
OntoSoft: A Distributed Semantic Registry for
Scientific Software

Yolanda Gil, Daniel Garijo, Saurabh Mishra, Varun Ratnakar
Information Sciences Institute

University of Southern California
Los Angeles, CA, USA

gil@isi.edu, dgarijo@isi.edu, saurabhm@usc.edu, varunr@isi.edu

Abstract— OntoSoft is a distributed semantic registry for

scientific software. This paper describes three major novel
contributions of OntoSoft: 1) a software metadata registry
designed for scientists, 2) a distributed approach to software
registries that targets communities of interest, and 3) metadata
crowdsourcing through access control. Software metadata is
organized using the OntoSoft ontology along six dimensions that
matter to scientists: identify software, understand and assess
software, execute software, get support for the software, do
research with the software, and update the software. OntoSoft is
a distributed registry where each site is owned and maintained by
a community of interest, with a distributed semantic query
capability that allows users to search across all sites. The registry
has metadata crowdsourcing capabilities, supported through
access control so that software authors can allow others to expand
on specific metadata properties.

Keywords—software registries, software metadata, scientific
software, software catalogs, software repositories

I. INTRODUCTION
The software developed by scientists embodies important

scientific knowledge that should be explicitly captured, curated,
managed, and disseminated. Software captures mathematical
models, statistical analyses, and causal reasoning that are used
to generate new results. Scientists recognize the value of
sharing software to avoid replicating effort and to inspect and
reproduce results from others. In addition, recurring issues of
provenance and uncertainty in the context of data could be
better addressed with improved treatment of software: one of
the best ways to understand data is to look at the software that
uses it or generates it.

A major issue for scientific software reuse is the
dissemination and documentation of existing codes. Although
code repositories already exist and are used by many scientists,
they typically contain basic metadata such as authors, license
but lack appropriate metadata to facilitate discovery and reuse.

A second major issue in scientific software sharing is the
limited sharing of codes used in scientific publications. While
the loss of “dark data” in science is well recognized [1], we see
an analogous problem in the pervasive loss of “dark software”.
Many scientists do not share their software, because they are
unaware of its value, or they do not know how, or they are
worried about not getting proper acknowledgment, or they do
not see its value. Studies show that scientists spend between
60% to 80% of a project’s effort collecting and preparing data

before doing new science (e.g., [2]). This would indicate a
significant overhead in developing software for data
preparation that is only rarely shared and rarely reused. A
common concern is the relatively lower quality of such
software, since it is typically not written with robustness or
generality in mind and scientists do not want their reputations
tarnished [3]. Scientists should be aware of the value of their
software, and have the means to share it easily and worry-free.

A third major issue for scientific software sharing is
adoption and trust. Scientists should be able to recognize
whether they can trust software developed by others since they
rely on it to do science. Scientists today have no access to the
kinds of community ratings that help assess quality and reuse.

This paper reports on OntoSoft, a distributed semantic
software registry aimed to improve scientific software
stewardship through: 1) an ontology for software metadata,
which organizes information about software in metadata
categories that are designed with scientists in mind; 2) metadata
crowdsourcing capabilities, where software authors can control
permissions for others to edit specific metadata entries; and 3) a
distributed architecture where each site can be overseen by a
community of practice but metadata is exported and can be
queried across all sites.

The paper begins discussing relevant work on
characterizing software and how software is described in code
repositories today. It introduces the requirements for OntoSoft
based on feedback from scientists. The main section of the
paper describes the architecture of the OntoSoft registry and its
implementation, followed by conclusions and future work.

II. SOFTWARE REPOSITORIES AND OTHER RELATED WORK
In this section we discuss releated work on capturing,

describing, and sharing scientific software. In addition, we
discuss the kinds of metadata used in code repositories, both
general-purpose and specific to scientific domains. All this
work has informed the design of OntoSoft.

A. Capturing Information about Software
The Core Software Ontology (CSO) and the Core Ontology

of Software Components (COSC)1 [4] extend the DOLCE
ontology [5] to describe software components and web
services. These ontologies were designed to describe large
software systems, so their requirements include the

1 http://cos.ontoware.org

This work was supported by the U.S. National Science Foundation under
award ICER-1440323.

accessibility of the software components, middleware services,
execution failures, and composition of software. CSO
formalizes concepts related to software and data, and includes
both software components and services. COSC extends CSO
to define software components further, and includes notions
such as interaction protocols and taxonomies. There are
several major departures from our goals in OntoSoft. First,
these ontologies are very formalized and axiomatized based on
the Descriptions and Situations ontology design pattern that
captures how states change when actions are executed. This is
not an aspect of software that is central to a software catalog.
Second, such formalizations would place restrictions on what
users must specify, which would require users to understand
logic inference in ways that an average scientist would not
know. Finally, they focus on complex software systems, rather
than in end users who are scientists and need to describe
software for other scientists.

Chue-Hong [6] proposes a framework for capturing
information about software that promotes reusability. The
framework consists of four levels: absolute minimum (L1),
useful minimum (L2), pragmatic minimum (L3), and good
minimum (L4). Each level contains information that is split
into five categories: license (legal constraints), availability
(discovery and accessibility), quality (understanding functional
and non-functional characteristics), support (communicating
with original developers), and incentive (rewarding
developers). These levels build on one another, and the
framework includes two additional levels at the extremes that
represent theoretical minimum (L0, insufficient for reusability)
and idealistic minimum (L5, too much required from the
developer). For example, in the license category L0 requires
that the software has any license, L1 that the license allow
reuse, L3 that the license allows modification as well as reuse,
and L4 that it is an approved open source license allowing
modification and reuse (L2 and L5 are omitted for this
category). The framework is only described informally, and is
not specified as a model or ontology. The framework is
complementary to OntoSoft, in that it could be incorporated as
an extension by specifying required properties and values in
each of the levels.

WICUS 2 [7] is an ontology for describing execution
requirements of workflows. It has a complementary focus, and
could be used in combination with OntoSoft as an extension to
specify runtime requirements.

The TIMBUS Ontologies3 [8] propose a model to preserve
and ensure the availability of business processes and their
computational infrastructure, aligned with enterprise risk and
business management. They also propose a semantic approach
to describe execution environments of processes, which could
be combined with OntoSoft. Even though TIMBUS has
studied the applicability of their approach to scientific
software, it is focused on business processes.

The Software Ontology (SWO)4 is a heavyweight ontology
that aims to help describing software used by the curation and

2http://purl.org/net/wicus
3http://timbusproject.net/portal/publications/ontologies
4http://theswo.sourceforge.net, https://softwareontology.wordpress.com/

data preservation community in domains ranging from text
bioinformatics to social sciences. SWO extends some of the
Open Biomedical Ontologies (OBO)5, like the Basic Formal
Ontology (BFO)6 as foundational ontology and the Relations
Ontology (RO) 7 to describe software relationships. It also
extends the EDAM Ontology 8 for adapting different data
formats and operations in the bioinformatics domain.
However, the level of sophistication in formal logic of the
SWO makes it less accessible to users who lack such expertise,
as is the case with most scientists. Some of the SWO terms
may be aligned with OntoSoft to allow describing further some
aspects of software (i.e., software composition) that are outside
the initial scope of OntoSoft.

CodeMeta 9 is a recent effort to map across software
metadata across repositories. It includes a mapping to the
OntoSoft ontology.

In [9], the authors argue for the use of software security
maturity models and apply them to characterize the levels of
security and reliability of scientific software. These kinds of
models have not been applied to scientific software, so they
are not covered in our OntoSoft ontology but could be an
extension of it.

B. General Software Repositories
Software repositories are widely used by scientists. They

have different features and utility. Although they allow users
to describe their software and often use standard conventions
for doing so, they do not use an ontology or model to organize
the descriptions of the software.

General code repositories are widely used for scientific
software. GitHub10 is a repository that supports version control
through the Git infrastructure. GitHub projects have a standard
way to specify documentation (through readme files and
collaborative Wiki pages) and licenses. BitBucket11 is a private
software repository that allows synchronizing through Git and
Mercurial repositories. SourceForge12 is a software repository
for open source software projects, where users can provide an
overview of the features of their project and point to the
supported executables or installers for download.

Other code repositories are more focused on science, and
attract contributions in many domains. CRAN13 is an archive
of code written in the R language. CRAN is built
collaboratively, based on a network of ftp and web servers that
store up-to-date versions of code and documentation. The only
requirement for submitting new code is to fill a short form and
provide documentation. Similarly, PyPI 14 is a software
repository of Python codes [10], although scientific software
tends to be in the SciPy repository [11] described below.

5http://www.obofoundry.org/
6http://www.obofoundry.org/cgi-bin/detail.cgi?id=bfo
7http://www.obofoundry.org/cgi-bin/detail.cgi?id=ro
8http://edamontology.org/
9 https://github.com/codemeta/
10http://www.github.com
11https://bitbucket.org/
12http://sourceforge.net/
13http://cran.r-project.org/
14https://pypi.python.org/pypi

FigShare 15 and Zenodo 16 are repositories for research
artifacts (papers, blog posts, datasets, etc.) including software.
Both allow users to describe all these artifacts with keywords,
assign them DOIs, link to a code repository (e.g. GitHub), and
add the corresponding license and publication date. An
important feature of these repositories, is that they specify how
to cite the software so authors can get credit.

Kaggle17 is a site that holds competitions for data analytics
where companies and government agencies post their data and
pose challenges and data mining experts around the world can
submit entries to the challenge. Winning solutions have to be
documented through a template 18 . The template includes
details about the machine learning approach taken, such as
feature selection and extraction, training procedures, and
formation of model ensembles. It also includes the description
of inputs and outputs of codes, their functions, their runtime
dependencies, and detailed instructions to run them.

Workflow systems use domain-independent languages to
describe the software components that are used as steps in the
workflows [12,13,14,15]. These languages capture information
about how the codes need to be invoked, basic use
documentation, and execution information. Workflow
repositories, such as myExperiment [16] and CrowdLabs [17],
do not use ontologies to capture structured software
descriptions of the individual workflow steps.

C. Software Repositories in Science Domains
There are several repositories that have been developed for

specific science domains that have different approaches and
rationale as well as practical experiences with the perceived
benefits and incentives of collecting software metadata. We
designed OntoSoft to cover all the metadata that these
repositories collect, and more.

The Community Surface Dynamics Modeling System
(CSDMS) contains hundreds of codes for models for Earth
surface processes [18]. CSDMS also collects a comprehensive
set of metadata for software, including authors, programming
languages, pointers to code, licenses, and test datasets. It also
assigns DOIs to models. Other modeling frameworks in
geosciences include the Earth System Modeling Framework
(ESMF) 19 and the Computational Infrastructure for
Geodynamics (CIG20. These frameworks support sophisticated
model coupling capabilities to run several models in
consonance, such as re-gridding to match the model scales and
message passing across models to synchronize the processes
they each model, which requires standard interfaces. These are
aspects not covered by OntoSoft.

In [19] the authors describe the practical experiences with a
software repository for astronomy, the Astrophysics Source
Code Library (ASCL). A major community driver for this
resource is that it gives authors the ability to cite software from
the repository, and in addition it collects citations for each

15http://figshare.com/
16https://zenodo.org/
17http://www.kaggle.com/
18https://www.kaggle.com/wiki/WinningModelDocumentationTemplate
19 https://www.earthsystemcog.org/projects/esmf/
20 https://geodynamics.org/cig/

software entry. Each software entry is described with five
fields: 1) code name, 2) brief description, 3) authors, 4) URL
to download the code, and 5) unique identifier for the software
(the ASCL ID). The entry also includes a link to a paper
describing the software, and links to papers using the software.
Through interactions with the astronomy community, it was
found that users prefer to keep any metadata together with the
code, that they would rather use ASCL more as a registry than
as a repository (jumping from 40 codes for several years to
700 entries in just 3 years), that the type of license or the
quality of the code are not as important as having them
registered and indexed, and that any information that changes
over time (e.g., versions) should not be captured because it is
too hard to track. Due to lack of resources, their focus is on
metadata that enables identifying the code accurately and
without ambiguity. [19] discuss other code repositories in
astrophysics that were not so successful due to lack of
exposure in the community.

nanoHUB [20] is a science gateway that contains for
nanotechnology software and educational materials. A license
is required, and approximately one-eighth of the codes use
open source licenses. Code providers are encouraged to
provide documentation for first time users, test suites, and a
citation for the software. A key added value of the repository
is the measures of quality of the software, which are
contributed by its more than 330,000 users annually. They are
tracked through usage statistics and citations. In addition,
reviews and questions/answers are associated with each code,
as well as wish lists from users. Exposing these indirect
measures of quality incentivizes code authors to support their
code. Citation is supported, but [20] reports that over a
hundred tools have been cited once and only fourteen have
been cited ten or more times. HUBzero [21] is the framework
underlying nanoHUB, and it has been used to develop web
sites in different domains. One such site is the hub for the
volcanology community [22]. They recommend to include
benchmarks and keep track of popular codes, to document
usage limitations and scope of the codes so they are not
wrongly utilized, and facilitate integration within a workflow.

SciPy [11] is an open-source library of scientific python
code. It includes packages for mathematical computations, plot
generation, and publishing of interactive results through
iPython [23]. SciPy is only accessible and understandable by
python programmers.

Some workflow systems include a significant amount of
codes in a domain that can be used as workflow steps,
including LONI Pipeline for neuroimaging genomics [24],
GenePattern and Galaxy for genomics [25], and Taverna for
bioinformatics services [12]. However, the descriptions of
these codes are typically only structured in terms of inputs and
outputs, and other information is simply text documentation.

III. REQUIREMENTS AND DESIGN OF ONTOSOFT
There are important requirements not met by current

software repositories that motivate our design for OntoSoft:
• A software registry to complement code repositories.

There are already code repositories that offer important

functionality in terms of collaborative software
development, version control, and community support.
However, these repositories are not integrated with one
another, and their registry aspects (i.e., the metadata that
describes the software entries) are not very structured
because they are included in readme files and other
informal means. As a result, it is hard for a scientist to
find software with desired properties, such as finding a
software package for k-means, in Java, with a license that
allows commercialization, and that takes data in NetCDF
format. In addition, many scientists have limited software
skills and find code repositories hard to use. They are
more amenable to sharing code through a data repository
such as Zenodo. There is a need for a registry that would
describe software entries with proper metadata, while
pointing to a repository to download the software itself.

• A software metadata vocabulary designed for scientists
and scientific software. The information and
documentation that is available in code repositories is
typically centered on software installation, rather than on
software sharing. Execution information is sometimes
extracted automatically (e.g., from virtualization
environments). There is little guidance on how to describe
software to facilitate the kind of understanding that
scientists require in order to trust it and use it to do their
science. This includes for example understanding the
assumptions made, or the projects or publications that use
the software. New approaches for capturing scientific
software metadata are needed.

• A social approach to scientific software documentation.
Users are rarely excited about providing metadata – not
for datasets and not for software. In addition, when
considering reuse, scientists often want to know what
other scientists thought of the software as they tried to use
it. This requires opening software documentation beyond
software authors. This also liberates the software authors
from not only having to deliver the software but also the
metadata. It also allows others to specify the metadata as
they read through documentation and perhaps also the
literature, and reflecting their own experiences with
respect to usability and quality of the code. At the same
time, authors should have some control over what is said
about their software to ensure it is accurate. There is a
need to open software metadata to contributions from the
community, not just the software authors, while retaining
some control to ensure utility and quality.

These requirements stem from informal surveys of scientists
done as part of the OntoSoft project21, and have driven us to
design the OntoSoft distributed semantic registry for scientific
software metadata.

IV. THE ONTOSOFT DISTRIBUTED SEMANTIC REGISTRY FOR
SCIENTIFIC SOFTWARE

The metadata captured by OntoSoft is organized through an
ontology, described in [26]. The software metadata properties

21 http://ontosoft.org/

specified in the ontology are organized into six major
categories based on information that a scientist would seek: 1)
identify software, 2) understand and assess software, 3)
execute software, 4) get support, 5) do research, and 6) update
the software. Properties are marked as important or optional.

Figure 1 highlights the main features of OntoSoft described
throughout this section. The user is shown indicators of
metadata completeness. Some metadata is imported
automatically from software catalogs. For example if the user
specifies a GitHub site, OntoSoft will import metadata such as
authors, contributors, and license. The user can export the
software metadata in HTML, RDF and JSON, so they can
include the metadata in their publications or attach it to their
software.

A. Distributed Architecture
Each OntoSoft site has access to the content of other
repositories, so software entries can be shown to users together
with their source. Users can search for software based on
semantic metadata properties, and get results for software in
any of the OntoSoft sites.

Although OntoSoft is still a prototype under development,
there are currently several OntoSoft sites deployed to describe
software in different communities like Earth systems modeling,
paleoclimatology, and geospace sciences, and environmental
omics22. There are currently more than 600 software entries
described in OntoSoft.

B. Crowdsourcing Metadata through Access Control Policies
Software authors can open the metadata editing selectively to
others. This means that the original software developers are
not necessarily responsible for providing all metadata, which
can be provided by those who benefit from using the software.
Software authors should be able to decide what metadata they
are willing to crowdsource. For example, they may want to
allow others to edit the metadata about uses of their software,
but not metadata about the version releases. In some cases,
permission to edit may only be given to selected contributors.

Our approach is to give authors access control
mechanisms. OntoSoft extends the W3C WebAccessControl
ontology. 23 Authorization is generally implemented using
access control lists (ACLs), which consist of a series of access
control instructions that either allow or deny permissions (such
as read, write, etc.) to specified entries and their attributes. The
WebAccessControl ontology incorporates these concepts by
defining acl:Authorization, an abstract entity whose properties
(acl:accessMode, acl:accessTo, and acl:agent) are defined in an
ACL. In the ontology, acl:InformationResource can refer to
either a software entry or to a metadata property of a software
entry, which allows finer-grained software control.

Figure 2 illustrates this fine-grained access control. Here, a
software author has created a software software1 and defined
two specific permissions. Permission auth1 specifies that user
user1 has read access to any metadata property of software1. A
second permission auth2 specifies that user user2 has write
access to the metadata property hasUseStatistics. The
corresponding access control list entries are:

22 http://www.ontosoft.org/portals/
23 https://www.w3.org/wiki/WebAccessControl

 [acl:accessTo <http://www.ontosoft.org/portal/software/software1>;
 acl:mode acl:Read;
 acl:agent <http://www.ontosoft.org/portal/users/user1>]
[acl:accessTo <http://www.ontosoft.org/portal/software#hasUseStatistics>;
 acl:mode acl:Write;
 acl:agent <http://www.ontosoft.org/portal/users/user2>]

OntoSoft uses Discretionary Access Control (DAC) [27],

which allows the owner of a resource to determine which users
can access it. Users are given one of three roles for each
software entry, which are used to set permissions: software
owners, software editors, and metadata editors. A software
owner has complete access to all the aspects of a software
entry, and can make others editors of the entire entry or editors
of specific metadata properties. Software owners have

permissions to delete the entry, add or remove software editors,
add or remove property editors, and edit any properties. A
software editor has permission to edit all the metadata
properties of a software entry. A metadata editor has
permission to update properties they have been granted write
access to for a given software entry. Figure 1 shows in a pop-up
window how permissions can be granted to users. Each
OntoSoft site can be configured with defaults for new entries.

C. Querying Distributed Software Registries
Each OntoSoft site has a public API that can be used to

retrieve a list of all software entries and all the metadata for a
particular software entry. The results can be in different
serializations (e.g., JSON, RDF/XML). Each OntoSoft site

Software entries
from distributed
repositories are
readily accessible

Semantic
search

Software is
contrasted
by property

Set permission for Documentation metadata for 3DDY software Set permissions for 3DDY

PIHM PIHMgis DrEICH TauDEM WBMsed S
O nto$

o%$

Metadata properties
organized into categories that
make sense to scientists

Metadata properties
collected through
simple questions

Metadata
completion
highlighted

Metadata
exported in
HTML,
RDF, JSON

Metadata for 3DDY Software

Crowdsourcing of
metadata through
access control
permissions

Automatic import of metadata
from other repositories

Comparison
matrix of
software
entries

Fig. 1. An overview of the user interface of the OntoSoft editor for software metadata properties, highlighting its main
features as a distributed architecture, its scientist-centered design, and its metadata crowdsourcing approach.

shows its own software entries by default. Each site can be
configured to index the software entries from other sites,
aggregating all their data so it can be efficiently queried. This
allows users to view, filter, and compare entries from other
sites. When a user is logged into a site and selects a software
entry from another site, the user is redirected to the page of that
software entry in the site in which the entry was created. With
this approach, the information is decentralized and each
community is responsible for their own software entries while
enabling others to search and compare contents from their site.

V. CONCLUSIONS
OntoSoft is a semantic registry for capturing scientific

software metadata that provides the means to crowdsource
software metadata while granting software owners control over
who can modify their entries. OntoSoft has a distributed
architecture, so that different communities can run their own
sites while keeping them all interconnected. This enables a
distributed query capability so that users can search software
entries across different OntoSoft sites. We plan to enable
cross-site user registration and access control so that users can
login with the same credentials and access rights across sites.
Future work also includes improving integration with existing
code repositories, and developing a recommender system.

ACKNOWLEDGMENTS
We would like to thank other members of the OntoSoft project, including

Scott Peckham, Chris Mattmann, Kaijian Xu, Erin Robinson, and Chris Duffy.
We would also like to thank the many early adopters of OntoSoft for their
feedback and comments on this work, and in particular Cedric David, Leslie
Hsu, Anna Kelbert, and Sandra Villamizar.

REFERENCES
[1] Heidorn, P.B. “Shedding Light on the Dark Data in the Long Tail of

Science.” Library Trends, Vol. 57, No. 2, Fall 2008.
[2] Garijo, D.; Alper, P.; Belhajjame, K.; Corcho, O.; Gil, Y.; and Goble, C

Common Motifs in Scientific Workflows: An Empirical Analysis..
Future Generation Computer Systems, . 2013.

[3] Barnes, N. Publish your computer code: It is good enough. Nature 467,
753, 2010. doi:10.1038/467753a

[4] Oberle D., Lamparter S., Grimm S., Vrandecic D., Staab S., Gangemi A.
“Towards Ontologies for Formalizing Modularization and

Communication in Large Software Systems.” Journal of Applied
Ontology, Vol. 1, No. 2, 2006.

[5] Gangemi, A., Guarino, N., Masolo, C., Oltramari, A., Schneider, L.
“Sweetening Ontologies with DOLCE.” Proceedings of the 13th
Conference on Knowledge Engineering and Knowledge Management
(EKAW), 2002.

[6] Chue-Hong, N. “Minimal information for reusable scientific software.”
Presented at the Second Workshop on Sustainable Software for Science:
Practice and Experiences (WSSSPE2), 2014. figshare.
http://dx.doi.org/10.6084/m9.figshare.1112528.

[7] Santana-Perez, I., Pérez-Hernández, M. "Towards Reproducibility in
Scientific Workflows: An Infrastructure-Based Approach" Scientific
Programming, vol. 2015, 2015.

[8] Mayer, R. Miksa, T. and A. Rauber. Ontologies for describing the
context of scientific experiment processes, in: 10th International
Conference on e- Science, 2014.

[9] Heiland, R., Thomas, B., Welch, C. and C. Jackson. “Towards a
Research Software Security Maturity Model.” Presented at the First
Workshop on Sustainable Software for Science: Practice and
Experiences (WSSSPE1), 2013, http://arxiv.org/abs/1309.1677

[10] Terrel, A. “Sustaining the Python Scientific Software Community.”
Presented at the First Workshop on Sustainable Software for Science:
Practice and Experiences (WSSSPE1), 2013. figshare.
http://dx.doi.org/10.6084/m9.figshare.791565

[11] Jones E., Oliphant E., Peterson P., et al. SciPy: Open Source Scientific
Tools for Python, 2001, http://www.scipy.org/ [Accessed 2015-03-13].

[12] Missier, P., Soiland-Reyes, S., Owen, S., Tan, W. et al. Taverna,
reloaded. In 22nd International Conference on Scientific and Statistical
Database Management (SSDBM), Heidelberg, Germany, 2010.

[13] Ludaescher, B., Altintas, I., and Berkley, C., Higgins, D., Jaeger, E., et
al. “Scientific workflow management and the Kepler system.”
Concurrency and Computation: Practice and Experience. Vol 18, 2006.

[14] Gil, Y., Ratnakar, V., Kim, J., Gonzalez-Calero, P., Groth, P., Moody, J.
and E. Deelman. “Wings: Intelligent Workflow-Based Design of
Computational Experiments.” IEEE Intelligent Systems, 26(1). 2011.

[15] Gil, Y. “Intelligent Workflow Systems and Provenance-Aware Software.
Proceedings of the Seventh International Congress on Environmental
Modeling and Software, 2014.

[16] De Roure, D., Goble, C. and R. Stevens. “The design and realizations of
the myExperiment Virtual Research Environment for social sharing of
workflows”. Future Generation Computer Systems, 25 (561-567), 2009.

[17] Mates, P., Santos, E., Freire, J. and C.T. Silva. Crowdlabs: Social
analysis and visualization for the sciences. 23rd International Conference
on Scientific and Statistical Database Management, 2011.

[18] Peckham, S. D., Hutton, E.W.H. and Norris, B. “A component-based
approach to integrated modeling in the geosciences: The design of
CSDMS.” Computers and Geosciences, 53, 2013.

[19] Shamir, L. Wallin, J.F., Allen, A., Berriman, B., Teuben, P., Nemiroff,
R.J., Mink, J., Hanisch, R.J., K. DuPrie. “Practices in source code
sharing in astrophysics.” Astronomy and Computing, Vol 1, 2013.

[20] Zentner, L., Zentner, M., Farnsworth, V., et al. “nanoHUB.org:
Experiences and Challenges in Software Sustainability for a Large
Scientific Community.” Journal of Open Research Software, 2(1), 2014.

[21] McLennan M. and R. Kennell. “HUBzero: A Platform for Dissemination
and Collaboration in Computational Science and Engineering.”
Computing in Science & Engineering, 12(2), 2010.

[22] Patra, A., Jones, M., Gallo, S., et al “Role of Online Platforms,
Communications and Workflows in Developing Sustainable Software for
Science Communities.” Workshop on Sustainable Software for Science:
Practice and Experiences (WSSSPE2), 2014. figshare.
http://dx.doi.org/10.6084/m9.figshare.1112569.

[23] Pérez, F. and B.E. Granger. IPython: A System for Interactive Scientific
Computing, Computing in Science and Engineering 9(3), 2007.

[24] Torri, F., Clark, A.P. Dinov, I. Zamanyan, A. et al. Next generation
sequence analysis and computational genomics using graphical pipeline
workflows. Genes, 3:545-575. 2012.

[25] B. Giardine et al. Galaxy: A platform for interactive large-scale genome
analysis. Genome Research, 15(10):1451-1455, 2005.

[26] Gil, Y.; Ratnakar, V.; and Garijo, D. OntoSoft: Capturing Scientific
Software Metadata. In Proceedings of the Eighth ACM International
Conference on Knowledge Capture, 2015.

[27] Barkley, J. Comparing simple role based access control models and
access control lists. Proceedings of the Second ACM Workshop on Role-
Based Access Control, 1997.

!
Fig. 2. Decentralized access control system for allowing

different users various forms of access to resources.

