDUE: three workflows overlap without being in-

cluded on each other (their common parts have been highlighted with a dotted line). If the

FSM technique selects the bigger fragment, the smaller one (step D followed by B) would

not be detected.

the workflows we obtain more workflow fragments, which match more than half of the

workflows detected manually.

7.2.3 Evaluation of the Application of Exact FSM Techniques

Table 7.6 summarizes the results of applying the gSpan technique to the input corpus

(an additional evaluation with the FSG algorithm was not included, as all exact FSM

techniques deliver very similar results). The results are obtained with minimum support

two (similarly to what we stablised for the frequency of inexact FSM techniques), and

filtering one-step results (can be set as a parameter for the algorithm).

As expected, all the workflows included in composite workflows are found among

the provided results, improving the outcome generated by the inexact FSM techniques.

This happens because exact mining techniques return all the possible fragments on the

input corpora. Thanks to our filtering techniques, we are able to decrease the number

of candidate fragments (hence augmenting the precision) from 41 to 11 (4 % to 18

%) when no generalization is applied and from 70 to 15 (10 % to 47 %) when it is.

Meanwhile, the recall is preserved at 100 %, which indicates the validity of our proposed

filtering techniques. Even after filtering the fragments, the precision is, in general, still

142

worse than inexact FSM methods due to the number of candidate fragments produced

by the technique.

Table 7.6: Exact FSM techniques for the detection of workflows included in composite

workflow motifs, using the templates with and without generalization.

GSpan

No Generalization Generalization

Fragment type Pc.wf Rc.wf Pc.wf Rc.wf

Candidate 0,04 1,0 0,10 1,0

Multi-step 0,04 1,0 0,10 1,0

Multi-step filtered 0,18 1,0 0,47 1,0

7.2.4 Summary

In this section we have described our first evaluation, which aims at addressing whether

it is possible to detect commonly occurring patterns and abstractions automatically

(H1.2) on a small hand-annotated corpus. In order to do so, we have compared our

proposed fragments to the commonly occurring motifs, i.e., internal macro motifs and

those workflows included as part of a composite workflow motif. One of the advantages

of using a small controlled corpus is that we are able to detect and analyze potential

issues of the applied fragment mining techniques. We have explained our experimental

setup and analyzed the results in detail. Overall, the results show that inexact FSM

techniques are a good approach to detect internal macros, while exact FSM techniques

obtain perfect recall for detecting those workflows that are part of the composite work-

flow motifs (since exact FSM techniques detect all commonly occurring fragments, this

is an expected result). Additionally, both approaches are able to deal successfully with

a scenario in which the workflows are declared at different levels of abstraction.

In the following section we describe our second evaluation, aimed at determining

whether our proposed fragments are useful for reuse based on what users have previously

defined (H1.3). A detailed discussion of the results with respect to the hypotheses can

be seen on Section 7.4

143

7.3 Workflow Fragment Assessment

As we have seen in our previous evaluation, our proposed workflow fragments are a

feasible means to find the workflows participating in composite workflow and internal

macro motifs annotated by users on a workflow corpus. However, the results in general

have low precision (under 50 %). This indicates that the fragments returned by our

approach suggest additional typical structures on the workflow corpus that could be po-

tentially useful for workflow reuse. Hence, in this section we aim to determine whether

our proposed fragments are actually useful or not, thus addressing our hypothesis H1.3

(common reusable patterns are potentially useful for users).

The Section is organized as follows. We first introduce the common experimental

setup in Section 7.3.1, common to both of the following evaluations. Section 7.3.2

checks whether our proposed fragments are similar to the reused structures manually

identified by users (user groupings and workflows) in a workflow system. Then, in

Section 7.3.3, we discuss the outcome of a survey that domain experts filled to determine

the usefulness of a set of proposed workflow fragments. The evaluation presented here

is based on our previous findings (Garijo et al., 2014c), which have been expanded and

refined.

7.3.1 Experimental Setup

Our evaluation has been performed using four workflow corpora from the LONI Pipeline

system. The corpora are WC1, WC2, WC3 and WC4, previously introduced in Section

5.3. We have chosen these corpora for two main reasons:

• High reusability : The workflows belong to the same domain, have been created

by single and multiple users, and are reused as a whole or included as part of

other workflows (as shown in Section 5.3).

• User groupings: Users have the means to annotate their sub-workflows as group-

ings. These can be taken as a reference to compare our candidate fragments

and are a requirement for applying the metrics proposed for this type of analysis

(Pgroup(overlap) and Rgroup(overlap)).

We first performed a comparison between our proposed fragments and the workflows

and groupings in the corpora defined by users. We used the Pgroup(overlap) and Rgroup

144

metrics. Different values of the frequency of the common fragments and the overlap with

our solution were considered in order to analyze the quality of the candidate fragments.

The evaluation prioritizes a high precision in the proposed candidate fragments rather

than a high recall : we aim at obtaining common workflow fragments that are useful for

the workflow designers, instead of aiming at finding all the possible fragments actually

reused by users. Table 7.7 provides a summary of the workflows and groupings that

have been reused by users. These numbers will be used to evaluate our approach.

Table 7.7: Unique workflows, groupings and their reuse. These numbers will be later

used to calculate the precision and recall of the proposed fragments.

Unique multi-step

workflows

Unique multi-step

groupings

Corpus Created Reused Created Reused

WC1 441 175 146 71

WC2 94 13 87 40

WC3 269 106 79 47

WC4 50 7 40 26

Candidate fragments that did not overlap with user-defined groupings or workflows

were collected and used as a part of a user survey. The survey aimed at testing whether

these fragments were still a useful suggestion to the users. Hence, we used the usefulness

metric (Acc) defined in Section 7.1.2. A high accuracy determines that our suggested

fragments were adequate for that user.

In this case generalization is not applied, as no domain-specific taxonomy modeling

the components of the workflows in the corpora was provided.

7.3.2 FragFlow Fragments versus User Defined Groupings

We applied inexact techniques (SUBDUE-MDL, SUBDUE-Size) and exact FSM tech-

niques (gSpan) to measure the precision and recall of our approach. The results of the

evaluation are described below.

7.3.2.1 Evaluation of the Application of Inexact FSM techniques

Figures 7.6, 7.7, 7.8 and 7.9 show the number of fragments found and their precision

(Pgroup(overlap)) for every corpus. Each figure shows two evaluations, corresponding

145

to the MDL and Size heuristics of the SUBDUE algorithm. Both of these techniques

are frequency-based approaches, that is, the frequency represents the number of times

(occurrences) a fragment is found in the corpus (counting several times if the frag-

ment appears several times in one workflow). The fragment frequencies are normalized

according to the size of the dataset, in order to show how different frequencies affect

the precision and the found FragFlow fragments. The “min” metric stands for the

minimum frequency for a fragment to be detected, i.e., it appears at least two times

in the corpus. Given that the number of multi-step fragment and multi-step filtered

fragments is similar in both evaluations, we only show the latter (Mff) in the precision

graphs.

Figure 7.6: Number of fragments found and precision results for WC1 with the MDL and

Size evaluations. For the precision, only multi-step filtered fragments are shown.

Finally, the precision metric shows different values for the overlap, indicating the

overlap percentage between the proposed fragments and the groupings and workflows

designed by the users. The rationale for having an overlap different to 100% is to

146

consider fragments that are very similar to the chosen workflows or groupings created

by the users. The minimum overlap value, 80% , was chosen empirically, as the main

differences with the proposed fragments tend to be too many if this value is decreased.

Additional information on the fragments found can be found in Annex C.2.

Figure 7.7: Number of fragments found and precision results for WC2 with the MDL and

Size evaluations. For the precision, only multi-step filtered fragments are shown.

The results show that many workflow fragments are found to be commonly reused

for all four corpora. However, there are more common workflow fragments with high

frequency in the single-user corpora (WC1, WC2 and WC4) than in the multi-user

corpus (WC3). This result can be explained by looking at the high number of users

contributing to WC3 (over 60, as described in Section 5.2) and the nature of the corpus,

which is a collection of executions submitted by those users during a month. Given

that all users were unlikely to be part of the same team, they would not have the means

of knowing the workflows submitted by other users to the repository, thus decreasing

their reuse. Instead, the other three corpora had one main contributor who was aware

147

Figure 7.8: Number of fragments found and precision results for WC3 with the MDL and

Size evaluations. For the precision, only multi-step filtered fragments are shown.

of the previous work in the respective corpus, facilitating their reuse.

In general, a good number of the workflow fragments found with inexact FSM tech-

niques match those workflows or groupings designed by users. The maximum precision

with 100% overlap ranges from 35% (WC2, WC4) to 60% (WC3), increasing to 60%

to 80% when considering an overlap of 80% of the workflow steps.

An individual analysis of each corpus can explain the differences in the corpora

results:

• In WC1 we see a high reuse and number of workflows, which leads to producing a

high number of precise fragments. This finding is confirmed when analyzing the

overlap, as a high number of fragments (up to 80 %) is similar to the groupings

or workflows designed by the user.

• WC2 consists on a set of curated workflows made public for the LONI Pipeline

community to reuse. Although they share some common parts, workflow reuse

148

Figure 7.9: Number of fragments found and precision results for WC4 with the MDL

and Size evaluations. For the precision, only multi-step filtered fragments are shown. The

asterisk indicates an execution failure for WC4.

is not that high in the corpus. Hence the number of fragments found at high

frequency is lower (not higher than 6), and the precision is higher (60%).

• WC3 does not produce a high number of frequent patterns (less than seven multi-

step filtered fragments are found with f>5%), due to the lower reusability issue

discussed above. However, when looking at a lower frequency (f>2%) more than

half of our fragments are equal to the users’ choice. This means that although

different users may not be aware of what other users have designed, they still

reuse similar substructures in their workflows at the grouping level.

• WC4 is a small corpus of heavyweight workflows, some of which reuse parts of

more than 90 steps from other workflows. Due to the nature of the corpus, the

MDL evaluation produced only four common workflow fragments before failing,

149

although the Size evaluation was obtained successfully. In this case the precision

of our results is worse than in the previous corpora (reaching no more than 40

% for the Size evaluation). This is caused by two main reasons: the design

decisions made by the user to create the groupings in a workflow, and the way

the evaluation metric works. If a user defines a grouping within a workflow that

appears several times on the workflow corpus, the associated fragment found

could merge it with some other workflow steps. Figure 7.10 shows an example,

where a workflow contains two user-defined groupings on the left (Grouping 1 and

Grouping 2). Assuming that the workflow is reused elsewhere in the corpus, our

proposed fragment (on the right of the figure) would include the union of both

groupings, instead of two separated fragments.

Figure 7.10: Groupings defined by user versus a fragment found. If a user defines con-

nected sub-groupings that co-occur with the same frequency, then the fragment found will

merge them.

Regarding the type of evaluation, SUBDUE-Size returns the most precise results

both in Pgroup(100) and Pgroup(80) (excluding the MDL evaluation of WC4, which

produced errors) according to the evaluation metrics we defined. When looking at

the frequency, if a significant number of fragments is returned (i.e., the number of

150

fragments is superior or equal to 5) then the more frequent those fragments are higher

the precision is for the technique. This indicates that in corpora with high reusability

such as WC1, users tend to annotate common steps of workflows for their reuse.

As shown in table 7.8, in all four corpora the recall is very low (21% for the best

case, and usually under 10%). This is an expected result, as for calculating the recall

metric all the user-designed workflows and groupings are taken into account, whether

reused or not. Additional noise is introduced by several user practices that we have

detected in the corpora. For example, different users tend to design similar workflows

and groupings differently (by adding or removing just a few steps), thus increasing their

total number. Other users tend to group certain steps of the workflow for simplifying

the view of their current experiment, some other group sets of steps, inputs or outputs

that are not relevant for their experiment, etc.

The results also show that by increasing the frequency of the found fragments the

recall decreases. This is natural, as the high frequent fragments are fewer than those

found at lower frequencies.

7.3.2.2 Evaluation of the Application of Exact FSM techniques

Table 7.9 shows the number of fragments found on the four corpora by the gSpan ex-

act FSM technique. Results are sorted by support, which represents the percentage of

workflows in the corpora where a FragFlow fragment was found at least once. The sup-

port is normalized to the corpora size, showing in parenthesis the number of templates

corresponding to that percentage.

As we described in Section 6.2.1.2, exact FSM techniques aim to find all the possible

workflow fragments in the corpora. Thus, table 7.9 only contains multi-step filtered

fragments (mff), due to the large amount of candidate and multi-step fragments re-

turned by the technique. In fact, those rows where an asterisk is shown (in WC1, WC2

and WC4) indicate that the results could only be obtained after fixing the maximum

size of a fragment for the gSpan technique. Otherwise the algorithm produces memory

errors due to the combinatory explosion produced by the amount of fragments that

have to be taken into account for mining results. This is highlighted on WC4, where

the size of the reused structures tends to be very large. On the contrary, in corpora

where the size of the reused of the patterns is lower, like WC3, all the multi-step filtered

151

Table 7.8: Recall result summary: for each corpus (WC1 to WC4) and inexact FSM tech-

nique, the table displays the lowest and highest recall obtained, along with the frequency

at which it was obtained.

Corpus Inexact FSM
Lowest Recall

(freq)

Highest Recall

(freq)

WC1
MDL

0,010221465

(10%)

0,127768313

(min)

Size
0,005110733

(10%)

0,209540034

(min)

WC2
MDL

0,011049724

(10%)

0,071823204

(2%)

Size
0,016574586

(10%)

0,082872928

(2%)

WC3
MDL

0

(5%)

0,16091954

(min)

Size
0,002873563

(10%)

0,206896552

(min)

WC4
MDL

0

(10%)

0,011111111

(5%)

Size
0,011111111

(10%)

0,111111111

(min)

fragments can be mined successfully. Annex C.3 shows additional details on the results

obtained.

Figure 7.11 shows the precision results for the four corpora. Except for WC4 (for

which we cannot consider the gSpan to work properly due to the results obtained), the

precision of the exact FSM technique is around 40 %, increasing from 47 % to 71 %

when considering an overlap of 80 % between the proposed fragments and the workflows

or groupings taken into consideration. In general, most of the observations made for

the inexact FSM techniques apply for exact FSM. The best precision is obtained in

WC1 due to the amount of available workflows and their reusability. WC2 and WC3

do not have many high frequent patterns (with support over 15 %), showing their best

precision when selecting support between 2 % and 5 %. Finally, WC4 shows limited

results due to its nature, as it contains a small set of workflows which reuse large

152

Table 7.9: Number of multi-step filtered fragments found by corpus at different support

percentages. The number of workflows that the support corresponds to is indicated in

brackets. Due to memory problems, some executions (indicated with an asterisk) at lower

frequencies had to be limited to a maximum size of fragment (around 10-15).

Corpus
Support %

(no. of templ)

Multi-step

filtered fragments

WC1

2% (8) 637*

5% (22) 1996

10% (44) 110

15%(66) 33

WC2

2% (2) 127*

5% (4) 48

10% (9) 14

15% (14) 2

WC3

2% (5) 108

5% (13) 29

10% (22) 9

15% (40) 0

WC4

2% (1) NA

5% (3) out of memory

10% (5) 10*

15% (7) 3

* Execution limited to fragment size

fragments of others.

However, there are some differences between exact and inexact FSM techniques.

The first one is the number of multi-step filtered fragments found, being higher for

exact FSM. This is expected, as it follows the behavior established for exact FSM

techniques, which is to find all possible fragments, even those that are included on

another bigger ones. The disparity in the number of fragments is also relevant for a

second difference: as shown in bold in Table 7.10, inexact FSM techniques provide equal

or better precision for all the corpora, including overlap. Even if more fragments are

found to be equal to templates or groupings, the higher number decreases the precision

metric.

Another key aspect is that, unlike inexact FSM results, the most frequent a fragment

153

Figure 7.11: Exact FSM results for corpus WC1 to WC4 using the gSpan algorithm.

Table 7.10: Inexact FSM technique results versus exact FSM techniques in terms of

precision, considering exact comparison and overlap.

Corpus
Highest P(100)

(inexact FSM)

Highest P(100)

(exact FSM)

Highest P(80)

(inexact FSM)

Highest P(80)

(exact FSM)

WC1 0,42 0,39 0,8 0,71

WC2 0,6 0,36 0,6 0,47

WC3 0,55 0,44 0,65 0,65

WC4 0,33 0,1 0,4 0,1

is does not necessarily imply a better precision (this only happens in WC1, where

workflow reuse and grouping reuse is very frequent). The precision value is influenced by

the amount of fragments found in exact FSM techniques and the design criteria followed

by users (like preferred size or organization of workflow steps). Therefore, although

some users tend to group common workflow steps of their workflows for reusability in

154

the four corpora, it cannot be considered the only reason for doing so. High frequency

fragments that do not correspond to any workflows or groupings could be suggested to

users, as we will discuss on the next section.

Finally, Table 7.11 shows a summary with the recall of the obtained results, which

resembles the one obtained with inexact FSM techniques. If all the candidates proposed

by gSpan were considered, the recall would be higher, as all possible fragments would be

mined. However that would decrease the precision of our results dramatically. Similarly,

if only the reused workflows and groupings are compared, the recall is likely to increase.

Table 7.11: Recall results summary obtained for the gSpan algorithm on each corpus.

The support percentage at which each result was obtained is highlighted in brackets.

Corpus
Lowest Recall

(support %)

Highest Recall

(support %)

WC1
0,022146508

(15%)

0,137989779

(2%)

WC2
0

(15%)

0,254143646

(2%)

WC3
0

(15%)

0,137931034

(2%)

WC4
0

(15%)

0,011

(10%)

7.3.3 User Evaluation

After comparing our results to the user defined workflows and groupings, we performed

a survey with the collaboration of three domain experts responsible for the single-user

corpora used on the previous evaluation (WC1, WC2 and WC4). The purpose of the

survey was measuring whether the FragFlow fragments that were different to the user

designed workflows or groupings would still be useful for each of the domain experts or

not.

In order to avoid overloading the domain experts with fragments, each of them was

presented 10 to 18 fragments randomly selected at different frequencies and support.

The number of fragments presented varied according to the number of fragments found,

155

and each domain expert answered on the usefulness of the fragments with regard to

their own corpus.

Similar to what we did in the fragment versus grouping evaluation (Section 7.3.2),

we relaxed the accuracy metric by asking domain experts if they would have modified

some parts of the proposed fragment before adopting it. Thus, candidate FragFlow

fragments could be used as proposed if the user would use the proposed fragment as

it was, used with minor changes if the user would change less than one third of the

fragment; used with major changes, if the user would change more than one third of the

fragment, or not used if the user did not think the proposed fragment would be useful.

In this section we describe and discuss the results of the survey. Additional details on

the survey can be seen in Annex C.4, while the responses and additional resources are

available online1.

7.3.3.1 User Evaluation Results

The responses to our survey are summarized in Table 7.12, with good results in average.

The first user would reuse more than half of the proposed fragments (66% accuracy),

using 11% of candidate fragments as proposed, changing slightly 16% of them and doing

major changes to 38% of them. When asked about the reasons to not use the other

third of the proposed FragFlow fragments, the user answered that they were too simple

(two or three steps).

User 2 would reuse all of the proposed fragments (100% accuracy), almost half of

them (43%) as FragFlow detected them, half of them by changing more than one third

of the components, and 6% with minor changes. When asked about the complexity

of the fragments, user 2 argued that sometimes additional sub-groupings would be

necessary, since they help clarifying and organizing the workflow.

Finally, user 3 would also reuse all of the proposed fragments, a 40% of them without

any change, a 30% with minor changes and a 30% with major changes. When asked

about the complexity of the proposed fragments, this user also said that some of the

fragments had too many steps (30%), but that some others were too simple (20%).

1http://dx.doi.org/10.6084/m9.figshare.1577564

156

http://dx.doi.org/10.6084/m9.figshare.1577564

Table 7.12: User evaluation of FragFlow fragments.

User
Use as Pro-

posed

Use with mi-

nor changes

Use with ma-

jor changes
Not use

User 1 (WC1) 11% 16,6% 38% 33,3%

User 2 (WC2) 44% 6% 50% 0%

User 3 (WC4) 40% 30% 30% 0%

7.3.4 Summary

In this section we introduced our second main evaluation, which aims at addressing

whether our automatically detected common workflow fragments are commonly occur-

ring (H1.2) or useful (H1.3). We divided this activity on two main sub-evaluations. The

first one performed an automatic assessment of our proposed fragments by comparing

them to the workflows and groupings designed by users of four different workflow cor-

pora. The second sub-evaluation consisted on a domain expert survey for assessing the

usefulness of our fragments.

For each evaluation, we described our experimental setup, discussed and compared

thoroughly the results obtained by different FSM techniques on the workflow corpora.

In contrast with the evaluation presented in Section 7.2, in this section we have dealt

with a big workflow corpora, which allowed us to highlight any limitations that the

FSM techniques might suffer when dealing with a high volume of workflows (e.g., poor

performance for WC4). It also allowed us to analyze how the design decisions followed

by different users on the workflow corpora affect our results.

It is worth mentioning that, despite our efforts, we have not found a unique con-

figuration for obtaining the most precise workflow fragments. Inexact FSM techniques

are slightly more precise than exact FSM techniques, and frequency plays a role only

when there is high reuse on the workflow corpus. Also, inexact FSM techniques are

interesting because they tend to cluster workflows in fewer fragments, which facilitates

their presentation to the user.

7.4 Evaluation Conclusions

Throughout this chapter, we have introduced the metrics, rationale, experimental set-

tings and results of our evaluations. In this section we discuss whether these results

157

validate the main hypothesis of the thesis (H1), described in Chapter 3: “Scientific

workflow repositories can be automatically analyzed to extract commonly occurring pat-

terns and abstractions that are useful for developers aiming to reuse existing workflows”.

The hypothesis has been divided into three different sub-parts, “it is possible to define a

catalog of common domain independent patterns based on the functionality of workflow

steps” (H1.1), “it is possible to detect commonly occurring patterns and abstractions au-

tomatically” (H1.2) and “commonly occurring patterns are potentially useful for users

designing workflows” (H1.3). Since H1.1 has already been addressed by the catalog

proposed in Section 5.1, in this section we discuss the relationship between our results,

H1.2 and H1.3.

7.4.1 Commonly Used Workflow Patterns and Abstractions

H1.2 states that it is possible to detect commonly occurring patterns and abstractions

automatically by making use of graph mining techniques (H1.2.1) and the exploita-

tion of domain specific metadata (H1.2.2). Our evaluations have shown that workflow

fragments can be mined successfully from a workflow corpus using inexact and exact

graph mining techniques. However, the key remaining question to answer is: are these

fragments commonly occurring and generic?

We have addressed this question in our first evaluation, by comparing our proposed

fragments to two groups of motifs related to workflow reuse: internal macros (which

identify the common sets of tasks within a single workflow) and composite workflows

(which detect whether a workflow is a composition of other existing workflows). These

motifs help identifying commonly occurring workflows and workflow fragments; and

our evaluation has shown that inexact mining techniques can find most of the internal

macros and workflows participating in composite workflows, while exact graph min-

ing techniques find all the target structures related to both motifs. Therefore, graph

mining techniques are adequate for finding commonly occurring patterns automatically

(addressing successfully H1.2.1).

Internal macros and composite workflows can be also used to assess the generality

of our fragments, as the corpus used in the evaluation had them annotated. Therefore,

in order to evaluate H1.2.2, we performed the same type of evaluation generalizing the

workflow corpus. Our results show that generic workflow fragments can also be mined

successfully (we obtained a high recall), even improving the results produced by the

158

inexact graph mining techniques. Therefore, we can confirm that our approach is able

to detect commonly occurring patterns and abstractions in a scientific workflow corpus,

thus confirming H1.2.2 and H1.2.

However, our evaluation also showed that, apart from the target motifs, other com-

monly occurring workflow fragments were included among the results found by our

approach (our precision in some cases was low). Therefore, the objective of our second

and third evaluations consisted on measuring whether these other common workflow

fragments are useful for workflow design or not.

7.4.2 Workflow Fragment Usefulness

Our hypothesis H1.3 states that commonly occurring patterns are potentially useful for

users designing workflows. In order to evaluate our hypothesis, we first introduced

a definition for usefulness (considering a fragment useful if it had been reused and

annotated as a workflow or a grouping by one or several users when designing workflows)

and designed two different evaluations.

The first evaluation compared our proposed fragments against several corpora of

user-annotated workflows and groupings. The results show that, in average, almost

half of the proposed fragments matched exactly those groupings (or workflows) reused

by users in their workflows. This number increases to more than half of our proposed

fragments (around 60 %) if we also take into account those fragments that are similar

to a user-defined grouping or workflow. Therefore, according to our results we have

enough evidence to confirm hypothesis H1.3, as up to 60 % of the commonly occur-

ring patterns that we detect automatically have demonstrated to be useful for users

designing workflows.

Our second evaluation aimed at determining if the other 40 % of our suggested

fragments were useful as well. Therefore, we performed a user survey with three domain

experts, asking them about the usefulness of the fragments found on their respective

corpora. In average, the accuracy of our results turned out to be very high. Most of the

proposed fragments were considered useful by users (nearly 90%), even if they would

change around half of the fragments according to their personal preferences (e.g., size,

complexity, frequency, etc.). These preferences can be set up as parameters to filter

fragments, thus increasing the performance of our approach.

159

There is clearly not enough evidence to state that the majority of our proposed

commonly occurring workflow fragments are useful, as half of our candidate fragments

were found to be useful and only three domain experts participated in the survey.

However, the analysis presented in this chapter supports this hypothesis. A more

complete analysis could not be completed due to the difficulty of finding volunteer

users with a significant corpus of workflows.

160

Chapter 8

Conclusions and Future Work

The main goal of this thesis was to facilitate scientific workflow understanding and reuse

by automatically mining commonly used workflow fragments of a workflow corpus. To

this end, we developed workflow provenance and template representation models that

extend on existing standards, we created a catalog of workflow abstractions based on

workflow step functionality, we developed and implemented workflow fragment mining

techniques and we defined metrics and used them to measure the usefulness of workflow

fragments.

Based on the evaluation of our results, we extract two main conclusions. The first

conclusion is that commonly occurring workflow fragments can be mined automatically

from a corpus of workflows using graph mining techniques. Furthermore, commonly

occurring workflow fragments are generally useful for users designing workflows. How-

ever, an important finding is that not all commonly used workflow fragments are useful,

as this depends partly on user preferences and context.

The second conclusion is that workflow abstraction plays an important role in un-

derstanding how different workflows relate to each other. Therefore, it is possible to

find additional occurring workflow fragments using step abstractions.

The rest of the section discusses our assumptions and restrictions, contributions,

impact, current limitations and future lines of work. All the inputs, outputs and

intermediate results of the thesis are available online as Research Objects (Belhajjame

et al., 2015) that define the datasets, structure and metadata of our experiments1.

1http://purl.org/net/mining-abstractions-in-scientific-wfs

161

http://purl.org/net/mining-abstractions-in-scientific-wfs

8.1 Assumptions and Restrictions

Throughout the thesis, we have taken a series of assumptions and restrictions for our

work. Our first assumption for applying the methods described here is thatworkflow

repositories should be available for exploiting workflow definitions of their steps and

dependencies (A1) or their provenance traces (A2).

Also, in order to apply successfully our fragment mining techniques, we convert

the workflow corpus to directed labeled acyclic graphs (R1). We restrict to this type

of representation because it is the most common in data intensive scientific workflows.

Other types of workflows (e.g., business workflows) may benefit from this work, but

have been excluded from the scope of the thesis.

Furthermore, we assume that all the steps of a workflow can be assigned a label with

their type (A3). The type of the workflow step helps identify its functionality, and it is

normally chosen from a library of components by the workflow designer. If two steps

perform the same function in a workflow, they are assumed to have the same type (A4).

Thus, two workflows are assumed to have equivalent functionalities if their dependency

graphs are isomorphic and their nodes share the same types (A5).

Finally, our last assumption is that, when designing workflows, researchers aim to

reuse workflows and workflow fragments in their work, if they find them useful (A6).

Tables 8.1 and 8.2 summarize our assumptions and restrictions according to their

description.

8.2 Contributions

In this section we summarize our contributions regarding the research challenges defined

on Chapter 3.

8.2.1 Workflow Representation Heterogeneity

Our main contributions to this research challenge are the OPMW model (addressing

partly RCRepresent-1, there is no standard model for representing scientific workflows

and their metadata), and a methodology for publishing scientific workflows as Linked

Data (addressing RCRepresent-2, there are no methodologies for publishing a corpus of

scientific workflows and their associated resources as Linked Data).

162

Table 8.1: Assumptions considered in this thesis.

Assumption Description

A1
Available workflow repositories exist for exploiting definitions

of workflow steps and dependencies

A2
Available workflow repositories exist for exploiting

workflow provenance traces

A3
All the steps of a workflow can be

assigned a label with their type

A4
If two steps perform the same function in a workflow,

they are assumed to have the same type

A5
Two workflows are assumed to have equivalent functionality if their

dependency graphs are isomorphic and their nodes share the same type

A6
Researchers aim to reuse workflows and

workflow fragments in their work, if they find them useful

Table 8.2: Restrictions considered in this thesis.

Restriction Description

R1
Workflows are represented as

directed acyclic graphs

8.2.1.1 The OPMW Model

In Chapter 4 we described our rationale and requirements for designing the OPMW

model, the first contribution of this thesis. OPMW is a lightweight vocabulary created

to represent workflow templates, workflow instances and workflow executions along with

their relationships and metadata. The requirements were gathered by looking at the

main workflow operations available in data intensive workflow management systems,

and selecting the minimum common group among all of them. In this regard, the

main scope of the model is to be able to exploit workflow data belonging to several

heterogeneous workflow systems.

Another key requirement of the model was to be aligned to existing vocabularies

and standards. By extending both OPM and PROV, OPMW ensures backwards com-

patibility with applications using OPM, as well as with those using the W3C PROV

standard. Additionally, by extending P-Plan, OPMW can be combined with other vo-

cabularies, as it happened in (Santana-Pérez and Pérez-Hernández, 2015) for specifying

163

workflow execution infrastructure.

The OPMW vocabulary has evolved since its creation, and has been tested as

part of the WEST ecosystem (Garijo et al., 2014d), where a set of workflow tools for

design, analysis and execution use it as a simple intermediate representation during the

whole workflow life cycle. We have used this implementation to further evaluate the

effectiveness of the OPMW model.

8.2.1.2 A methodology for publishing scientific workflows as Linked Data

Our second contribution consists of a methodology to make the different resources

associated to workflow templates, workflow instances and workflow executions openly

accessible as web resources. Our proposal is to publish all the workflow related resources

following the Linked Data paradigm. This allows easy accessibility and reuse for both

humans and machines aiming to consume the workflow related information.

Our proposed methodology adapts a generic approach successfully applied for the

publication of data in other domains like energy consumption, meteorology or geog-

raphy. As described in Section 4.2.2, the methodology consists of five main steps

(specification, modelling, generation, publication and exploitation), which have been

adapted for the publication of scientific workflows. An example of each step is provided

on Section 4.2.3.

8.2.2 Addressing the Inadequate Level of Workflow Abstraction

Generalizing workflows by hand is a daunting task, and may require domain specific

knowledge from expert users. In this respect, we have made two main contributions in

this thesis: a catalog of common workflow motifs based on workflow step functionality,

addressing partly RCAbstract-1 (it is difficult to determine which steps perform the

main significant processing steps in a scientific workflow), and RCAbstract-2 (there are

no catalogs of the typical abstractions that can be found in scientific workflows based

on their basic step functionality); together with an approach to use domain specific

knowledge in order to find additional workflow fragments in a workflow corpus (based

on step abstraction).

164

8.2.2.1 A catalog of common workflow motifs

In Section 5.1 we described the result of a manual analysis over 260 scientific workflows

from four different workflow systems. As a result, we obtained a catalog of common

domain conceptual independent abstractions, which we refer to as common workflow

motifs.

The motif catalog consists on 6 major types of data-operation motifs (related to the

main functionality undertaken by the steps of the workflow) and 6 types of workflow-

oriented motifs (which indicate how the data-operation motifs are implemented in the

workflow). The most common motif is data preparation, highlighting that an impor-

tant effort in the creation of workflows is dedicated to data integration, filtering and

reformatting activities. Regarding workflow-oriented motifs, the amount of internal

macro motifs and composite workflows indicate that reuse is a common practice among

scientists publishing their workflows.

Workflow motifs categorize workflow steps by their functionality. Hence, they pro-

vide the means to create an adequate level for workflow abstractions.

8.2.2.2 Workflow generalization

Chapter 5 describes how a step abstraction may help connecting workflows that seemed

to be unrelated. In principle, this can be achieved by using domain experts to create

taxonomies of components with the same functionality. As we have demonstrated in

Chapter 7, this approach can be used to find additional generic motifs that help creating

relationships among different scientific workflows.

8.2.3 Difficulty of Workflow Reuse

We presented several contributions related to this open research challenge. First, we

analyzed how users reuse workflows in different corpora, addressing RCReuse-1 (it is

difficult to determine the relation between different workflows in a corpus).

Second, we have designed and evaluated an approach to find commonly occurring

workflow fragments automatically, along with the metrics to assess whether a workflow

fragment is useful or not in terms of reuse. This addresses RCReuse-2 (It is not easy to

detect which workflows or workflow fragments are potentially useful for reuse), as our

approach generates fragments that are potentially useful for reuse.

165

Finally, we defined a method for exploring how different workflow fragments can

be linked to their original workflows, enabling linking distinct workflows thet share

common functionality (and also addressing RCReuse-1).

8.2.3.1 Workflow reuse analysis

In order to dig into the level of workflow reuse exposed in Section 5.1, sections 5.2

and 5.3 describe two analyses from two different perspectives. One consists on an

automatic analysis of four workflow corpora, counting the number of unique workflows

and groupings (i.e., user hand made sub-workflows) and how many of them are finally

reused. An interesting conclusion of this analysis is that, despite the current difficulty

for workflow reuse, a high number of workflows appears in other workflows, specially

when the repository belongs to a single contributor. Groupings are also heavily used,

even more than workflows.

The second analysis describes a user survey on code, workflow and grouping reuse.

The rationale for the analysis was to understand the user perspective on reuse, in order

to confirm the findings from previous analyses. According to the results, workflows are

generally considered more useful than groupings (although groupings are considered

useful as well). Groupings are not created solely for reusing purposes, but also to

organize workflows and make them easier to modularize and simplify.

These analyses are a strong contribution, since they are unique on measuring sub-

workflow reuse in a workflow corpus.

8.2.3.2 Automatic workflow fragment detection

Another contribution to address the difficulty of workflow reuse is our approach for

the automated detection of workflow fragments using graph mining techniques. This

approach, described in Chapter 6, is able to detect successfully commonly occurring

workflow fragments using graph mining techniques and filtering the fragments to sim-

plify the results. As shown on the evaluation in Section 7.3, more than half of the

resulting fragments are equal or very similar to what users identified as useful in their

own designs. Furthermore, those fragments that were not similar to what users indi-

cated in their workflows were considered useful by three different domain experts on

their respective corpora. This indicates that our approach is able to find fragments

166

that are useful for workflow reuse, although further analysis is needed to confirm that

the majority of our proposed fragments is useful for that purpose.

8.2.3.3 Workflow fragment assessment metrics

Another contribution regarding the difficulty for workflow reuse are the metrics we have

defined for assessing whether a workflow fragment is useful or not. These metrics are

described in Section 7.1, and are based on precision and recall. The first metric relies

on the ability to find fragments as motifs that are either commonly occurring or generic

like internal macros and composite workflows. The second metric assesses whether our

fragments are similar to the structures defined by users when they design workflows.

8.2.3.4 Workflow fragment linking

In addition to obtaining the resulting set of commonly occurring workflow fragments,

we have described in Section 6.4 a generic method to link a fragment to the workflow or

workflows where the fragment appears. This is a contribution towards easing workflow

reuse and discoverability, as the workflows of a repository are related to each other by

their commonly occurring workflow fragments.

8.2.4 Lack of Support for Workflow Annotation

We have described in the thesis two contributions for facilitating annotation of work-

flows and workflow fragments in a semi-automated way (RCAnnot1), in the form of

two different vocabularies. The first one is a vocabulary for common workflow motifs

and the second one is a vocabulary for workflow fragment description and linking.

8.2.4.1 Workflow motif vocabulary (wf-motifs)

Wf-motifs2 is a vocabulary encoding the catalog of common workflow motifs presented

in Section 5.1. This vocabulary is a contribution towards workflow annotation for two

reasons. First, it provides a machine readable description of the catalog of motifs,

stating how different motifs are related or depend on each other. Second, it defines

explicit relationships to annotate workflows and workflow steps with any of the motifs

described on the catalog.

2http://purl.org/net/wf-motifs

167

http://purl.org/net/wf-motifs

8.2.4.2 Workflow fragment description vocabulary (wf-fd)

The Wf-fd vocabulary3 is the means we use to expose the links found between fragments

and the original workflows where they were found. In this regard, the vocabulary itself

is a contribution because we use it to automatically annotate workflows with their

associated workflow fragments.

8.3 Impact

The contributions of this thesis have already started to be used in recent work by other

researchers. The OPMW model has been used for exposing automatically annotated

bio-informatic workflows (Garćıa-Jiménez and Wilkinson, 2014b) and for documenting

the results of scientific research4. Our catalog of motifs has been adopted and ex-

tended by analyzing workflows of distributed environments (Olabarriaga et al., 2013)

and summarizing workflows (Alper et al., 2013).

Other contributions may impact different workflow research areas, as we describe

below:

• Workflow exploration: By knowing how each fragment is found on a workflow,

it is possible to derive a network where the nodes represent the different workflows

and the edges are the common fragments (dependencies) found among them.

Thus, the higher the number of common fragments the stronger the connection

would be between two workflows. This kind of network would help to see how

different workflows are connected to each other on a repository, facilitating the

exploration between workflows with same parts of functionality.

• Workflow abstraction: Approaches like (Cerezo, 2013) use fragment knowledge

bases to create abstractions. These approaches can benefit from our commonly

occurring workflow fragments.

• Workflow discovery: Commonly occurring workflow fragments, when sup-

ported in many workflows, may become valuable workflow candidates themselves.

Repository maintainers may offer these potentially reusable fragments to users to

include on their workflows.
3http://purl.org/net/wf-fd
4http://linked-research.270a.info/linked-research.html

168

http://purl.org/net/wf-fd
http://linked-research.270a.info/linked-research.html

• Workflow visualization: As stated in the user survey of Section 5.3, one of

the reasons why groupings are created is for summarization and organization

purposes. Hence, commonly occurring workflow fragments can be used to simplify

the complexity of a workflow by collapsing their nodes under a single one. If a

workflow has overlapping fragments it would be possible to create different views

according to user preferences, simplifying the overall complexity shown to the

final user.

• Workflow compression: Similarly, if several workflows share the same frag-

ment, it would be possible to store the common relevant workflow fragments

instead of every expanded workflow, for efficiency. This would be particularly

useful when dealing with similar or identical provenance traces.

• Suggestions for workflow design: Commonly occurring fragments may be

used to suggest how a user may complete a workflow under development. By

comparing the current workflow with the commonly occurring fragments, it would

be possible to recommend the next step or sets of steps of the workflow.

• Workflow ranking: Once the catalog of fragments is linked to a workflow cor-

pus, it would be possible to order the workflows by different criteria and create

rankings. Possibles examples of rankings are the degree of reusability of the work-

flow (i.e., how much of the workflow can be found in other workflows), workflows

with most reused fragments, etc.

8.4 Limitations

In this section we discuss the main limitations associated to the contributions and

methods described in the thesis.

8.4.1 Workflow Representation and Publication

OPMW aims to represent scientific workflow templates, instances and executions and

their relationships as labeled directed acyclic graphs (as stated on restriction R1). More

complex workflow structures, such as sub-workflows, loops and conditionals (the last

two being more typical of business workflows) have been deliberately left out of the

model for simplicity. In this regard, OPMW captures the minimum set of workflow

169

operations common to most workflow systems. In order to represent more complex

structures, additional extensions of the model would be necessary.

Regarding the publication of workflows, one possible issue is privacy. In some

domains privacy is a concern (e.g., if the workflow processes sensitive clinical data),

and in those cases the open publication of all the workflow resources as Linked Data

would not be appropriate. However, there are many areas of science where privacy is

not an issue and that would benefit tremendously from a more open architecture for

sharing both data and workflows. Besides, it is possible to publish workflows as Linked

Data for local consumption, by restricting the access to the Linked Data server.

8.4.2 Common Workflow Motifs

Our catalogue of common workflow motifs is the result of an extensive analysis on

workflows from different domains and different platforms. We believe that the sam-

ple collected is statistically significant for the life-sciences domain, as for most of the

systems we have chosen the majority of the workflows available.

However, there may be other motifs in other domains and types of workflows (e.g.,

business workflows) or in workflows prepared to be executed in other settings like

distributed systems (as happened in (Olabarriaga et al., 2013)). Since the catalog is

exposed as an online vocabulary, we have provided the means to extend it whenever

additional analyses are made.

In addition, one of the objectives of this work tackled the automatic detection of

abstractions from a repository of workflows. In this regard, we have only addressed the

detection of those motifs related to workflow reuse. The rest of the motif catalog has

been left out of scope, and it would present a challenging line of future work.

8.4.3 Workflow Fragment Mining

As discussed in Chapter 6, there are two possible limitations introduced by graph

mining techniques: the size of the result (i.e., number of mined workflow fragments)

and the time needed to compute the results.

Regarding the size of the result, we have developed filtering techniques that prune

the response and return only those fragments that are relevant to our purposes. How-

ever, our results have shown that there are cases where the size of the commonly occur-

ring fragments leads to produce memory errors on the exact graph mining techniques

170

(e.g., when many versions of a big workflow are included as part of the corpus). This

limitation can be handled by augmenting the amount of memory of the application,

increasing the minimum frequency or support for a fragment be found on the workflow

corpus, limiting the maximum size of the fragment to be found or by using an inexact

graph mining technique (which simplify greatly the number of responses, even if all the

possible fragments are not returned).

Regarding the time, sub-graph isomorphism is known to be a NP-Complete problem

(Cook, 1971). Different techniques optimize their algorithms in order to reduce the

execution time as much as possible, being able to handle a large amount of graphs in a

reasonable time. Although we state time as a limitation of graph mining techniques, we

do not consider it critical in our analyses. Workflow fragment mining can be performed

as an automated back-end task on a repository, executed once in a fixed period of time

(e.g., week or month). Time can also be reduced greatly by modifying the parameters

of the mining algorithms, such as maximum size of the fragment to look for in the

dataset or the minimum support or frequency of the fragments to find (the bigger the

support, the lesser the candidates and therefore the faster we obtain the results), etc.

However, adding these kinds of limitations may have an impact on the quality of the

results.

8.4.4 Workflow Generalization

In our work, we use taxonomies and domain knowledge to generalize workflows and find

abstract fragments in a workflow corpus, if they exist. These abstractions depend on

how domain experts model the domain, and thus different workflows may be simplified

differently according to how each user models their domains. The main limitation in

this regard is that the domain knowledge must come from an expert or a community

of experts in the form of a taxonomy or an ontology, in order for us to be able to

generalize workflows. The creation of a taxonomy from a repository of workflows is out

of the scope of this work.

8.5 Future Work

Our work may be expanded in several ways. In this section we discuss possible future

lines of work related to our research challenges.

171

8.5.1 Towards Workflow Ecosystem Interoperability

Workflow heterogeneity has been an issue in the workflow community for years, and

some interchange languages for workflow specification interoperability have been speci-

fied by part of the community (e.g., IWIR). However, the workflow life cycle (including

workflow instances and workflow executions) is still represented differently for each

workflow tool.

We believe that a way to consolidate an intermediate representation between dif-

ferent workflow design and execution tools is through a workflow ecosystem (Garijo

et al., 2014d). A workflow ecosystem brings together heterogeneous tools that consume

and produce workflow templates, instances and executions at different moments of the

workflow life cycle. Different tools may also consume workflows at different granularity

(e.g., a workflow depiction tool would aim to consume an abstract provenance trace,

while a workflow execution tool would require the full dependency graph among the

workflow steps and where to find the scripts to run each of them). This forces tools

to cooperate in order to communicate with a consistent representation. In this thesis

we have proposed and tested a model that tries to minimize the common workflow

operations in order to successfully communicate different applications in a workflow

ecosystem. However, this is only a first step, and a community of adopters and pro-

ducers is necessary to push forward a robust and consolidated standard model.

8.5.2 Automating Detection of Workflow Abstractions

In this thesis we have discussed two ways of creating abstractions from workflows: work-

flow generalization (which is generated automatically by using a taxonomy provided

by domain experts) and a catalog of workflow motifs (some of which we find automat-

ically by using graph mining techniques). Even though we have contributed towards

the automatic detection of workflow abstractions, our work may be expanded, as we

further describe below.

Workflow Generalization: One of the limitations we have devised for workflow

generalization is the need for a domain expert to create the taxonomy used to generalize

the workflow steps. The ability to derive a domain specific taxonomy automatically

would improve the process, in case no domain experts can be consulted. The extraction

172

of the taxonomy may be performed by exploring workflows and by mining domain

specific knowledge bases with description of the workflow steps.

Workflow Motifs: In Section 5.1 we described a catalog of common workflow motifs

in scientific workflows. As discussed in the limitations section, a future line of work

would be to expand this catalog with other types of workflows (e.g., business workflows)

or execution environments (e.g., high performance workflows or distributed workflows).

We have left the detection of any motif unrelated to workflow reuse out of the scope

of this thesis. A challenging line of work would be, given a workflow as an input, to be

able to recognize and annotate all its motifs automatically. This would help understand

the workflow better, as in many cases there is not enough documentation to determine

what a particular step of a workflow does unless we execute it.

After extracting and refining the motif catalog we have analyzed some of the features

of the motifs. Below we highlight some of the features which might help for their

automated classification, specially those under the “data preparation” category:

• Input and output number: by determining whether the number of inputs

is bigger than the number of outputs we can (usually) discard certain types of

motifs. For example, a merging component normally has several inputs of the

same type and produces a lesser amount of outputs of the same type.

• Input and output size: when combined with the number of inputs, their size

can be combined as a metric to speculate about the type of operation going on

the component. For example, if a dataset file is used as input of a step and the

result is a similar reduced dataset, the input may have been filtered.

• Input and output type: This feature can be combined with the previous two

to speculate about the type of motif being applied. For example, if the type of

the input is the same as the type of the output, we might be applying different

data transformations (filter, clean, merge, group) to the same file.

• Name similarity: It is common for the authors to name their components after

the function they perform. For example, if a component merges a dataset, it is

likely to be named “MergeDataset” (or similar). By measuring the distance of

the workflow step name to a controlled vocabulary (merge, filter, concatenate,

curate, add, etc.) we could speculate about its function.

173

These features may be combined into feature vectors and train classifiers with them.

Additionally, algorithms to differentiate between inputs and outputs could be run,

in order to determine the type of transformations happening on each workflow step.

Adding these kind of annotations on a workflow corpus automatically would also allow

categorizing workflow steps in order to derive their taxonomy.

8.5.3 Improving Workflow Reuse

There are several ways in which our candidate workflow fragments may be improved

to be more useful. First, it would be necessary to study the different features of a

workflow fragment in order to allow users customize their results. As we have seen in

our evaluations, different users prefer fragments of different sizes and frequencies. Other

metadata like the number of different workflows in which they appear (support) or the

technique used to obtain them (inexact or exact FSM) may be relevant for filtering a

set of useful fragments for a particular user.

Second, it should be possible to rank a set of fragments once they have been auto-

matically characterized and annotated. Rankings make a set of fragments to be easily

comparable in order to recommend similar workflows to a particular given one (based

on their fragment similarity). It would be an interesting line of work to determine if a

recommendation based on similar workflow fragments provides similar or better results

than other approaches existent in the state of the art.

Third, a set of workflow fragments may be used for suggestions in workflow de-

sign, in combination with process mining approaches. Process mining approaches have

demonstrated to obtain good results to predict the next step of the workflow. When

using process mining techniques with common workflow fragments (which have been

repeatedly used among the dataset), we suspect that better results may be obtained

with less processing, as the common workflow fragments filter those structures that are

unlikely to appear.

Finally, another area of improvement is the efficiency with which the workflow

fragments are obtained. The size of the commonly occurring fragments may cause the

fragment detection process to be slow (a consequence of being a NP-Complete problem).

We have deliberately left out the issue of efficiency of the thesis, as our main objective

was to assess whether graph mining techniques would be appropriate for obtaining a

set of useful workflow fragments for designing workflows or not. Therefore, we have

174

tested representative graph mining algorithms of inexact and exact FSM techniques.

In Annex D we discuss additional algorithms with potential to either discover other

types of workflow fragments (as inexact FSM), or return the results more efficiently.

175

176

ANNEX A

Competency questions for

OPMW

Here we introduce the competency questions created for the development of OPMW,

described in Section 4.1.3. The competency questions can be seen in table A.1, A.2,

A.3, A.4 and A.5 below.

Table A.1: Competency questions for OPMW (1).

Competency Question
Terms created/reused to

address it

What are the input data variables of a workflow

step?

DataVariable,

uses,

WorkflowTemplateProcess

What are the output data variables generated by

a workflow step?

DataVariable,

isGeneratedBy,

WorkflowTemplateProcess

What are the parameters used for a workflow

step (name, type)?
ParameterVariable, uses

What are the files associated to a workflow

execution?

WorkflowExecutionArtifact,

opmo:account,

WorkflowExecutionAccount

What are the intermediate results produced

in a workflow execution?

WorkflowExecutionArtifact,

opmo:account,

WorkflowExecutionAccount

177

Table A.2: Competency questions for OPMW (2).

Competency Question
Terms created/reused to

address it

Which processes where run in a workflow

execution?

WorkflowExecutionProcess,

opmo:account,

WorkflowExecutionAccount

What are the parameters and variables of

a workflow?

DataVariable,

isVariableOfTemplate,

WorkflowTemplate

Where was a particular workflow executed?
WorkflowExecutionAccount,

executedInWorkflowSystem

Which codes were used to run a workflow

step?

WorkflowExecutionProcess,

hasExecutableComponent

This execution step, to which template step

does it correspond to?

WorkflowExecutionProcess,

correspondsToTemplateProcess,

WorkflowTemplateProcess

This execution file (intermediate result,

input or result) to which part of the

workflow template does it correspond?

WorkflowExecutionArtifact,

correspondsToTemplateArtifact,

WorkflowTemplateArtifact

To which workflow template does this

execution correspond?

WorkflowExecutionAccount,

correspondsToTemplate,

WorkflowTemplate

Which step produces this data variable

in the workflow template?

DataVariable,

uses,

WorkflowTemplateProcess

Which steps use this data variable in the

workflow template?

DataVariable,

isGeneratedBy,

WorkflowTemplateProcess

This parameter, to which template does

it correspond to?

ParameterVariable,

isParameterOfTemplate,

WorkflowTemplate

178

Table A.3: Competency questions for OPMW (3).

Competency Question
Terms created/reused to

address it

This variable, to which template does

it correspond to?

DataVariable,

isVariableOfTemplate,

WorkflowTemplate

This intermediate result, to which

execution does it correspond to?

WorkflowExecutionArtifact,

opmo:account,

WorkflowExecutionAccount

This result, to which execution does it

correspond to?

WorkflowExecutionArtifact,

opmo:account,

WorkflowExecutionAccount

Who is the responsible for the execution

of the workflow (or steps of the

workflow)?

WorkflowExecutionProcess,

opmv:wasControlledBy,

prov:wasAssociatedWith,

opmv:Agent

Which steps use a particular dataset in

an execution?

WorkflowExecutionProcess,

opmv:used,

prov:used,

WorkflowExecutionArtifact

Which step has generated this output?

WorkflowExecutionArtifact,

opmv:wasGeneratedBy,

prov:wasGeneratedBy,

WorkflowExecutionProcess

Where was this workflow created?
WorkflowTemplate,

createdInWorkflowSystem

Does this workflow have a documentation?
WorkflotTemplate,

hasDocumentation

Are there any collections on the workflow?
WorkflowTemplateArtifact,

hasDimensionality

179

Table A.4: Competency questions for OPMW (4).

Competency Question
Terms created/reused to

address it

How long did an execution last?

WorkflowExecutionAccount,

hasOverallStartTime,

hasOverallEndTime

Was the execution finished successfully?
WorkflowExecutionAccount,

hasStatus

What is the start time and end time of

this execution process?

WorkflowExecutionProcess,

prov:startedAtTime,

prov:endedAtTime

Can I see a diagram of the execution?
WorkflowExecutionAccount,

hasExecutionDiagram

Can I see a diagram of the workflow?
WorkflowTemplate,

hasTemplateDiagram

What is the original template designed

by the workflow system?

WorkflowTemplate,

hasNativeSystemTemplate

What is the execution log?
WorkflowExecutionAccount,

hasOriginalLogFile

Is a template component abstract?

(i.e., it has multiple possible implementations)

WorkflowTemplateProcess,

isConcrete

What is the name of this file?
WorkflowExecutionArtifact,

hasFileName

What is the size of this file?
WorkflowExecutionArtifact,

hasSize

What is the URL with the location of this file?
WorkflowExecutionArtifact,

hasLocation

What is the version number of this workflow?
WorkflowTemplate,

versionNumber

What was the value of this parameter?
WorkflowExecutionArtifact,

hasValue

180

Table A.5: Competency questions for OPMW (5).

Competency Question
Terms created/reused to

address it

Is there a license associated to this workflow

or to any of its outcomes?

WorkflowTemplate,

WorkflowExecutionArtifact,

WorkflowExecutionProcess,

dc:rights, dc:license

Who created this workflow?

WorkflowTemplate,

dc:creator,

prov:wasAttributedTo

Who contributed to this workflow?

WorkflowTemplate,

dc:contributor,

prov:wasAttributedTo

181

182

ANNEX B

Reuse Questionnaire

Tables B.1, B.2 and B.3 illustrate the set of questions included in the user survey

described on Section 5.3.

Table B.1: List of the questions included in the user survey (1).

Number Survey Question

Q1
Is,writing code important for being able to do research in a neuro-imaging

lab?

Q2 If it is, is sharing code with other researchers useful?

Q3 Is the LONI pipeline workflow system useful?

Q4 Is the LONI pipeline useful for creating workflows (pipelines)?

Q5

If not, why?

- It takes time to learn how to create workflows

- Other:

Q6 Is creating workflows (pipelines) useful?

Q7

Why is creating workflows (pipelines) useful? Select all that apply:

- It saves time to reuse components from my previous workflows

- Workflows make it easier to track and debug complex code

-Workflows are a convenient way to organize and store my code

-Workflows make me think of organizing my code better

-Workflows make me think of making my code modular and more reusable

-Workflows are a convenient way to make my methods more understandable

-Workflows are a useful visualization of an overall analysis

-Workflows facilitate reproducibility

- Other

Q8 Is reusing previously created workflows (pipelines) in new analyses useful?

183

Table B.2: List of the questions included in the user survey (2).

Number Survey Question

Q9

Why is reusing previously created workflows (pipelines) useful? Select all that apply

- It saves time to reuse components from my previous workflows

- Workflows give a high-level diagram that helps remember what was done

- Other:

Q10 Is it useful to share workflows (pipelines) with other researchers?

Q11

Why is it useful to share workflows (pipelines) with other researchers?

Select all that apply

- Non-programmers can use the workflows to run code easily

- New students and new people in the lab can easily use workflows

- It saves them time because they do not have to re-implement the code

- It makes everyone think of standards by adopting the ways others do things

- Other:

Q12

If not, why are workflows (pipelines) not shared? Select all that apply

- Others would not want to use them

- Others ask too many questions to the creators of the workflows

- Workflows created by others are difficult to understand

- It is difficult to understand how to prepare the data for a workflow

- Other:

Q13

What is the most usual size of workflows (pipelines)? Select all that apply

- 1-5 components

- 5-10 components

- 10-20 components

- >20 components

Q14 Is it useful to reuse workflows (pipelines) from other researchers?

Q15

If not, why? Select all that apply

- Workflows created by others are difficult to understand

- It is difficult to understand how to prepare the data for a workflow

- Workflows created by others are often too specific

- It is hard to make them work

- Other:

Q16 Is the groupings functionality of the workflow system useful?

Q17 If not, why?

Q18

What are,the benefits of using groupings? Select all that apply.

- To have nice visualizations of an analysis

- To simplify workflows that are complex overall

- To make workflows more understandable to others

- Other:

Q19 Is it useful to reuse previous groupings in new work?

184

Table B.3: List of the questions included in the user survey (3).

Q20

Why is reusing previously created groupings useful? Select all that apply.

- It saves time to reuse groupings instead of whole workflows

- Groupings are a convenient way to make my code modular

- Groupings are a convenient way to make my methods more understandable

- Other:

Q21 Is it useful to share your own previous groupings with other researchers?

Q22

Why is it useful to share your own previous groupings with other researchers?

Select all that apply.

- Non-programmers can use groupings more easily than whole workflows

- New students and new people in the lab can easily use groupings

- It saves them time because they do not have to re-implement the code

- It makes everyone think of standards by adopting the ways others do things

- Other:

Q23

If not, why are groupings not shared? Select all that apply

- Others ask too many questions to the creators of the workflows

- Others would not want to use them

- It is difficult to explain what they do

- It is difficult to explain how to prepare the data

- Other:

Q24 Are groupings from other researchers reused?

Q25

If not, why are they not reused?

- It is difficult to understand what they do

- It is difficult to understand how to prepare the data

- They are too specific

- It is hard to make them work

- Other:

Q26 Are workflows (pipelines) linked to publications?

Q27

How is this done? Select all that apply

- Keeping personal notes about what workflows were used in a paper

- Posting links publicly in a project or personal Web site

- Other:

Q28

When workflows are not linked to publications, why is that? Select all that apply

- People do not know how to do it

-People do not find it useful

- Other:

Q29 Would you like to add any other comments on the topics of the questions above?

185

186

ANNEX C

Evaluation Details

This annex provides additional details of the results described in Chapter 7.

C.1 Motifs found in the Wings Corpus

Table C.1 provides details on how the internal macro motifs are found in the Wings

corpus. Regarding composite workflows, we analyze whether a particular workflow is

part of another workflow (i.e., is part of a composite workflow) or not. More details on

any of the templates can be browsed online1

C.2 Details on the evaluation of the Application of Inex-

act FSM techniques

Table C.2 introduces the details used to create the figures depicted on Section 7.2.2 of

the evaluation.

C.3 Details on the evaluation of the Application of Exact

FSM techniques

Table C.3 introduces the details used to create the figures depicted on Section 7.3.2.2

of the evaluation.

1http://purl.org/net/wexp

187

http://purl.org/net/wexp

Table C.1: Motifs found in the Wings corpus. Templates with one step are omitted.

Template name
N of

Steps

Part of comp.

workflows?

Part of comp.

workflows?

(generalizing)

N of internal

macros

N of internal

macros

(generalizing)

1 Classify 1 - - - -

2 CorrelationScore 1 - - - -

3 DocumentClassificationMutli 15 no no 1 (5 steps)
2 (2 steps

and 5 steps)

4 DocumentClassificationSingle 13 no no 1 (6 steps) 1 (6 steps)

5 DocumentClustering 6 no no 0 0

6 FeatureGeneration 4 no yes 0 0

7 FeatureSelection 7 no no 0 0

8 GenerateVocabular 3 no no 1 (1 step) 1 (1 step)

9 Model 3 no no 0 0

10 ModelThenClassify 2 no no 0 0

11 MultiLabel 3 no yes 0 0

12 PlotCorrelationScore 3 no no 0 0

13 PlotTopics 1 - - - -

14 PrepareDataset 2 no no 0 0

15 ReduceDataset 1 - - - -

16 Similar 2 no yes 0 0

17 SimilarWords 6 no yes 0 0

18 SimilarWordsTopics 6 no yes 0 0

19 Stemming 3 yes yes 0 0

20 TermWeighting 1 - - - -

21 Topic Modeling 6 no no 0 1 (2 step)

22 Validate 2 yes yes 0 0

C.4 Usefulness Questionnaire

The questionnaire issued to the three different users followed the template described in

table C.4:

188

Table C.2: Details on precision and recall of inexact FSM techniques on corpora WC1-

WC4, used in the LONI Pipeline evaluation. The frequency indicates the minimum number

of occurrences for a fragment to appear in the corpus. The precision and recall are shown

only for multi-step filtered fragments (Mff) for simplicity.

Corpus
Inexact

FSM

Freq (num

occurr. (occ))
Candidate

Multi-

Step
Mff P100 (Mff) P90 (Mff) P80(Mff)

WC1

MDL

min (2 occ) 281 281 278 0,269784173 0,269784173 0,428057554

2%,(8 occ) 72 72 71 0,225352113 0,225352113 0,323943662

5%,(22 occ) 32 32 31 0,258064516 0,258064516 0,290322581

10%,(44 occ) 15 15 14 0,428571429 0,428571429 0,5

Size

min (2 occ) 481 371 368 0,33423913 0,461956522 0,573369565

2%,(8 occ) 80 60 60 0,383333333 0,433333333 0,566666667

5%,(22 occ) 24 24 24 0,291666667 0,333333333 0,583333333

10%,(44 occ) 10 10 10 0,3 0,4 0,8

WC2

MDL

min (2 occ) 93 93 91 0,142857143 0,153846154 0,208791209

2%,(2 occ) 93 93 91 0,142857143 0,153846154 0,208791209

5%,(4 occ) 20 20 20 0,2 0,2 0,2

10%,(9 occ) 6 6 6 0,333333333 0,333333333 0,333333333

Size

min (2 occ) 135 86 84 0,178571429 0,273809524 0,380952381

2%,(2 occ) 135 86 84 0,178571429 0,273809524 0,380952381

5%,(4 occ) 31 21 21 0,238095238 0,333333333 0,476190476

10%,(9 occ) 5 5 5 0,6 0,6 0,6

WC3

MDL

min (2 occ) 141 141 141 0,397163121 0,418439716 0,482269504

2%,(5 occ) 25 25 25 0,36 0,4 0,56

5%,(13 occ) 5 5 5 0 0 0,2

10%,(26 occ) 1 1 1 0 0 0

Size

min (2 occ) 227 149 147 0,489795918 0,551020408 0,591836735

2%,(5 occ) 42 29 29 0,551724138 0,620689655 0,655172414

5%,(13 occ) 9 7 7 0,285714286 0,428571429 0,428571429

10%,(26 occ) 3 2 2 0,5 0,5 0,5

WC4

MDL

(failed

exec)

min (2 occ) 4 4 4 0,25 0,5 0,75

2%,(1 occ) NA NA NA NA NA NA

5%,(3 occ) 4 4 4 0,25 0,25 0,5

10%,(5 occ) 2 2 2 0 0 0,5

Size

min (2 occ) 64 42 42 0,238095238 0,357142857 0,404761905

2%,(1 occ) NA NA NA NA NA NA

5%,(3 occ) 18 16 16 0,25 0,375 0,375

10%,(5 occ) 5 3 3 0,333333333 0,333333333 0,333333333

189

Table C.3: Details on precision and recall of exact FSM techniques on corpora WC1-

WC4, used in the LONI Pipeline evaluation. The support indicates the minimum number

of templates in which to appear in the corpus. The precision and recall are shown only for

multi-step filtered fragments (Mff) for simplicity. The asterisk (*) means that the execution

was limited by setting a maximum fragment size, in order to avoid out of memory errors.

Corpus
Support (%),

(templ (t))

Multi-

Step
Mff P100 (Mff) R100 (Mff) P90(Mff) P80(Mff)

WC1

2%,(8 t)
out of

memory
637* 0,127158556 0,137989779 0,127158556 0,334332834

5%,(22 t)
out of

memory
1996 0,02755511 0,093696763 0,121743487 0,717935872

10%,(44 t) 54714 110 0,163636364 0,030664395 0,181818182 0,445454545

15%,(66 t) 5819 33 0,393939394 0,022146508 0,424242424 0,545454545

WC2

2%,(2 t)
out of

memory
127* 0,362204724 0,254143646 0,409448819 0,472440945

5%,(4 t)
out of

memory
48 0,125 0,033149171 0,1875 0,25

10%,(9 t) 368877 14 0,071428571 0,005524862 0,071428571 0,142857143

15%,(14 t) 25 2 0 0 0 0

WC3

2%,(5 t)
out of

memory
108 0,444444444 0,137931034 0,527777778 0,611111111

5%,(13 t) 2850 29 0,413793103 0,034482759 0,482758621 0,655172414

10%,(26 t) 37 9 0,222222222 0,005747126 0,222222222 0,444444444

15%,(40 t) 0 0 0 0 0 0

WC4

2%(1 t) NA NA NA NA NA NA

5%, (3 t)
out of

memory

out of

memory
NA NA NA NA

10%,(5 t)
out of

memory
10* 0,1 0,011111111 0,1 0,1

15%,(7 t) 268840 3 0 0 0 0

Table C.4: User questionnaire for assessing the usefulness of the proposed fragments.

Question Possible responses

Q1: Would you consider the proposed

fragment a valuable grouping?

I would not select it as a grouping (0)

I would use it as a grouping with major changes

(i.e., adding/removing more than 30% of the steps) (1)

I would use it as a grouping with minor changes

(i.e., adding/removing lessthan 30% of the steps) (2).

Q2: What do you think about the

complexity of the fragment?

The fragment is too simple (0)

The fragment is,ne as it is (1)

The fragment has too many steps (2)

190

ANNEX D

Additional FSM Algorithms for

Mining Useful Fragments

As described in Chapter 6, there are many existing algorithms for FSM (Jiang et al.,

2012). However, finding the associated implementations to each of the algorithms is not

always trivial. In this annex we discuss three algorithms with available implementations

that may improve some aspects of the current results obtained by our approach. Other

algorithms with available implementations exist1,2, but according to their descriptions

they may not return results significantly different to what we have already obtained with

the ones implemented in our approach (as most of them are exact FSM techniques).

• Sigma (Mongiovi et al., 2010) is an inexact FSM algorithm that performs over a

dataset of graphs. Being inexact, Sigma may return commonly occurring frag-

ments that are similar, discovering new levels of abstraction among the workflow

corpus. Additionally, according to the authors, it outperforms other state of

the art inexact FSM algorithms, which makes it a potential candidate for us to

consider when finding fragments in workflows.

• GRAMI (Saeedy and Kalnis, 2011) is another inexact FSM algorithms for effi-

ciently mining large single graphs. GRAMI uses an edit distance to group together

similar commonly occurring fragments, instead of using an exact mining approach.

1http://hms.liacs.nl/graphs.html
2http://www.borgelt.net/fpm.html

191

http://hms.liacs.nl/graphs.html
http://www.borgelt.net/fpm.html

However, GRAMI has been designed for single large graphs, and it would be re-

quired to explore whether it would be appropriate for finding patterns in multiple

graphs, as it is our case.

• MIRAGE (Bhuiyan and Hasan, 2013) implements an exact FSM algorithm using

a MapReduce approach. In this regard, the results would not differ from other

exact FSM algorithms already implemented in FragFlow, but by parallelizing

their approach with MapReduce, the total amount of time needed to process the

input corpus would be significantly reduced.

192

Glossary

AGM

The Apriori Graph Mining algorithm (AGM) is an exact FSM technique that

uses an adjacency matrix to represent graphs in combination with an efficient

levelwise search to discover common sub-graphs (Inokuchi et al., 2000). 115

AGWL

Askalon’s language for specifying scientific workflows (Fahringer et al., 2005). 20

ASKALON

Workflow management system developed by the University of Innsbruck (Austria)

(Fahringer et al., 2007). 14

BFS

Breadth first search (BFS) is a technique for exploring a graph by visiting first

all the neighbours of a node. 115

BPMN

The Business Process model and Notation (BPMN) provides a standard notation

for implementing, managing and monitoring business processes (Aggarwal et al.,

2011). 12

Business workflow

Templates designed to model, automate and execute a flow of business activities

in the corporate world3. 11

3http://www.wfmc.org/what-is-bpm

193

http://www.wfmc.org/what-is-bpm

Candidate workflow fragment

A workflow fragment identified by any of the FSM approaches integrated in

FragFlow. 120

Case-based reasoning

Group of techniques that aim to solve a given problem based on past experience

with similar cases. 38

Clustering

Set of techniques that aim to group together individuals sharing a particular set

of common features. 37

Common workflow fragment

Given a workflow corpus, a workflow fragment is common if it appears at least

f times in the corpus, with f bigger than 2. The number “f” can be calculated

in two different ways. If each occurrence is counted once per workflow then “f”

represents the support for the workflow fragment. If all the occurrences of the

fragment are counted (even if it appears several times on the same workflow) “f”

represents the frequency of the workflow fragment. 109

Competency question

A requirement to be fulfilled by an ontology (i.e., the data modeled by an ontology

must be able to answer the question). 52

Conceptual workflows

Workflow model that aims to facilitate workflow abstraction and design by sepa-

rating workflows in conceptual and abstract levels (Cerezo, 2013). 23

CrowdLabs

Workflow repository for VisTrails’ workflows, created by the University of New

York (USA)(Mates et al., 2011). 26

D-PROV

Provenance model for representing workflow execution templates, instances and

executions (Missier et al., 2013). It extends the PROV standard. 23

194

DAX

Syntax used by the Pegasus workflow system for specifying scientific workflows4.

20

DFS

Depth first search (DFS) is a technique for exploring a graph by visiting each

branch associated to a node of the graph before backtracking to the next neighbor.

115

Directed acyclic graph

A non empty set of nodes and edges that connect those nodes. All the edges have

a direction, i.e., they go from a source node (tail) to a target node (head). This

type of graph has no cycles, i.e., from a node it is not possible to reach the same

node by following its edges. 14

Directed cyclic graph

A non empty set of nodes and edges that connect those nodes. All the edges have

a direction, i.e., they go from a source node (tail) to a target node (head). This

type of graph contains cycles, i.e., from a node it may be possible to reach the

same node by following its edges. 14

DISPEL

Data-Intensive Systems Process Engineering Language, defined to “describe ab-

stract workflows for distributed data-intensive applications” (Atkinson et al., 2013).

20

DOI

A Digital Object Identifier (DOI)5, is a standard way for accessing resources on

electronic networks. It has been commonly used to refer to electronic documents,

like journal articles.. 26

4http://pegasus.isi.edu/wms/docs/schemas/dax-3.4/dax-3.4.html
5http://www.doi.org/

195

http://pegasus.isi.edu/wms/docs/schemas/dax-3.4/dax-3.4.html
http://www.doi.org/

Dryad

Data repository for the international scientific and medical literature. Maintained

by the North Carolina State University (USA)6. 26

Dublin Core

Popular vocabulary for defining a set of common metadata terms (e.g., attribu-

tion, licensing, etc)7. 25

EXPO

Ontology designed to represent the methodological aspects of a scientific experi-

ment, including the scientific tasks required to carry it out (Soldatova and King,

2006). 24

FigShare

Popular data repository for archiving resources in digital sciences8. 26

FOAF

Popular vocabulary for describing agents on the Web and their interactions9. 25

FragFlow

The approach proposed in this thesis for mining frequent workflow fragments.

109

FSG

Exact FSM technique that builds on the Apriori algorithm by adding a sparse

graph representation to reduce storage and computation, while incorporating op-

timizations for the generation of candidate fragments (Inokuchi et al., 2000). 115

FSM

The Frequent Sub-graph Mining (FSM) problem aims to “to extract all the fre-

quent sub-graphs, in a given data set, whose occurrence counts are above a specified

6http://datadryad.org/
7http://dublincore.org/documents/dcmi-terms/
8http://figshare.com
9http://xmlns.com/foaf/spec/

196

http://datadryad.org/
http://dublincore.org/documents/dcmi-terms/
http://figshare.com
http://xmlns.com/foaf/spec/

threshold”(Jiang et al., 2012). FSM techniques can be exact (if they retrieve all

the frequent sub-graphs of an input corpus) or inexact (if they group together

similar sub-graphs to create common abstractions. 112

Galaxy

Workflow management system developed by the Johns Hopkins University for

intensive biomedical research (Goecks et al., 2010). 14

GenePattern

Workflow management system specialized in the genomics domain and developed

by the Broad Institute of MIT and harvard (USA) (Reich et al., 2006). 14

Graph

A non empty set of nodes which are interconnected by a set of edges. 11

Graph mining

Term used to refer to the application of graph-based techniques to extract com-

monalities among the nodes and edges of a dataset expressed as a LDAG.. 39

GREW

Inexact FSM technique based on the contraction of the edges of the input graph

while rewriting it, adding special heuristics to find longer and denser fragments

(Kuramochi and Karypis, 2004b). 114

Grouping

User-defined sub-workflow, which can be copied and pasted in different workflows

and annotated as a unit of single functionality.. 94

GSpan

Exact FSM technique that uses a canonical labeling system (a DFS lexicographic

order) where each graph is assigned a minimum DFS code (Yan and Han, 2002).

120

197

ISA

The Investigation, Study, Assay Model (ISA) (Rocca et al., 2008) aims at de-

scribing the main steps and metadata involved in a scientific experiment. 24

IWIR

The Interoperable Workflow Intermediate Representation (IWIR) is a syntax for

defining workflows in a system-independent manner (Plankensteiner et al., 2011).

20

Kepler

Workflow management system designed as a collaborative effort between the Uni-

versity of Davis (USA), the University of Santa Barbara (USA) and the University

of San Diego (USA) (Ludäscher et al., 2006). 14

Knime

Workflow management system developed by the University of Konstantz (Ger-

many) (Berthold et al., 2008). 14

Layered abstraction

Type of abstraction where conceptual levels of detail may have a very loose cor-

respondence with one another. 31

Linked Data principles

Set of guidelines that indicate how to publish a resource and its metadata on the

Web10 (Heath and Bizer, 2011). 65

Macro abstraction

Abstractions where several computation steps can be compressed together as one

step. 31

MOML

Kepler’s language for specifying scientific workflows (Lee and Neuendorffer, 2000).

20

10http://www.w3.org/DesignIssues/LinkedData.html

198

http://www.w3.org/DesignIssues/LinkedData.html

Moteur

Workflow management system designed at the I3S Laboratory (France) (Glatard

et al., 2007). 14

Multi-step filtered fragment

Multi-step workflow fragments which are not part of bigger workflow fragments

with the same number of occurrences as them. For more details, see Definition

4. 121

Multi-step workflow fragment

A workflow fragment with more than one step. 120

OBI

The Ontology for Biomedical Investigations (OBI) defines a common framework

for representing experimental descriptions and methods in biomedical research

(Brinkman et al., 2010). 24

Ontologies

An ontology is defined as a formal specification of a shared conceptualization. 22

OPM

The Open Provenance Model (OPM) is a generic model for describing the prove-

nance of a given resource (Moreau et al., 2011). 20

OPMO

The Open Provenance Model Ontology (OPMO)11 is an ontology that extends

on OPMV to represent the full functionality of OPM. 53

OPMV

The Open provenance Model Vocabulary (OPMV)12 is a lightweight implemen-

tation of the OPM model that only has a subset of the concepts in OPM but

facilitates modeling and query formulation. 53

11http://openprovenance.org/model/opmo
12http://purl.org/net/opmv/ns

199

http://openprovenance.org/model/opmo
http://purl.org/net/opmv/ns

OPMW

The Open Provenance Model for Workflows (OPMW) is the model proposed in

this thesis to describe scientific workflows by capturing all their dataflow, depen-

dencies and provenance. 51

ORSD

The Ontology Requirement Specification Document (ORSD) (Suárez-Figueroa,

2010) describes the competency questions that an ontology must be able to answer

when modeling a particular domain. 52

OWL

The Web Ontology Language (OWL) is designed to “explicitly represent the mean-

ing of terms in vocabularies and the relationships between those terms”. OWL

“has more facilities for expressing meaning and semantics than XML, RDF, and

RDFS, and thus OWL goes beyond these languages in its ability to represent ma-

chine interpretable content on the Web” (McGuinness and van Harmelen, 2004).

22

P-Plan

PROV extension designed to “capture the plans that guided the execution of sci-

entific processes” (Garijo and Gil, 2012). 23

PASOA

Provenance Aware Management System (PASOA), integrated with some workflow

management systems to manage their execution traces (Miles et al., 2007). 21

Pegasus

Workflow management system developed at the Information Sciences Institute of

the University of Southern California (USA) (Deelman et al., 2005). 14

Petri Net

A model for representing states and local actions in the world of information

processing (Reisig and Rozenberg, 1998). When adapted to scientific workflows,

the actions correspond to workflow steps, which connect states of the workflow

through directed arcs. 11

200

POIROT

Architecture for integrating reasoning and learning components for workflows

(Burstein et al., 2009). 39

Predicate abstraction

Type of abstraction where entire predicates (e.g., constraints, inputs of steps,

etc.) are dropped at any given abstraction level (Graf and Saidi, 1997). 30

Problem Solving Methods

Resources that describe strategies to achieve the goal of a task in an implemen-

tation and domain-independent manner (Gómez-Pérez and Benjamins, 1999). 34

PROV

W3C standard for specifying provenance on the Web (Groth and Moreau, 2013).

21

Provenance

“A record that describes the people, institutions, entities, and activities involved

in producing, influencing, or delivering a piece of data or a thing” (Moreau et al.,

2013). 20

Prov Manager

Provenance management system designed to store the executions of workflows

according to PROV (Marinho et al., 2012). 21

ProvONE

Provenance model extending the PROV standard to represent workflow execution

templates, instances and executions13. 23

Pubby

Tool used as a front-end for browsing Linked Data of SPARQL endpoints14. 69

13http://http://www.purl.org/provone
14http://wifo5-03.informatik.uni-mannheim.de/pubby/

201

http://http://www.purl.org/provone
http://wifo5-03.informatik.uni-mannheim.de/pubby/

RapidMiner

Workflow management system aimed at creating workflows for predictive analy-

sis15. 26

RDF

The Resource Description Framework (RDF) is a W3C standard that specifies

the relationships between resources using a labeled graph with RDF statements.

Each RDF statement consists on a source node and an object node, connected

by the property that is linking them (Klyne et al., 2004). 22

RDFS

The RDF Schema (RDFS) is an extension of the RDF vocabulary to provide a

data-modeling vocabulary for RDF (McBride et al., 2014). 22

Research Object

Family of specifications for representing the aggregation of resources that are part

of a research work. In addition, the RO model contains vocabularies for specifying

workflow templates and executions (Belhajjame et al., 2012a). 21

SADI

The Semantic Automated Discovery and Integration (SADI) (Wilkinson et al.,

2009) is a framework for discovering and integrating distributed and analytical

resources16. 29

Scientific workflow

Template defining the “set of tasks needed to manage a computational science

process” (Deelman et al., 2009). 2

Scufl

Taverna’s language for specifying scientific workflows (Oinn et al., 2004). 20

15https://rapidminer.com/
16http://sadiframework.org/content/about-sadi/

202

https://rapidminer.com/
http://sadiframework.org/content/about-sadi/

SIGMA

Inexact FSM technique which uses a set-covered based approach by associating a

feature set with each edge of the candidate fragment (Mongiovi et al., 2010). 114

Skeletal plan

“Sequence of abstract and only partially specified steps which, when specialized

to specific executable operations, will solve a given problem in a specific problem

context” (Bergmann, 1992). 28

Software Ontology

Ontology designed to represent the typical operations in software development17.

34

SPARQL

W3C standard for querying RDF data (Harris et al., 2013). 97

Sub-graph isomorphism

Problem aimed at determining whether a given graph is part of another graph or

not. 38

SUBDUE

Inexact FSM technique based on a iterative clustering approach, by applying two

heuristics to reduce the input graph on each iteration (Cook and Holder, 1994).

The two heuristics used by SUBDUE are the Minimum Description Length (MDL)

(Rissanen, 1978) and the current size of the graph. 113

SWAN-PAV

Vocabulary defined to describe detailed attribution, authoring, contributions and

versioning of web resources (Ciccarese et al., 2013). 25

Taverna

Workflow management system developed at the University of Manchester (UK)

(Wolstencroft et al., 2013). 14

17http://sourceforge.net/projects/theswo/

203

http://sourceforge.net/projects/theswo/

The LONI Pipeline

Workflow management system designed for neuro-image analysis by the Univer-

sity of California Los Angeles (USA) and the University of Southern California

(USA) (Dinov et al., 2009). 14

Topic modeling

Set of techniques that aim at generating the common topics of a set of documents.

A topic is not necessarily a single word, it may be a common subset of words

among the documents. 37

UML

The Unified Modelling Language (UML) is a common language for describing

system architectures and behavior in software engineering (Bock et al., 2015). In

the workflow domain, it can be used to represent the data dependencies among

the steps of a workflow. 12

URI

A Universal Resource Identifier (URI) is “is a compact sequence of characters that

identifies an abstract or physical resource” (Berners-Lee et al., 2005). 65

VisTrails

Workflow management system developed at the University of Utah (USA) and

the University of New York (USA) (Callahan et al., 2006). 14

WExp

The Workflow Explorer (WExp)18 is a simple browser for workflows and their

metadata. 69

Wf-fd

The Workflow Fragment Description Ontology (Wf-fd) is our proposed extension

of the P-Plan ontology to model the relationship between workflow fragments and

the workflows where they were found. 122

18http://purl.org/net/wexp

204

http://purl.org/net/wexp

Wings

Workflow management system developed at the Information Sciences Institute of

the University of Southern California (USA) (Gil et al., 2011). 14

Workflow abstraction

The ability to generalize workflows (or workflow steps) by their common func-

tionality. Workflow abstraction is key for simplifying workflows and for finding

relations between them. 10

Workflow execution trace

Provenance trace that contains the details of the execution of a workflow: used

inputs, intermediate results, final outputs, etc. 17

Workflow fragment

Given a workflow W, a workflow fragment is a connected sub-workflow of W. 109

Workflow instance

A workflow that specifies the application algorithms to be executed and the con-

crete data to be used. Workflow instances do not specify execution resources.

17

Workflow management system

Systems made to design, monitor, execute and debug scientific workflows. 14

Workflow motif

Domain independent conceptual abstraction for workflow steps that can be found

in scientific workflows. 73

Workflow pattern

“The abstraction from a concrete form which keeps recurring in specific non-

arbitrary contexts” (Riehle and Züllighoven, 1996). 33

Workflow representation

The models created to serialize a workflow on the different phases of its life cycle.

10

205

Workflow reuse

The ability to adapt an existing workflow (or any of its sub-parts) for composing

a new workflow. 10

Workflow template

Generic reusable workflow specification that indicates the types of steps in the

workflow and their dataflow dependencies. 17

Workflow understanding

The ability of users to clearly determine the functionality of each of the steps (or

group of steps) of the workflow. 43

WS-BPEL

Web Services Business Process Execution Language (WS-BPEL), a standard lan-

guage for defining web service composition pipelines (Jordan et al., 2007). 20

ZOOM*Userviews

System designed to represent the different views of the same workflow according

to their relevance (Biton et al., 2007). 32

206

Bibliography

Aggarwal, A., Amend, M., Astier, S., Barros, A., Bartel, R., Benitez, M., Bock, C.,

Brown, G., Brunt, J., Bulles, J., Chapman, M., Cummins, F., Day, R., Elaasar, M.,

Frankel, D., Gagn, D., Hall, J., Hille-Doering, R., Ings, D., Irassar, P., Kieselbach,

O., Kloppmann, M., Koehler, J., Kraft, M., van Lessen, T., Leymann, F., Lonjon,

A., Malhotra, S., Menge, F., Mischkinsky, J., Moberg, D., Moffat, A., Mueller, R.,

Nijssen, S., Ploesser, K., Rivett, P., Rowley, M., Ruecker, B., Rutt, T., Samoojh,

S., Shapiro, R., Saxena, V., Schanel, S., Scheithauer, A., Silver, B., Srinivasan, M.,

Toulme, A., Trickovic, I., Voelzer, H., Weber, F., Andrea, W., and White, S. A.

(2011). Business Process Model and Notation (BPMN).

Alper, P., Belhajjame, K., Goble, C., and Karagoz, P. (2013). Small is beautiful:

Summarizing scientific workflows using semantic annotations. In Big Data (BigData

Congress), 2013 IEEE International Congress on, pages 318–325.

American, S. (2010). In science we trust: Poll results on how you feel about science.

Scientific American.

Atkinson, M., Baxter, R., Brezany, P., Corcho, O., Galea, M., Parsons, M., Snelling,

D., and van Hemert, J. (2013). Definition of the dispel language. In The Data

Bonanza: Improving Knowledge Discovery in Science, Engineering, and Business,

pages 203–236. Wiley-IEEE Press.

Barga, R. and Gannon, D. B. (2007). Scientific versus business workflows. In Workflows

for e-Science, pages 9–16.

Belhajjame, K., Corcho, O., Garijo, D., Zhao, J., Missier, P., Newman, D., Palma, R.,

Bechhofer, S., Garcia-Cuesta, E., Gomez-Perez, J.-M., Klyne, G., Page, K., Roos,

M., Ruiz, J. E., Soiland-Reyes, S., Verdes-Montenegro, L., Roure, D. D., and Goble,

207

C. (2012a). Workflow-centric Research Objects: First class citizens in scholarly

discourse. In Proceedings of Sepublica2012, pages 1–12.

Belhajjame, K., Roos, M., Garcia-Cuesta, E., Klyne, G., Zhao, J., De Roure, D., Goble,

C., Gomez-Perez, J. M., Hettne, K., and Garrido, A. (2012b). Why workflows break

— understanding and combating decay in Taverna workflows. In Proceedings of

the 2012 IEEE 8th International Conference on E-Science (e-Science), pages 1–9,

Washington, DC, USA. IEEE Computer Society.

Belhajjame, K., Zhao, J., Garijo, D., Gamble, M., Hettne, K., Palma, R., Mina, E.,

Corcho, O., Gómez-Pérez, J. M., Bechhofer, S., Klyne, G., and Goble, C. (2015).

Using a suite of ontologies for preserving workflow-centric Research Objects. Web

Semantics: Science, Services and Agents on the World Wide Web.

Bergmann, R. (1992). Knowledge acquisition by generating skeletal plans from real

world cases. In Schmalhofer, F., Strube, G., and Wetter, T., editors, Contemporary

Knowledge Engineering and Cognition, volume 622 of Lecture Notes in Computer

Science, pages 125–133. Springer Berlin Heidelberg.

Bergmann, R. and Gil, Y. (2014). Similarity assessment and efficient retrieval of se-

mantic workflows. Information Systems, 40:115 – 127.

Berners-Lee, T., Fielding, R. T., and Masinter, L. (2005). Uniform resource identifier

(URI): Generic syntax.

Berthold, M. R., Cebron, N., Dill, F., Gabriel, T. R., Kötter, T., Meinl, T., Ohl,

P., Sieb, C., Thiel, K., and Wiswedel, B. (2008). Knime: The konstanz information

miner. In Data analysis, machine learning and applications, pages 319–326. Springer.

Bhuiyan, M. and Hasan, M. A. (2013). MIRAGE: an iterative MapReduce based

frequent subgraph mining algorithm. CoRR, abs/1307.5894.

Biton, O., Cohen-Boulakia, S., and Davidson, S. B. (2007). Zoom*userviews: Querying

relevant provenance in workflow systems. In Proceedings of the 33rd International

Conference on Very Large Data Bases, VLDB ’07, pages 1366–1369. VLDB Endow-

ment.

208

Bizer, C., Heath, T., and Berners-Lee, T. (2009). Linked Data - the story so far.

International Journal on Semantic Web and Information Systems, 5(3).

Blankenberg, D., Taylor, J., Schenck, I., He, J., Zhang, Y., Ghent, M., Veeraragha-

van, N., Albert, I., Miller, W., Makova, K. D., and et al. (2007). A framework for

collaborative analysis of encode data: making large-scale analyses biologist-friendly.

Genome Research, 17(6):960–964.

Bock, C., Cook, S., Rivett, P., Rutt, T., Seidewitz, E., Selic, B., and Tolbert, D. (2015).

OMG Unified Modeling Language (OMG UML).

Boldyreff, C. (1989). Reuse, software concepts, descriptive methods, and the practi-

tioner project. SIGSOFT Softw. Eng. Notes, 14(2):25–31.

Bondy, J. A. and Murty, U. S. R. (1976). Graph Theory with Applications. Elsevier,

New York.

Brinkman, R. R., Courtot, M., Derom, D., Fostel, J., He, Y., Lord, P. W., Malone,

J., Parkinson, H. E., Peters, B., Rocca-Serra, P., et al. (2010). Modeling biomedical

experimental processes with OBI. J. Biomedical Semantics, 1(S-1):S7.

Burstein, M. H., Yaman, F., Laddaga, R. M., and Bobrow, R. J. (2009). POIROT:

Acquiring workflows by combining models learned from interpreted traces. In Pro-

ceedings of the Fifth International Conference on Knowledge Capture, K-CAP ’09,

pages 129–136, New York, NY, USA. ACM.

Callahan, S. P., Freire, J., Santos, E., Scheidegger, C. E., Silva, C. T., and Vo, H. T.

(2006). Vistrails: Visualization meets data management. In In ACM SIGMOD,

pages 745–747. ACM Press.

Cerezo, N. (2013). Workflows conceptuels. PhD thesis, Université Nice Sophia Antipolis.

Cerezo, N., Montagnat, J., and Blay-Fornarino, M. (2013). Computer-assisted scientific

workflow design. Journal of Grid Computing, 11(3):585–612.

Chirigati, F., Shasha, D., and Freire, J. (2013). Reprozip: Using provenance to support

computational reproducibility. In Proceedings of the 5th USENIX Workshop on the

Theory and Practice of Provenance, TaPP ’13, pages 1:1–1:4, Berkeley, CA, USA.

USENIX Association.

209

Ciccarese, P., Soiland-Reyes, S., Belhajjame, K., Gray, A. J., Goble, C. A., and Clark,

T. (2013). PAV ontology: provenance, authoring and versioning. Journal of Biomed-

ical Semantics, 4:37.

Coble, J. A., Cook, D. J., and Holder, L. B. (2006). Structure discovery in sequentially

connected data. International Journal of Artificial Intelligence Tools, 15(06).

Coble, J. A., Rathi, R., Cook, D. J., and Holder, L. B. (2005). Iterative structure

discovery in graph-based data. International Journal of Artificial Intelligence Tools,

14(01).

Cohen-Boulakia, S., Chen, J., Missier, P., Goble, C., Williams, A. R., and Froide-

vaux, C. (2014). Distilling structure in Taverna scientific workflows: A refactoring

approach. BMC Bioinformatics, 15(Suppl 1).

Cook, D. J. and Holder, L. B. (1994). Substructure discovery using minimum descrip-

tion length and background knowledge. Journal of Artifcial Intelligence Research,

1:231–255.

Cook, S. A. (1971). The complexity of theorem-proving procedures. In Proceedings of

the third annual ACM symposium on Theory of computing, STOC ’71, pages 151–158,

New York, NY, USA. ACM.

Corcho, O. (2013). Data-intensive components and usage patterns. In Atkinson, M.,

Baxter, R., Brezany, P., Corcho, O., Galea, M., Parsons, M., Snelling, D., and van

Hemert, J., editors, THE DATA BONANZA: Improving Knowledge Discovery for

Science, Engineering and Business, chapter 7, pages 165–179. John Wiley & Sons

Ltd.

Danovaro, E., Roverelli, L., Zereik, G., Galizia, A., DAgostino, D., Paschina, G.,

Quarati, A., Clematis, A., Delogu, F., Fiori, E., Parodi, A., Straube, C., Felde,

N., Harpham, Q., Jagers, B., Garrote, L., Dekic, L., Ivkovic, M., Caumont, O.,

and Richard, E. (2014). Setting up an hydro-meteo experiment in minutes: The

DRIHM e-infrastructure for HM research. In e-Science (e-Science), 2014 IEEE 10th

International Conference on, volume 1, pages 47–54.

210

Davies, K. (2011). Democratizing informatics for the long tail scientist. Bio-IT World

Magazine.

Deelman, E., Blythe, J., Gil, Y., Kesselman, C., Mehta, G., Patil, S., Su, M.-H., Vahi,

K., and Livny, M. (2004). Pegasus: Mapping scientific workflows onto the grid. In

Dikaiakos, M., editor, Grid Computing, volume 3165 of Lecture Notes in Computer

Science, pages 11–20. Springer Berlin / Heidelberg.

Deelman, E., Gannon, D., Shields, M., and Taylor, I. (2009). Workflows and e-science:

An overview of workflow system features and capabilities. Future Generation Com-

puter Systems, 25(5):528–540.

Deelman, E., Singh, G., Su, M., Blythe, J., Gil, Y., Kesselman, C., Kim, J., Mehta, G.,

Vahi, K., Berriman, G. B., Good, J., Laity, A., Jacob, J. C., and Katz, D. S. (2005).

Pegasus: A framework for mapping complex scientific workflows onto distributed

systems. Scientific Programming, 13(3).

Diamantini, C., Potena, D., and Storti, E. (2012). Mining usage patterns from a

repository of scientific workflows. In Proceedings of the 27th Annual ACM Symposium

on Applied Computing, SAC ’12, pages 152–157, New York, NY, USA. ACM.

Dinov, I. D., Horn, J. D. V., Lozev, K. M., Magsipoc, R., Petrosyan, P., Liu, Z.,

MacKenzie-Graham, A., Eggert, P., Parker, D. S., and Toga, A. W. (2009). Efficient,

distributed and interactive neuroimaging data analysis using the LONI Pipeline. In

Frontiers in Neuroinformatics, volume 3.

Dinov, I. D., Torri, F., Macciardi, F., Petrosyan, P., Liu, Z., Zamanyan, A., Eggert,

P., Pierce, J., Genco, A., Knowles, J. A., Clark, A. P., Horn, J. D. V., Ames, J.,

Kesselman, C., and Toga, A. W. (2011). Applications of the pipeline environment for

visual informatics and genomics computations. In BMC Bioinformatics, volume 12.

Editorial, N. (2006). Illuminating the black box. Nature, 442(1).

Fahringer, T., Prodan, R., Duan, R., Hofer, J., Nadeem, F., Nerieri, F., Stefan Podlip-

nig, J. Q., Siddiqui, M., Truong, H.-L., Villazón, A., and Wieczorek, M. (2007).

ASKALON: A development and Grid computing environment for scientific workflows.

In Taylor, I. J., Deelman, E., Gannon, D. B., and Shields, M., editors, Workflows for

e-Science, chapter 27, pages 450–471. Springer.

211

Fahringer, T., Qin, J., and Hainzer, S. (2005). Specification of grid workflow applica-

tions with AGWL: an Abstract Grid Workflow Language. volume 2, pages 676–685

Vol. 2.

Fanelli, D. (2010). Do pressures to publish increase scientists bias? an empirical support

from us states data. PLoS ONE, 5(4).

Filgueira, R., Atkinson, M., Bell, A., Main, I., Boon, S., Kilburn, C., and Meredith, P.

(2014). eScience gateway stimulating collaboration in rock physics and volcanology.

In e-Science (e-Science), 2014 IEEE 10th International Conference on, volume 1,

pages 187–195. IEEE.

Gadelha Jr., L. M., Clifford, B., Mattoso, M., Wilde, M., and Foster, I. (2011). Prove-

nance management in Swift. Future Generation Computer Systems, 27(6):775 – 780.

Garćıa-Jiménez, B. and Wilkinson, M. (2014a). Identifying bioinformatics sub-

workflows using automated biomedical ontology annotations. Technical report, Cen-

ter for Plant Biotechnology and Genomics (CBGP), Universidad Politécnica de

Madrid.

Garćıa-Jiménez, B. and Wilkinson, M. D. (2014b). Automatic annotation of bioinfor-

matics workflows with biomedical ontologies. In Margaria, T. and Steffen, B., editors,

Leveraging Applications of Formal Methods, Verification and Validation. Specialized

Techniques and Applications, volume 8803 of Lecture Notes in Computer Science,

pages 464–478. Springer Berlin Heidelberg.

Garijo, D., Alper, P., Belhajjame, K., Corcho, O., Gil, Y., and Goble, C. (2012). Com-

mon motifs in scientific workflows: An empirical analysis. In 8th IEEE International

Conference on eScience 2012, Chicago. IEEE Computer Society Press, USA.

Garijo, D., Alper, P., Belhajjame, K., Corcho, O., Gil, Y., and Goble, C. (2014a).

Common motifs in scientific workflows: An empirical analysis. Future Generation

Computer Systems, 36:338 – 351.

Garijo, D., Corcho, O., and Gil, Y. (2013a). Detecting common scientific workflow

fragments using templates and execution provenance. In Proceedings of the Seventh

International Conference on Knowledge Capture, K-CAP ’13, pages 33–40, New York,

NY, USA. ACM.

212

Garijo, D., Corcho, O., Gil, Y., Braskie, M. N., Hibar, D., Hua, X., Jahanshad, N.,

Thompson, P., and W.Toga, A. (2014b). Workflow reuse in practice: A study of

neuroimaging pipeline users. In 10th IEEE International Conference on eScience

2014.

Garijo, D., Corcho, O., Gil, Y., Gutman, B. A., Dinov, I. D., Thompson, P., and Toga,

A. W. (2014c). Fragflow: Automated fragment detection in scientific workflows. In

Proceedings of the 2014 IEEE 10th International Conference on e-Science - Volume

01, E-SCIENCE ’14, pages 281–289, Washington, DC, USA. IEEE Computer Society.

Garijo, D. and Gil, Y. (2011). A new approach for publishing workflows: Abstractions,

standards, and Linked Data. In Proceedings of the 6th workshop on Workflows in

support of large-scale science, pages 47–56, Seattle. ACM.

Garijo, D. and Gil, Y. (2012). Augmenting PROV with plans in P-Plan: Scientific

processes as Linked Data. In Second International Workshop on Linked Science:

Tackling Big Data (LISC), held in conjunction with the International Semantic Web

Conference (ISWC), Boston, MA.

Garijo, D., Gil, Y., and Corcho, O. (2014d). Towards workflow ecosystems through se-

mantic and standard representations. In Proceedings of the 9th Workshop on Work-

flows in Support of Large-Scale Science, WORKS ’14, pages 94–104, Piscataway, NJ,

USA. IEEE Press.

Garijo, D., Kinnings, S., Xie, L., Xie, L., Zhang, Y., Bourne, P. E., and Gil, Y. (2013b).

Quantifying reproducibility in computational biology: The case of the tuberculosis

drugome. PLoS ONE, 8(11):e80278.

Giardine, B., Riemer, C., Hardison, R. C., Burhans, R., Elnitski, L., Shah, P.,

Zhang, Y., Blankenberg, D., Albert, I., Taylor, J., Miller, W., amd, W. J. K., and

Nekrutenko, A. (2005). Galaxy: a platform for interactive large-scale genome anal-

ysis. Genome Research, 15(10):1451–1455.

Gil, Y., Cheney, J., Groth, P., Hartig, O., Miles, S., Moreau, L., da Silva, P. P., et al.

(2010). Provenance xg final report. Final Incubator Group Report.

213

Gil, Y., Deelman, E., Ellisman, M., Fahringer, T., Fox, G., Gannon, D., Goble, C.,

Livny, M., Moreau, L., and Myers, J. (2007). Examining the challenges of scientific

workflows. Computer, 40(12):24–32.

Gil, Y., Groth, P., Ratnakar, V., and Fritz, C. (2009). Expressive reusable workflow

templates. In Proceedings of the Fifth IEEE International Conference on e-Science

(e-Science), Oxford, UK.

Gil, Y., Ratnakar, V., Kim, J., González-Calero, P. A., Groth, P. T., Moody, J., and

Deelman, E. (2011). Wings: Intelligent workflow-based design of computational

experiments. IEEE Intelligent Systems, 26(1):62–72.

Giraldo, O., Garćıa, A., and Corcho, O. (2014). SMART Protocols: Semantic represen-

tation for experimental protocols. Proceedings of the 4th Workshop on Linked Science

2014- Making Sense Out of Data (LISC2014), in conjunction with the International

Semantic Web Conference (ISWC2014), page 36.

Glatard, T., Sipos, G., Montagnat, J., Farkas, Z., and Kacsuk, P. (2007). Workflow-

level parametric study support by MOTEUR and the P-GRADE portal. In Taylor,

I., Deelman, E., Gannon, D., and Shields, M., editors, Workflows for e-Science, pages

279–299. Springer London.

Goderis, A. (2008). Workflow re-use and discovery in Bioinformatics. PhD thesis,

School of Computer Science, The University of Manchester.

Goderis, A., Fisher, P., Gibson, A., Tanoh, F., Wolstencroft, K., Roure, D. D., and

Goble, C. (2009). Benchmarking workflow discovery: A case study from bioinfor-

matics. Concurrency: Practice and Experience.

Goderis, A., Sattler, U., Lord, P., and Goble, C. (2005). Seven bottlenecks to workflow

reuse and repurposing. In The Semantic Web ISWC 2005, volume 3729 of Lecture

Notes in Computer Science, pages 323–337. Springer Berlin Heidelberg.

Goecks, J., Nekrutenko, A., and Taylor, J. (2010). Galaxy: a comprehensive approach

for supporting accessible, reproducible, and transparent computational research in

the life sciences. Genome Biology, 11(8):R86.

214

Gómez-Pérez, A. and Benjamins, R. (1999). Applications of ontologies and problem-

solving methods. AI Magazine, 20(1).

Gómez-Pérez, J. M. and Corcho, O. (2008). Problem-solving methods for understanding

process executions. Computing in Science & Engineering, 10(3):47–52.

Gómez-Pérez, J. M., Erdmann, M., Greaves, M., Corcho, O., and Benjamins, R. (2010).

A framework and computer system for knowledge-level acquisition, representation,

and reasoning with process knowledge. International Journal of Human-Computer

Studies, 68(10).

Graf, S. and Saidi, H. (1997). Construction of abstract state graphs with PVS. In

Grumberg, O., editor, Computer Aided Verification, volume 1254 of Lecture Notes in

Computer Science, pages 72–83. Springer Berlin Heidelberg.

Groth, P., Gil, Y., Cheney, J., and Miles, S. (2012). Requirements for provenance on

the web. International Journal of Digital Curation, 7(1):39–56.

Groth, P. and Moreau, L. (2013). PROV-overview: an overview of the PROV family

of documents. Technical report, World Wide Web Consortium.

Gruninger, M. and Fox, M. S. (1994). The role of competency questions in enterprise

engineering. In Proceedings of the IFIP WG5. 7th workshop on benchmarking. Theory

and practice.

Harris, S., Seaborne, A., and Prud’hommeaux, E. (2013). SPARQL 1.1 query language.

Technical report, World Wide Web Consortium.

Heath, T. and Bizer, C. (2011). Linked Data: Evolving the Web into a Global Data

Space. Synthesis Lectures on the Semantic Web. Morgan & Claypool Publishers.

Herbst, J. and Karagiannis, D. (1998). Integrating machine learning and workflow man-

agement to support acquisition and adaptation of workflow models. In Proceedings

of the 9th International Workshop on Database and Expert Systems Applications,

DEXA ’98, pages 745–, Washington, DC, USA. IEEE Computer Society.

Holder, L., Cook, D., González, J., and Jonyer, I. (2002). Structural pattern recognition

in graphs. Pattern Recognition and String Matching Combinatorial Optimization,

13:255–279.

215

Howison, J. and Herbsleb, J. D. (2011). Scientific software production: Incentives and

collaboration. In Proceedings of the ACM 2011 Conference on Computer Supported

Cooperative Work, CSCW ’11, pages 513–522, New York, NY, USA. ACM.

Hull, D., Stevens, R., Lord, P., Wroe, C., and Goble, C. (2004). Treating shimantic

web syndrome with ontologies. In AKT Workshop on Semantic Web Services.

Inokuchi, A., Washio, T., and Motoda, H. (2000). An apriori-based algorithm for

mining frequent substructures from graph data. Lecture Notes in Computer Science,

1910:13–23.

Jiang, C., Coenen, F., and Zito, M. (2012). A survey of frequent subgraph mining

algorithms. The Knowledge Engineering Review, 28(1):75105.

Jordan, D., Evdemon, J., Alves, A., Arkin, A., Askary, S., Barreto, C., Bloch, B.,

Curbera, F., Ford, M., Goland, Y., Guzar, A., Kartha, N., Kevin Liu, C., Khalaf,

R., Knig, D., Marin, M., Mehta, V., Thatte, S., van der Rijn, D., Yendluri, P., and

Yiu, A. (2007). Web services business process execution language version 2.0.

Kamgnia Wonkap, S. (2014). Extraction de motifs dans les graphes de workflows

scientifiques. Master’s thesis, Laboratoire de Recherche en Informatique, Université

Paris-Sud, 91405 Orsay Cedex.

Klyne, G., Carroll, J. J., and McBride, B. (2004). Resource description framework

(RDF): Concepts and abstract syntax. World Wide Web Consortium, Recommen-

dation REC-rdf-concepts-20040210.

Koop, D. (2008). Viscomplete: Automating suggestions for visualization pipelines.

IEEE Transactions on Visualization and Computer Graphics, 14(6):1691–1698.

Krefting, D., Glatard, T., Korkhov, V., Montagnat, J., and Olabarriaga, S. (2011).

Enabling grid interoperability at workflow level. In Grid Workflow Workshop, Köln,

Germany.

Krueger, C. W. (1992). Software reuse. ACM Comput. Surv., 24(2):131–183.

Kuramochi, M. and Karypis, G. (2001). Frequent subgraph discovery. In Proceedings of

the 2001 IEEE International Conference on Data Mining, ICDM ’01, pages 313–320,

Washington, DC, USA. IEEE Computer Society.

216

Kuramochi, M. and Karypis, G. (2004a). An efficient algorithm for discovering frequent

subgraphs. IEEE Transactions on Knowledge and Data Engineering, 16(9):1038–

1051.

Kuramochi, M. and Karypis, G. (2004b). Grew: A scalable frequent subgraph discovery

algorithm. In Proceedings of the Fourth IEEE International Conference on Data

Mining, ICDM ’04, pages 439–442, Washington, DC, USA. IEEE Computer Society.

Lawrynowicz, A. and Potoniec, J. (2014). Pattern based feature construction in seman-

tic data mining. Int. J. Semant. Web Inf. Syst., 10(1):27–65.

Leake, D. and Kendall-Morwick, J. (2008). Towards case-based support for e-science

workflow generation by mining provenance. In Proceedings of the 9th European Con-

ference on Advances in Case-Based Reasoning, ECCBR ’08, pages 269–283, Berlin,

Heidelberg. Springer-Verlag.

Lebo, T., McGuiness, D., Belhajjame, K., Cheney, J., Corsar, D., Garijo, D., Soiland-

Reyes, S., Zednik, S., and Zhao, J. (30th April 2013.). The PROV ontology, w3c

recommendation. Technical report, WWW Consortium.

Lee, E. A. and Neuendorffer, S. (2000). MoML - a modeling markup language in XML.

Technical report, University of California Berkeley.

Likert, R. (1932). A technique for the measurement of attitudes. Archives of psychology,

22(140):5–55.

Littauer, R., Ram, K., Ludscher, B., Michener, W., and Koskela, R. (2012). Trends in

use of scientific workflows: Insights from a public repository and recommendations

for best practice. IJDC, 7(2):92–100.

Ludäscher, B., Altintas, I., Berkley, C., Higgins, D., Jaeger, E., Jones, M., Lee, E. A.,

Tao, J., and Zhao, Y. (2006). Scientific workflow management and the Kepler system.

Concurrency and Computation: Practice and Experience, 18(10):1039–1065.

MacQueen, J. (1967). Some methods for classification and analysis of multivariate ob-

servations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statis-

tics and Probability, Volume 1: Statistics, pages 281–297, Berkeley, Calif. University

of California Press.

217

Marcus, A. and Oransky, I. (2014). Top retractions of 2014. The Scientist.

Marinho, A., Murta, L., Werner, C., Braganholo, V., Cruz, S. M. S. d., Ogasawara,

E., and Mattoso, M. (2012). Provmanager: A provenance management system for

scientific workflows. Concurr. Comput. : Pract. Exper., 24(13):1513–1530.

Markovic, M., Edwards, P., and Corsar, D. (2014). SC-PROV: A provenance vocab-

ulary for social computation. In Proceedings of the 5th International Provenance &

Annotation Workshop-IPAW 2014, pages 285–287. Springer.

Mates, P., Santos, E., Freire, J., and Silva, C. T. (2011). Crowdlabs: Social analysis

and visualization for the sciences. In 23rd International Conference on Scientific and

Statistical Database Management (SSDBM), pages 555–564. Springer.

Mattmann, C. A., Crichton, D. J., Medvidovic, N., and Hughes, S. (2006). A soft-

ware architecture-based framework for highly distributed and data intensive scien-

tific applications. In Proceedings of the 28th international conference on Software

engineering, ICSE ’06, pages 721–730, New York, NY, USA. ACM.

Mayer, R., Rauber, A., Neumann, M. A., Thomson, J., and Antunes, G. (2012). Pre-

serving scientific processes from design to publications. In Zaphiris, P., Buchanan, G.,

Rasmussen, E., and Loizides, F., editors, Theory and Practice of Digital Libraries,

volume 7489 of Lecture Notes in Computer Science, pages 113–124. Springer Berlin

Heidelberg.

McBride, B., Brickley, D., and Guha, R. (2014). RDF Schema 1.1. Technical report,

WWW Consortium.

McGuinness, D. L. and van Harmelen, F. (2004). OWL web ontology language overview.

Technical report, WWW Consortium.

Miles, S., Deelman, E., Groth, P., Vahi, K., Mehta, G., and Moreau, L. (2007). Con-

necting scientific data to scientific experiments with provenance. In Proceedings

of the Third IEEE International Conference on e-Science and Grid Computing, E-

SCIENCE ’07, pages 179–186, Washington, DC, USA. IEEE Computer Society.

218

Missier, P., Dey, S., Belhajjame, K., Cuevas-Vicentt́ın, V., and Ludäscher, B. (2013).

D-PROV: Extending the PROV provenance model with workflow structure. In Pro-

ceedings of the 5th USENIX Workshop on the Theory and Practice of Provenance,

TaPP ’13, pages 9:1–9:7, Berkeley, CA, USA. USENIX Association.

Mongiovi, M., Di Natale, R., Giugno, R., Pulvirenti, A., Ferro, A., and Sharan, R.

(2010). SIGMA: A set-cover-based inexact graph matching algorithm. J Bioinform

Comput Biol, 8(2):199–218.

Montani, S. and Leonardi, G. (2012). Retrieval and clustering for business process mon-

itoring: Results and improvements. In Agudo, B. and Watson, I., editors, Case-Based

Reasoning Research and Development, volume 7466 of Lecture Notes in Computer

Science, pages 269–283. Springer Berlin Heidelberg.

Moreau, L. (2010). The foundations for provenance on the web. Foundations and

Trends in Web Science, 2(2–3):99–241.

Moreau, L., Clifford, B., Freire, J., Futrelle, J., Gil, Y., Groth, P., Kwasnikowska,

N., Miles, S., Missier, P., Myers, J., Plale, B., Simmhan, Y., Stephan, E., and den

Bussche., J. V. (2011). The open provenance model core specification (v1.1). Future

Generation Computer Systems, 27(6).

Moreau, L., Missier, P., Belhajjame, K., BF́ar, R., Cheney, J., Coppens, S., Cress-

well, S., Gil, Y., Groth, P., Klyne, G., Lebo, T., McCusker, J., Miles, S., Myers,

J., Sahoo, S., and Tilmes, C. (2013). PROV-DM: The PROV Data Model. W3C

Recommendation. Technical report, WWW Consortium.

Müller, G. and Bergmann, R. (2014). Workflow streams: A means for compositional

adaptation in process-oriented cbr. In Lamontagne, L. and Plaza, E., editors, Case-

Based Reasoning Research and Development, volume 8765 of Lecture Notes in Com-

puter Science, pages 315–329. Springer International Publishing.

Nijssen, S. and Kok, J. N. (2004). A quickstart in frequent structure mining can make

a difference. In Proceedings of the Tenth ACM SIGKDD International Conference

on Knowledge Discovery and Data Mining, KDD ’04, pages 647–652, New York, NY,

USA. ACM.

219

Noy, N., Rector, A., Hayes, P., and Welty, C. (2006). Defining n-ary relations on the

semantic web. Technical report, W3C.

Oinn, T., Addis, M., Ferris, J., Marvin, D., Greenwood, M., Goble, C., Wipat, A., Li,

P., and Carver, T. (2004). Delivering web service coordination capability to users.

In Proceedings of the 13th International World Wide Web Conference on Alternate

Track Papers &Amp; Posters, WWW Alt. ’04, pages 438–439, New York, NY, USA.

ACM.

Olabarriaga, S. D., Jaghoori, M. M., Korkhov, V., van Schaik, B., and van Kampen,

A. (2013). Understanding workflows for distributed computing: Nitty-gritty details.

In Proceedings of the 8th Workshop on Workflows in Support of Large-Scale Science,

WORKS ’13, pages 68–76, New York, NY, USA. ACM.

Oliveira, F. T., Murta, L., Werner, C., and Mattoso, M. (2008). Provenance and

annotation of data and processes. chapter Using Provenance to Improve Workflow

Design, pages 136–143. Springer-Verlag, Berlin, Heidelberg.

Ostermann, S., Prodan, R., Fahringer, T., Iosup, R., and Epema, D. (2008). On the

characteristics of grid workflows. In Proceedings of CoreGRID Integration Workshop

2008, pages 431–442, Hersonisson, Crete.

Plankensteiner, K., Montagnat, J., and Prodan, R. (2011). Iwir: A language enabling

portability across grid workflow systems. In Proceedings of the 6th Workshop on

Workflows in Support of Large-scale Science, WORKS ’11, pages 97–106, New York,

NY, USA. ACM.

Radulovic, F., Poveda-Villalón, M., Vila-Suero, D., Rodŕıguez-Doncel, V., Garćıa-

Castro, R., and Gómez-Pérez, A. (2015). Guidelines for Linked Data generation

and publication: An example in building energy consumption. Automation in Con-

struction, 57:178 – 187.

Ramakrishnan, L. and Plale, B. (2010). A multi-dimensional classification model for

scientific workflow characteristics. In Proceedings of the 1st International Workshop

on Workflow Approaches to New Data-centric Science, Wands ’10, pages 4:1–4:12,

New York, NY, USA. ACM.

220

Reich, M., Liefeld, T., Gould, J., Lerner, J., Tamayo, P., and Mesirov, J. P. (2006).

Genepattern 2.0. Nature genetics, 38(5):500–501.

Reisig, W. and Rozenberg, G. (1998). Informal introduction to Petri Nets. In Lectures

on Petri Nets I: Basic Models, Advances in Petri Nets, the Volumes Are Based on

the Advanced Course on Petri Nets, pages 1–11, London, UK. Springer-Verlag.

Riehle, D. and Züllighoven, H. (1996). Understanding and using patterns in software

development. Theor. Pract. Object Syst., 2(1):3–13.

Rissanen, J. (1978). Modeling by the shortest data description. Automatica, 14:465–

471.

Rivest, R. L. (1992). The MD5 message-digest algorithm. Technical report, Mas-

sachusetts Institute of Technology.

Rocca, P., Sansone, S.-A., and Brandizi, M. (2008). ISA - TAB 1.0. Technical report.

Rockoff, J. D. (2015). Amgen finds data falsified in obesity-diabetes study featuring

grizzly bears. The Wall Street Journal.

Roure, D. D., Goble, C. A., and Stevens, R. (2009). The design and realisation of the

myExperiment virtual research environment for social sharing of workflows. Future

Generation Comp. Syst., 25(5):561–567.

Rozinat, A. and van der Aalst, W. (2006). Decision mining in ProM. In Dustdar, S.,

Fiadeiro, J., and Sheth, A., editors, Business Process Management, volume 4102 of

Lecture Notes in Computer Science, pages 420–425. Springer Berlin Heidelberg.

Ruiz, J., Garrido, J., Santander-Vela, J., Sánchez-Expósito, S., and Verdes-Montenegro,

L. (2014). AstroTaverna: Building workflows with Virtual Observatory services.

Astronomy and Computing, 7–8:3 – 11. Special Issue on The Virtual Observatory: I.

Russell, N., ter Hofstede, A., Edmond, D., and van der Aalst, W. (2004a). Workflow

data patterns. Technical report, Queensland University of Technology.

Russell, N., ter Hofstede, A., Edmond, D., and van der Aalst, W. (2004b). Workflow

resource patterns. Technical report, Eindhoven University of Technology.

221

Saeedy, M. E. and Kalnis, P. (2011). GraMi: Generalized frequent pattern mining

in a single large graph. Technical report, King Abdullah University of Science and

Technology.

Santana-Pérez, I. and Pérez-Hernández, M. (2015). Towards reproducibility in scientific

workflows: An infrastructure-based approach. Scientific Programming, 2015:11.

Santos, E., Lins, L., Ahrens, J. P., Freire, J., and Silva, C. (2008). A first study on

clustering collections of workflow graphs. In Freire, J., Koop, D., and Moreau, L.,

editors, Provenance and Annotation of Data and Processes, volume 5272 of Lecture

Notes in Computer Science, pages 160–173. Springer Berlin Heidelberg.

Scheidegger, C. E., Vo, H. T., Koop, D., Freire, J., and Silva, C. T. (2008). Querying

and re-using workflows with VisTrails. In Proceedings of the 2008 ACM SIGMOD

international conference on Management of data, SIGMOD ’08, pages 1251–1254,

New York, USA. ACM.

Sethi, R. J., Jo, H., and Gil, Y. (2012). Re-using workflow fragments across multiple

data domains. In 2012 SC Companion: High Performance Computing, Networking

Storage and Analysis, Salt Lake City, UT, USA, November 10-16, 2012, pages 90–99.

Silva, V., Chirigati, F., Maia, K., Ogasawara, E., Oliveira, D., Braganholo, V., Murta,

L., and Mattoso, M. (2011). Similarity-based workflow clustering. In JCIS, volume 2,

pages 23–35.

Simmhan, Y. L., Plale, B., and Gannon, D. (2005). A survey of data provenance in

e-science. SIGMOD Rec., 34(3):31–36.

Slominski, A. (2007). Adapting BPEL to Scientific Workflows. In Taylor, I. J., Deelman,

E., Gannon, D. B., and Shields, M., editors, Workflows for e-Science, pages 208–226.

Springer London.

Smirnov, S., Weildlich, M., and Mendling, J. (2012). Business process model abstraction

based on synthesis from well-structured behavioral profiles. International Journal of

Cooperative Information Systems, 21(01):55–83.

Soldatova, L. N. and King, R. D. (2006). An ontology of scientific experiments. Journal

of the Royal Society Interface, 3(11):795–803.

222

Starlinger, J., Brancotte, B., Cohen-Boulakia, S., and Leser, U. (2014a). Similarity

search for scientific workflows. Proceedings of the VLDB Endowment, 7(12):1143–

1154.

Starlinger, J., Cohen-Boulakia, S., Khanna, S., Davidson, S., and Leser, U. (2014b).

Layer decomposition: An effective structure-based approach for scientific workflow

similarity. In e-Science (e-Science), 2014 IEEE 10th International Conference on,

volume 1, pages 169–176.

Starlinger, J., Cohen-Boulakia, S., and Leser, U. (2012). (Re)use in public scientific

workflow repositories. In Ailamaki, A. and Bowers, S., editors, Scientific and Sta-

tistical Database Management, volume 7338 of Lecture Notes in Computer Science,

pages 361–378. Springer Berlin Heidelberg.

Stoyanovich, J., Taskar, B., and Davidson, S. (2010). Exploring repositories of scientific

workflows. In Proceedings of the 1st International Workshop on Workflow Approaches

to New Data-centric Science, Wands ’10, pages 7:1–7:10, New York, NY, USA. ACM.

Studer, R., Benjamins, V. R., and Fensel, D. (1998). Knowledge engineering: Principles

and methods. Data Knowl. Eng., 25(1-2):161–197.

Suárez-Figueroa, M. C. (2010). NeOn Methodology for building ontology networks:

specification, scheduling and reuse. PhD thesis, Facultad de Informatica, Universidad

Politcnica de Madrid.

Suárez-Figueroa, M. C., Brockmans, S., Gangemi, A., Gómez-Pérez, A., Lehmann, J.,

Lewen, H., Presutti, V., and Sabou, M. (2007). D 5.1.1 NeOn modelling components.

Technical report, UPM.

Tan, W., Missier, P., Madduri, R., and Foster, I. (2009). Building scientific work-

flow with Taverna and BPEL: A comparative study in cagrid. In Feuerlicht, G.

and Lamersdorf, W., editors, Service-Oriented Computing ICSOC 2008 Workshops,

volume 5472 of Lecture Notes in Computer Science, pages 118–129. Springer Berlin

Heidelberg.

Tan, W., Zhang, J., and Foster, I. (2010). Network analysis of scientific workflows: A

gateway to reuse. Computer, 43(9):54–61.

223

Taylor, I. J., Deelman, E., Gannon, D. B., and Shields, M. (2006). Workflows for e-

Science: Scientific Workflows for Grids. Springer-Verlag New York, Inc., Secaucus,

NJ, USA.

van der Aalst, W. M. P., de Beer, H. T., and van Dongen, B. F. (2005). Process mining

and verification of properties : An approach based on temporal logic. In Proceedings

of the 2005 Confederated international conference on On the Move to Meaningful

Internet Systems, pages 130–147.

van der Aalst, W. M. P., ter Hofstede, A. H. M., Kiepuszewski, B., and Barros, A. P.

(2003a). Workflow patterns. Distributed and Parallel Databases, 14(1):5–51.

van der Aalst, W. M. P., van Dongen, B. F., Herbst, J., Maruster, L., Schimm, G., and

Weijters, A. J. M. M. (2003b). Workflow mining: A survey of issues and approaches.

Data Knowl. Eng., 47(2):237–267.

Velasco-Elizondo, P., Dwivedi, V., Garlan, D., Schmerl, B., and Fernandes, J. (2013).

Resolving data mismatches in end-user compositions. In Dittrich, Y., Burnett, M.,

Mrch, A., and Redmiles, D., editors, End-User Development, volume 7897 of Lecture

Notes in Computer Science, pages 120–136. Springer Berlin Heidelberg.

Villazón-Terrazas, B., Vila-Suero, D., Garijo, D., Vilches-Blázquez, L. M., Poveda-

Villalón, M., Mora, J., Corcho, O., and Gómez-Pérez, A. (2012). Publishing Linked

Data:there is no one-size-fits-all formula. Proceedings of the European Data Forum.

Villazón-Terrazas, B., Vilches-Blázquez, L., Corcho, O., and Gómez-Pérez, A. (2011).

Methodological guidelines for publishing government Linked Data. In Wood, D.,

editor, Linking Government Data, pages 27–49. Springer New York.

Ware, M. and Mabe, M. (2015). The STM report: An overview of scientific and

scholarly journal publishing. Technical report, STM: International Association of

Scientific, Technical and Medical Publishers.

Wassink, I., Vet, P. E. V. D., Wolstencroft, K., Neerincx, P. B. T., Roos, M., Rauwerda,

H., and Breit, T. M. (2009). Analysing scientific workflows: Why workflows not only

connect web services. 2009 Congress on Services I, 2009(5):314–321.

224

Wieczorek, M., Prodan, R., and Fahringer, T. (2005). Scheduling of scientific workflows

in the ASKALON grid environment. ACM SIGMOD Record Journal, 34:56–62.

Wilkinson, M., Vandervalk, B., and McCarthy, L. (2009). SADI semantic web services

- because you can’t always get what you want! In Services Computing Conference,

2009. APSCC 2009. IEEE Asia-Pacific, pages 13–18.

Wolstencroft, K., Haines, R., Fellows, D., Williams, A., Withers, D., Owen, S., Soiland-

Reyes, S., Dunlop, I., Nenadic, A., Fisher, P., Bhagat, J., Belhajjame, K., Bacall, F.,

Hardisty, A., de la Hidalga, A. N., Vargas, M. P. B., Sufi, S., and Goble, C. (2013).

The Taverna workflow suite: designing and executing workflows of web services on

the desktop, web or in the cloud. Nucleic Acids Research.

Wood, I., Vandervalk, B., McCarthy, L., and Wilkinson, M. (2012). OWL-DL domain-

models as abstract workflows. In Margaria, T. and Steffen, B., editors, Leveraging

Applications of Formal Methods, Verification and Validation. Applications and Case

Studies, volume 7610 of Lecture Notes in Computer Science, pages 56–66. Springer

Berlin Heidelberg.

Yaman, F., Oates, T., and Burstein, M. (2009). A context driven approach for workflow

mining. In Proceedings of the 21st International Jont Conference on Artifical Intel-

ligence, IJCAI’09, pages 1798–1803, San Francisco, CA, USA. Morgan Kaufmann

Publishers Inc.

Yan, X. and Han, J. (2002). gSpan: Graph-based substructure pattern mining. In In

Proceedings of International Conference on Data Mining, pages 721–724.

Yang, Q., Wu, K., and Jiang, Y. (2005). Learning actions models from plan examples

with incomplete knowledge. In Biundo, S., Myers, K. L., and Rajan, K., editors,

ICAPS, pages 241–250. AAAI.

Yildiz, U., Guabtni, A., and Ngu, A. (2009). Business versus scientific workflows: A

comparative study. In Services - I, 2009 World Conference on, pages 340–343.

Yu, J. and Buyya, R. (2005). A taxonomy of workflow management systems for grid

computing. Journal of Grid Computing, 3(3-4):171–200.

225

	1 Introduction
	1.1 Contributions
	1.2 Thesis Structure
	1.3 Publications
	1.4 External Contributions

	2 Related Work
	2.1 Scientific Workflow Representation
	2.1.1 Scientific Workflow Management Systems
	2.1.2 Scientific Workflow Life Cycle
	2.1.3 Scientific Workflow Models
	2.1.4 Scientific Workflow Publication

	2.2 Workflow Abstraction
	2.2.1 Types of Abstractions in Scientific Workflows
	2.2.2 Workflow Patterns

	2.3 Workflow Reuse
	2.3.1 Measuring Workflow Reuse
	2.3.2 Workflow Mining for Reuse

	2.4 Summary

	3 Research Objectives
	3.1 Research Hypotheses
	3.2 Open Research Challenges
	3.2.1 Workflow Representation Heterogeneity
	3.2.2 Inadequate Level of Workflow Abstraction
	3.2.3 Difficulties of Workflow Reuse
	3.2.4 Lack of Support for Workflow Annotation

	3.3 Research Methodology

	4 Scientific Workflow Representation and Publication
	4.1 Scientific Workflow Model
	4.1.1 Representing the Provenance of Workflow Executions: The Open Provenance Model and W3C PROV
	4.1.2 Representing Workflow Templates and Instances: P-Plan
	4.1.3 OPMW

	4.2 Scientific Workflow Publication
	4.2.1 Workflows as Linked Data Resources
	4.2.2 A Methodology for Publishing Scientific Workflows as Linked Data
	4.2.3 Linked Data Workflows: An Example

	4.3 Summary

	5 Workflow Abstraction and Reuse
	5.1 Workflow Motifs
	5.1.1 Experimental Setup
	5.1.2 Workflow Corpus Description
	5.1.3 Methodology for Workflow Analysis
	5.1.4 A Motif Catalogue for Abstracting Scientific Workflows
	5.1.5 Workflow Analysis Results
	5.1.6 Summary

	5.2 Analysis of Workflow and Workflow Fragment Reuse
	5.2.1 Experimental Setup
	5.2.2 Workflow Reuse Analysis Results

	5.3 Workflow and Workflow Fragment Reuse: User Survey
	5.3.1 Experimental Setup
	5.3.2 User Survey Report

	5.4 Summary

	6 Workflow Fragment Mining
	6.1 Data Preparation
	6.2 Common Workflow Fragment Extraction
	6.2.1 Frequent Sub-graph Mining
	6.2.2 Frequent Sub-graph Mining in FragFlow

	6.3 Fragment Filtering and Splitting
	6.4 Fragment Linking
	6.4.1 Workflow Fragment Representation
	6.4.2 Finding Fragments in Workflows

	6.5 Fragment Statistics and Visualization
	6.6 Summary

	7 Evaluation
	7.1 Evaluation Metrics
	7.1.1 Occurrence and Generalization Evaluation Metrics
	7.1.2 Usefulness Evaluation Metrics

	7.2 Workflow Motif Detection and Workflow Generalization
	7.2.1 Experimental Setup
	7.2.2 Evaluation of the Application of Inexact FSM techniques
	7.2.3 Evaluation of the Application of Exact FSM Techniques
	7.2.4 Summary

	7.3 Workflow Fragment Assessment
	7.3.1 Experimental Setup
	7.3.2 FragFlow Fragments versus User Defined Groupings
	7.3.3 User Evaluation
	7.3.4 Summary

	7.4 Evaluation Conclusions
	7.4.1 Commonly Used Workflow Patterns and Abstractions
	7.4.2 Workflow Fragment Usefulness

	8 Conclusions and Future Work
	8.1 Assumptions and Restrictions
	8.2 Contributions
	8.2.1 Workflow Representation Heterogeneity
	8.2.2 Addressing the Inadequate Level of Workflow Abstraction
	8.2.3 Difficulty of Workflow Reuse
	8.2.4 Lack of Support for Workflow Annotation

	8.3 Impact
	8.4 Limitations
	8.4.1 Workflow Representation and Publication
	8.4.2 Common Workflow Motifs
	8.4.3 Workflow Fragment Mining
	8.4.4 Workflow Generalization

	8.5 Future Work
	8.5.1 Towards Workflow Ecosystem Interoperability
	8.5.2 Automating Detection of Workflow Abstractions
	8.5.3 Improving Workflow Reuse

	A Competency questions for OPMW
	B Reuse Questionnaire
	C Evaluation Details
	C.1 Motifs found in the Wings Corpus
	C.2 Details on the evaluation of the Application of Inexact FSM techniques
	C.3 Details on the evaluation of the Application of Exact FSM techniques
	C.4 Usefulness Questionnaire

	D Additional FSM Algorithms for Mining Useful Fragments
	Glossary
	Bibliography

