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Abstract—While workflow technology has gained momentum
in the last decade as a means for specifying and enacting compu-
tational experiments in modern science, reusing and repurposing
existing workflows to build new scientific experiments is still a
daunting task. This is partly due to the difficulty that scientists
experience when attempting to understand existing workflows,
which contain several data preparation and adaptation steps in
addition to the scientifically significant analysis steps. One way
to tackle the understandability problem is through providing
abstractions that give a high-level view of activities undertaken
within workflows. As a first step towards abstractions, we report
in this paper on the results of a manual analysis performed over
a set of real-world scientific workflows from Taverna and Wings
systems. Our analysis has resulted in a set of scientific workflow
motifs that outline i) the kinds of data intensive activities that are
observed in workflows (data oriented motifs), and ii) the different
manners in which activities are implemented within workflows
(workflow oriented motifs). These motifs can be useful to inform
workflow designers on the good and bad practices for workflow
development, to inform the design of automated tools for the
generation of workflow abstractions, etc.

I. INTRODUCTION

Scientific workflows have been increasingly used in the last
decade as an instrument for data intensive scientific analysis.
In these settings, workflows serve a dual function: first as
detailed documentation of the method (i. e. the input sources
and processing steps taken for the derivation of a certain
data item) and second as re-usable, executable artifacts for
data-intensive analysis. Workflows stitch together a variety
of data manipulation activities such as data movement, data
transformation or data visualization to serve the goals of the
scientific study. The stitching is realized by the constructs
made available by the workflow system used and is largely
shaped by the environment in which the system operates and
the function undertaken by the workflow.

A variety of workflow systems are in use [10] [3] [7] [2]
serving several scientific disciplines. A workflow is a software
artifact, and as such once developed and tested, it can be
shared and exchanged between scientists. Other scientists can
then reuse existing workflows in their experiments, e.g., as
sub-workflows [17]. Workflow reuse presents several advan-
tages [4]. For example, it enables proper data citation and
improves quality through shared workflow development by
leveraging the expertise of previous users. Users can also
re-purpose existing workflows to adapt them to their needs
[4]. Emerging workflow repositories such as myExperiment

[14] and CrowdLabs [8] have made publishing and finding
workflows easier, but scientists still face the challenges of re-
use, which amounts to fully understanding and exploiting the
available workflows/fragments. One difficulty in understanding
workflows is their complex nature. A workflow may contain
several scientifically-significant analysis steps, combined with
various other data preparation activities, and in different
implementation styles depending on the environment and
context in which the workflow is executed. The difficulty in
understanding causes workflow developers to revert to starting
from scratch rather than re-using existing fragments.

Through an analysis of the current practices in scientific
workflow development, we could gain insights on the creation
of understandable and more effectively re-usable workflows.
Specifically, we propose an analysis with the following objec-
tives:

1) To reverse-engineer the set of current practices in work-
flow development through an analysis of empirical evi-
dence.

2) To identify workflow abstractions that would facilitate
understandability and therefore effective re-use.

3) To detect potential information sources and heuristics
that can be used to inform the development of tools for
creating workflow abstractions.

In this paper we present the result of an empirical analysis
performed over 177 workflow descriptions from Taverna [10]
and Wings [3]. Based on this analysis, we propose a catalogue
of scientific workflow motifs. Motifs are provided through i)
a characterization of the kinds of data-oriented activities that
are carried out within workflows, which we refer to as data-
oriented motifs, and ii) a characterization of the different man-
ners in which those activity motifs are realized/implemented
within workflows, which we refer to as workflow-oriented
motifs. It is worth mentioning that, although important, motifs
that have to do with scheduling and mapping of workflows
onto distributed resources [12] are out the scope of this paper.

The paper is structured as follows. We begin by providing
related work in Section II, which is followed in Section III by
brief background information on Scientific Workflows, and the
two systems that were subject to our analysis. Afterwards we
describe the dataset and the general approach of our analysis.
We present the detected scientific workflow motifs in Section
IV and we highlight the main features of their distribution



across the analyzed workflows in section V. Finally, we distill
the main findings of our study (in Section VI) and conclude
by outlining our future plans in Section VII.

II. RELATED WORK

Our motifs could be observed as higher-level patterns ob-
served over scientific workflow datasets. ”Workflow patterns”
have been extensively studied in the last two decades [15].
Work in this area is primarily focused on outlining the
inventory of workflow development constructs provided by
different workflow languages and the ways of combining those
constructs. Classification models have also been developed to
detect additional patterns in structure, usage and data [13].
Scientific workflows are characterized by the lack of complex
control constructs, where the order of execution is determined
by the availability of data. As observed by a recent study
[9], these systems largely support data-flow patterns1 and even
bring-about new ones with their varied handling of data tokens.
Data-flow patterns outline ways of managing data resources
during workflow execution, such as visibility, data interaction
and transfer. These patterns are orthogonal to the scientific
data-oriented function undertaken by the processing steps i.e.
our motifs. In this regard our work complements the workflow
patterns research with its focus on pinpointing characteristic
data-oriented activities, rather than an analysis of workflow
languages, token handling or data dependencies. Our work is
also based on an analysis of empirical evidence of how data-
intensive activities have been implemented against different
environments, rather than specifying what is theoretically
possible with the given constructs and a few examples.

Another work, somewhat closer to our study in spirit, is an
automated analysis of workflow scripts from the Life Science
domain [16]. This work aims to deduce the frequency of
different kinds of technical ways of realizing workflow steps
(e.g. service invocations, local ”scientist-developed” scripting,
local ”ready-made” scripts) etc.). [16] also drills down into the
category of local ready-made scripts, to outline a functional
breakdown of their activity categories such as data access
or data transformation. While this provides an insight into
the kind of activities undertaken in workflows, it is not
representative as it is restricted only to the local service task
types, which are only one of many ways to process data
in scientific workflows. Our approach is different from this
work as it is based on a manual analysis, which allows us to
detect activities in many technical realizations (not just local
services). We’re also categorizing at a much finer grain some
of their generic ”Conversion” and ”Operation” activities (e.g.
into filtering, splitting and data cleaning and so on).

Problem Solving Methods is another area of related work.
PSMs describe the reasoning process to achieve the goal of a
task in an implementation and domain-independent manner
[11]. Some libraries aim to model the common processes
in scientific domains [5], although they focus in in vitro

1http://www.workflowpatterns.com/patterns/data/

experiments instead of scientific workflows (in silico data
oriented experiments).

III. PRELIMINARIES

For the purposes of our analysis, we use workflows specified
and used in the Taverna [10] and Wings [3] workflow systems.
The choice of these two systems is due to :

1) The similarity in the kinds of workflow modeling con-
structs they provide. When compared to other scientific
workflow systems both Taverna and Wings are observers
of the pure data-flow paradigm, they provide no explicit
mechanism for even the most basic control constructs
such as conditionals and looping, while there are implicit
ways of doing this.

2) The variety of execution environments in which these
systems operate. While Taverna provides users with a
means to specify workflows that mainly make use of
autonomous third party services, Wings provides an
environment in which users have relatively more control
over the resources and the analysis operations that sci-
entists use in their experiments. Within Wings, analysis
tools and data artifacts are made part of the environment
prior to workflow design, workflows are then composed
of using these encapsulated software/tools.

A. Taverna and Wings workflow systems

Taverna2 is an open-source workflow system, which has
been initially devised for in-silico experimentation in the life-
sciences. Recently, it has been extended to include several
other domains including Biodiversity, Chemistry and Astron-
omy. Taverna is characterized with its design to operate in
an open-world setting with the ability to access remote third
party web services ”in the wild” and compose them into data-
intensive pipelines. The Taverna environment (in its default
configuration) is characterized by its open-typing approach,
where the only types that are supported are singleton values
of Strings, byte arrays and nested collections of singletons.

Wings3 uses semantic representations to describe the con-
straints of the data and computational steps in the workflow.
Wings can reason about the constraints of the workflow
components (steps) and the characteristics of the data and
propagate them through the workflow structure. Wings also
separates the physical and the logical layers of the workflow
at distinct levels. It is typically configured to use Pegasus [1]
as execution engine, which handles distributed execution, data
movement and optimization.

B. Description of the sets of workflows analyzed

For our analysis, we have chosen 177 heterogeneous work-
flows in a variety of domains. We have analyzed most of the
Wings workflow set (66 workflows), and part of the Taverna
set (111 out of 874 workflows). For Wings, we have analyzed
workflows from Drug Discovery, Text Mining and Genomics
domains. For Taverna we have analyzed workflows that were

2http://www.taverna.org.uk/
3http://www.wings-workflows.org



available in myExperiment [14], by inspecting the official
myExperiment groups with a sufficient number of workflows
in them. We have looked at Cheminformatics, Genomics,
Astronomy, Biodiversity, Geo-Informatics and Text Mining
workflows. We have also included a group, named IST600,
that includes workflows from novice scientists as part of a
post-graduate course on scientific workflows. The distribution
of workflows to domains is not even, as it is also the case
in myExperiment. The numbers of workflows analyzed from
each domain can be seen in Table I:

TABLE I
NUMBER OF TAVERNA (T) AND WINGS (W) WORKFLOWS ANALYZED

Domain Number of workflows
DRUG DISCOVERY 7 (W)
ASTRO 11 (T)
BIODIV 12 (T)
CHEMINFORMATICS 7 (T)
GENOMICS 69 (38 (T) + 31 (W))
GEO-INFORMATICS 6 (T)
IST600 21 (T)
TEXTANALYSIS 44 (11 (T) + 31 (W))

TOTAL 177

C. Approach for workflow analysis

We have performed a bottom-up manual analysis comprised
of two orthogonal dimensions, outlining what kind of data-
oriented activity is being undertaken by a workflow step
and how that activity has been realized. For example, a
visualization step (data oriented activity) can be realized in
different ways: via a stateful multi-step invocation, through
a single stateless invocation (depending on the environmental
constraints and nature of the services), or via a sub-workflow.

We have not outlined the possible motifs we predict to
occur upfront, instead we have built up the motif list as we
progressed with the inspections. For each workflow, we have
recorded the number of occurrences of motifs. We illustrate
some of the motifs via two workflows from our data set. Figure
1 outlines a Wings workflow that makes comparison of the
input protein structures and drugs, sorts and merges the results
obtained. Figure 2 outlines a Taverna workflow that performs
a 2-D time alignment over protein data through the use of
an external service. Due to space considerations, we highlight
only some of the motifs in the examples.

IV. SCIENTIFIC WORKFLOW MOTIF CATALOGUE FOR
ABSTRACTING WORKFLOWS

This section introduces details on the scientific workflow
motifs detected in our analysis. An overview is provided in
Table II.

A. Data-Oriented Motifs

1) Data Retrieval: Workflows exploit heterogeneous data
sources, remote databases, repositories or other web resources
exposed via SOAP or REST services. Scientific data deposited
in these repositories are retrieved through query and retrieval
steps inside workflows. Certain tasks within the workflow are
responsible for retrieving data from such external source into

the workflow environment. We also observed that certain data
integration workflows contain multiple linked retrieval steps,
being essentially parameterized data integration chains.

2) Data Preparation: Data, as it is originally retrieved, may
need several transformations before being able to be used in
a workflow step. The most common activities that we have
detected in our analysis are:

• Format Transformation: Heterogeneity of formats in data
representation is a known issue in many scientific dis-
ciplines. Workflows that bring together multiple access
or analysis activities usually contain steps for format
transformations. These steps named ”Shims” [6] typically
preserve the contents of data, while converting its repre-
sentation format.

• Input Augmentation and Output Splitting: Data access
and analysis steps that are handled by external services
or tools typically require well formed query strings or
structured requests as input parameters. Certain tasks in
workflows are dedicated to the generation of these queries
through an aggregation of multiple parameters. The re-
verse operation occurs for output processing. Outputs of
data access or analysis steps could be subject to data
extraction or splitting to allow the conversion of data from
the service specific format to the workflows internal data
carrying structures (nested lists). An example of this is
provided in the workflow of Figure 2, for each service
invocation (e.g. getJobState) there are steps (e.g. getJob-
State Input) that are responsible for creating the correctly
formatted inputs for the service and output splitting steps
(e.g. getJobState output) that are responsible for parsing
the results returned from the service.

• Data Organization (Merging, Grouping, Sorting, Filter-
ing): The datasets brought into a pipeline may not be
subject to analysis in their entirety. Data could further
be filtered, sampled or could be subject to extraction
of various subsets. In addition to filtering, certain tasks
are dedicated to merging data sets created by different
branches of workflows. Sorting or grouping results is also
observed under this category. Examples of merge and sort
activities are given in the Wings workflow in Figure 1,
where the results of both branches of the workflow are
first sorted creating different files that are then merged
for presenting a single output result.

3) Data Movement: Certain analysis activities that are
performed via external tools or services require the submission
of data to a location accessible by the service/tool (i.e., a
web or a local directory respectively). In such cases the
workflow contains dedicated step(s) for the upload/transfer of
data to these locations. The same applies to the outputs, in
which case a data download/retrieval step is used to chain the
data to the next steps of the workflow. The data deposition
of the workflow results to a specific server would also be
included in this category. In Figure 2, the DataUpload and
DownloadResults steps ship data to the server on which the
analysis will be done, and also retrieve back the results via a



dedicated download step.
4) Data Cleaning/Curation: We have observed the steps

for cleaning and curating data as a separate category from data
preparation and filtering. Typically these steps are undertaken
by sophisticated tooling/services, or by human interactions. A
cleaning/curation step essentially preserves and enriches the
content of data (e.g., by a user’s annotation of a result with
additional information, detecting and removing inconsistencies
on the data, etc.).

5) Data Analysis: This motif refers to a rather broad
category of tasks in diverse domains. An important number
of workflows are designed with the purpose of analyzing dif-
ferent features of input data, ranging from simple comparisons
between the datasets to complex protein analysis to see if two
molecules can be docked successfully. An example is given
in the workflow of Figure 2 with a processing step named
warp2D, and the steps named SMAPV2 in Figure 1 with a
ligand binding sites comparison of the inputs.

6) Data Visualization: Being able to show the results is
as important as producing them in some workflows. Scientists
use visualizations to show the conclusions of their experiments
and to take important decisions in the pipeline itself. Therefore
certain steps in workflows are dedicated to generation of plots
and graph outputs from input data.

B. Workflow-Oriented Motifs
We divide these motifs in two different groups, depending

on whether motifs are observed within or among workflows.
Intra workflow motifs:
1) Stateful/asynchronous and stateless/synchronous invoca-

tions: Certain activities such as analysis or visualizations
could be performed through interaction with stateful (web)
services that allow for creation of jobs over remote grid
environments. These are typically performed via invocation of
multiple operations at a service endpoint. An example is given
in the workflow of Figure 2, where the service invocations
warp2D, getJobStatus, and DownloadResults are consecutively
executed in order to be able to perform one analysis via an
external service. On the other hand stateless activities require
a single step for service or tool invocation.

2) Internal macros: this category refers to those groups of
steps in the workflow that correspond to repetitive patterns
of combining tasks. An example can be seen in Figure 1,
where there are two branches of the workflow performing very
similar operations (SMAP and Sorting).

3) Human interactions versus computational steps: We
have observed that scientific workflows systems increasingly
make use of human interactions to undertake certain activities
within workflows. Data curation and cleaning are typical
examples of such activities.

Inter Workflow Motifs:
1) Atomic workflows: Our review has shown that a signif-

icant number of workflows perform an atomic unit of func-
tionality, which effectively requires no sub-workflow usage.
Typically these workflows are designed to be included in other
workflows. Atomic workflows are the main mechanism of
modularizing functionality wthin scientific workflows.

TABLE II
SCIENTIFIC WORKFLOW MOTIFS

Data-Oriented Motifs
Data Retrieval
Data Preparation

Format Transformation
Input Augmentation and Output Splitting
Data Organisation

Data Analysis
Data Curation/Cleaning
Data Moving
Data Visualisation

Workflow-Oriented Motifs
Intra-Workflow Motifs

Statefull (Asynchronous) Invocations
Stateless (Synchronous) Invocations
Internal Macros
Human Interactions

Inter-Workflow Motifs
Atomic Workflows
Workflow Overloading
Composite Workflows

2) Workflow overloading: Our analysis has shown that
authors tend to deliver multiple workflows with same func-
tionality, but operating over different input parameter types.
An example is performing an analysis over a String input
parameter, or performing it over the contents of a specified
file. Overloading is a direct response to the heterogeneity of
environments in which workflows are used.

3) Composite workflows: The usage of sub-workflows ap-
pears as a motif for exploiting modular functionality from
multiple workflows. This motif refers to all those workflows
that have one or more sub-workflows included in them (in
some cases, these sub-workflows offer different views of the
global workflow). Our review has provided empirical evidence
of adoption of this motif in Taverna and Wings systems.

V. RESULTS

In this section, we report on the frequencies of the data-
and workflow-oriented motifs within workflows, and discuss
how they are correlated with the workflow domains4.

Figure 3 illustrates the distribution of data-oriented motifs
across the domains. The analysis of this figure shows the
predominance of the data preparation motif, which constitutes
more than 60% of the data preparation motifs in the majority
of domains. This is an interesting result as it implies that data
preparation steps are more common than any other category of
activity, specifically those that perform the main (scientifically-
significant) functionality of the workflow. The abundance of
these is one major obstacle for understandability. Figure 3
also demonstrates that within domains, such as Genomics,
Astronomy or Biodiversity, where curated common scientific
databases exist, workflows are used as data retrieval clients
against these databases.

Drilling down to Data Preparation, Figure 4 shows the
dominance of Input Augmentation and Output Splitting motifs

4Results available at http://www.myexperiment.org/packs/310.html



Fig. 1. Sample Motifs in a Wings Workflow for drug discovery. A comparison analysis is performed on two different input datasets (SMAPV2). The results
are then sorted (SMAPResultSorter) and finally merged (Merger, SMAPAlignementResultMerger).

Fig. 2. Sample Motifs in a Taverna Workflow for Functional Genomics. The workflow transfers data files containing proteomics data to a remote server and
augments several parameters for the invocation request. Then the workflow waits for job completion and inquires about the state of the submitted warping
job. Once the inquiry call is returned the results are downloaded from the remote server.

for most domains. These activities can be seen as adapters that
help plugging data analysis capabilities into workflows. Their
absence in Drug Discovery can be attributed to the fact that it
is a Wings domain, which points-out to a more systematic
difference between the Taverna and Wings environments.
Figure 4 also demonstrates how the existence of a widely used
common data structure for a domain, in this case Astronomy5,
reduces the need for (domain-specific) data transformations in
workflows.

5http://www.ivoa.net/Documents/VOTable/

As displayed in the comparative Figure 5 for the genomic
domain, in Wings input augmentation and output splitting
steps are much less required (25% vs 60%) as the inputs are
strongly typed and the data analysis steps are pre-designed
to operate over typed data. Within Figure 6 we observe
that Wings workflows do not contain any data retrieval or
movement steps as data is pre-integrated into the workflow
environment (data shipping activities are carried out behind
the scenes by Wings’s scheduling infrastructure) whereas in
Taverna the workflow carries dedicated steps for querying



Fig. 3. Distribution of Data-Oriented Motifs per domain

Fig. 4. Distribution of Data Preparation motifs per domain

databases and shipping data to necessary locations for analysis.
The impact of the environmental difference of Wings and

Taverna on the workflows is also observed in the workflow-
oriented motifs (Figure 7). Stateful invocations motifs are not
present in Wings workflows, as all steps are handled by a
dedicated workflow scheduling framework and the details are
hidden from the workflow developers. In Taverna, the work-
flow developer is responsible for catering for various different
invocation requirements of 3rd party services, which may
include stateful invocations requiring execution of multiple
consecutive steps in order to undertake a single function.

Regarding workflow-oriented motifs, Figure 8 shows that
Human-interaction steps are increasingly used in scientific
workflows, especially in the Biodiversity and Cheminformat-
ics domains. Human interactions in Taverna workflows are
handled either through external tools (e.g., Google Refine),
facilitated via a human-interaction plug-in, or through simple
local scripts (e.g., selection of configuration values from
multi-choice lists). We have observed that non-trivial human
interactions involving external tooling require a large number
of workflow steps dedicated to deploying or configuring the
external tools, resulting in very large and complex workflows.
Wings workflows do not support human interaction steps.

Finally, the large proportion of the combination of Compos-
ite Workflows and Atomic Workflows motif in Figure 8 shows

Fig. 5. Data Preparation Motifs in the Genomics Workflows

Fig. 6. Data-Oriented Motifs in the Genomics Workflows

that the use of sub-workflows is an established best practice
for modularizing functionality.

VI. DISCUSSION

Our analysis shows that the nature of the environment in
which a workflow system operates can bring-about obstacles
against the re-usability of workflows.

A. Obfuscation of Scientific Workflows

Data-intensive scientific analysis could be large and com-
plex with several processing steps corresponding to different
phases of data analysis performed over various kinds of data.
This complexity is exacerbated when the workflow operates in
an open environment, like Taverna’s, and composes multiple
third party services supporting different data formats and
protocols. In such cases the workflow contains additional steps
for coping with different format and protocol requirements.
This obfuscation of the workflow burdens the documentation
function and creates difficulty for the workflow re-user sci-
entists, who seeks to have a complete understanding of the
function and the details of the workflow that they are re-using
in order to be able make scientific claims with their workflow
based studies.

Obfuscation is caused by the abundance of data preparation
steps, data movement operations and multi-step stateful invo-
cations. One way to overcome obfuscation is to encapsulate



Fig. 7. Workflow-Oriented Motifs in the Genomics Workflows

Fig. 8. Distribution of Workflow-Oriented motifs in the analyzed workflows
per domain

the preparation steps and multi-step service invocations within
sub-workflows. While this approach is plausible, it would
quickly lead to very significant data retrieval, analysis or
visualization step to turn into a workflow together with its
shims, resulting wide-spread and ad-hoc sub-workflowing. A
principled solution is being developed in the Taverna system
through ”Components”. Components can be seen as sub-
workflows encapsulating scientifically significant functionality
and hiding technical detail. Components are described through
a common metadata framework and provide support of com-
plex structured data objects as inputs and outputs.

B. Decay of Scientific Workflows

Decay is another obstacle for the reproducibility of in-silico
experiments and effective re-use of workflows. Widespread
adoption of workflows has demonstrated that workflows decay
due to the change or disappearance of remote resources
that they depend on. Development of workflows is a labor
intensive process, therefore workflows, even in their broken
state, represent value worth attention towards repair. Table
III provides an analysis of workflow evolution data from the
myExperiment repository, depicting the different causes of
change when authors revise a workflow from one version to
the next.

When we look at the distribution of changes we see that an

TABLE III
DISTRIBUTION OF GOALS OF WORKFLOW VERSION UPDATES

Category Frequency
FIX

GENERAL-MAINTENANCE 40 %
BUG-FIX 11 %

IMPROVEMENT
DOCUMENTATION IMPROVEMENT 18 %
SAMPLE-TEST DATA ADDITION 2 %
FEATURE-ADDITION

WF-SIGNATURE-EXPANSION 12 %
USABILITY IMPROVEMENT 6.5 %
OTHER IMPROVEMENT 6.5 %

PERFORMANCE IMPROVEMENT 1 %
REFACTORING-SIMPLIFICATION 2 %

overwhelming majority are ”General Maintenance” activities.
These are attempts to fix workflows that are broken due to a
changing environment. The second most frequent activity in
workflow evolution is providing better documentation on the
workflow that has been published.

Being able to repair a workflow requires understanding the
workflow function, and replacing broken step or fragments
with alternative or updated services. We observe that abstract
workflow descriptions accompanying executable scripts, not
only help in understandability but also could help in repairing
as it provides a search template for alternative services, or
workflow fragments.

C. Good Practices for Workflow Development

1) Sub-workflows: Encapsulation functionality in sub-
workflows and reusing them in composite workflows is ob-
served as a pattern in empirical data both in Wings and Taverna
systems. As depicted in Figure 8, the Composite Workflow and
Atomic Component patterns account up to more than 60% of
workflow-oriented motifs observed on the workflows.

2) Workflow Overloading: An advanced form of sub-
workflow development is workflow overloading, which is
more common in Taverna’s workflows. As workflows can
be executed in different settings, authors provide overloaded
versions of the same functionality in different workflows to
increase the coverage on target uses. In Wings this is normally
not necessary, as the components can be configured to run
different configurations depending on the semantic type of the
input. While we observe overloading as a good practice, a
significant behavior of workflow developers in the Taverna
environment is to extend their workflows with the ability to
accept input from multiple ports in different formats (see Table
III). We believe that such overloading behavior within a single
workflow is a poor practice and should be provided over
multiple workflows operating a single designated input format.

D. Towards Automated Abstraction/Annotation of workflows

Our ultimate objective is to automatically suggest a set
of annotations/abstractions for workflows. These annotations
would allow 1) helping the creators to describe the particular
functionality of the workflows to reach a broader audience
of possible re-users and 2) help in the search of workflows



with certain functionality (e.g., workflows with data retrieval,
analysis and filtering). This would also be helpful from a
workflow designer perspective, so as to obtain workflows that
are similar to the ones being designed.

In an environment like Wings, where semantic typing is
supported, it could be possible to automatically detect some
Data Preparation activities by inferencing over the types of
inputs and the outputs and the task types. In an open environ-
ment like Taverna, such classifications are not available, but
there are other resources for inferring functionality of steps,
like controlled tags on services and the names of processors.
We have observed that there is a rather consistent vocabulary
used to name the Data Retrieval, Data Preparation and Data
Visualization steps in workflows.

Our identification of workflow oriented motifs also acts as
a set of heuristics for creating abstractions over workflows,
like grouping stateful interactions on a service endpoint,
detection of data preparation activities to highlight the real
functionality of the workflow, detecting subgroups of repeated
data preparations steps (i.e., internal macros), etc.

VII. CONCLUSIONS

Workflow understanding is an impediment to re-using and
re-purposing scientific workflows. To address this problem,
motifs that provide high level description of the tasks carried
out by the workflow steps can be effective. As a step towards
this goal, we reported in this paper on an empirical analysis
that we conducted using Taverna and Wings workflows, with
the objective of identifying the motifs that are embedded
within those workflows. In doing so, we have distinguished
data-oriented motifs, which describe the tasks carried out by
the workflow steps, from workflow-oriented motifs, which
describe the way those tasks are implemented within the
workflow.

The main findings of our analysis are as follows: there
are 6 main types of data-oriented motifs and 6 types of
workflow-oriented motifs that are used across different do-
mains. The frequency in which these motifs appear depends
largely on the differences among the Taverna and Wings
workflow environments and differences in domains. Regarding
data preparation motifs, we found that their use is correlated
with the environment in which the workflow is designed. In
particular, in a workflow system such as Taverna many steps in
the workflow are dedicated to the moving and reconciliation of
heterogeneous data sets and stateful protocol handling. On the
other hand, in a workflow system such as Wings we notice
that data preparation motifs, such as data moving and data
reconciliation, are minimal and in certain domains absent.

As part of our future work, we plan to analyze common
motifs in other workflow systems like Kepler [7] and Swift [2],
and examine how they overlap with the catalogue identified
in this paper. We also envisage providing tools that assist
designers and users in workflow annotation using the motifs
we identified. Finally, we intend to derive best practices that
can be used in workflow design.

ACKNOWLEDGMENTS

This research was supported in part by a grant from the
US Air Force Office of Scientific Research (AFOSR) through
award number FA9550-11-1-0104 and the Wf4Ever European
project (FP7-270192). The authors would like to thank many
collaborators for contributing the workflows analyzed for this
work, in particular Yan Liu, Matheus Hauder, Chris Mason,
and Varun Ratnakar. We also would like to thank Pinar Senkul
for her comments on possible ways of inferring motifs over
existing workflow scripts.

REFERENCES

[1] E. Deelman, G. Singh, M. Su, J. Blythe, Y. Gil, C. Kesselman, J. Kim,
G. Mehta, K. Vahi, G. B. Berriman, J. Good, A. Laity, J. C. Jacob,
and D. S. Katz. Pegasus: A framework for mapping complex scientific
workflows onto distributed systems. Scientific Programming, 13(3),
2005.

[2] I Foster, J Vockler, M Wilde, and Yong Zhao. Chimera: a virtual data
system for representing, querying, and automating data derivation, 2002.

[3] Yolanda Gil, Varun Ratnakar, Jihie Kim, Pedro A. González-Calero,
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