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Abstract. Many organizations maintain knowledge graphs that are or-
ganized according to ontologies. However, these ontologies are imple-
mented in languages (e.g. OWL) that are difficult to understand by users
who are not familiar with knowledge representation techniques. In par-
ticular, this affects web developers who want to develop ontology-based
applications but may find challenging accessing ontology-based data in
knowledge graphs through SPARQL queries. To address this problem, we
propose an accessible layer for ontology-based knowledge graphs through
REST APIs. We define a mapping specification between the Web On-
tology Language (OWL) and the OpenAPI Specification (OAS) to pro-
vide ontology-based API definitions in a language well-known to web
developers. Our mapping specification identifies key similarities between
OWL and OAS and provides implementation guidelines and examples.
We also developed a reference mapping implementation that automati-
cally transforms OWL ontologies into OpenAPI specifications in a matter
of seconds.
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1 Introduction

Many public and private organizations have adopted a knowledge-driven ap-
proach to make publicly available their knowledge graphs. Ontologies [10] play
a crucial role in this approach, as they describe the knowledge about a domain
in an agreed and unambiguous manner; and they allow organizing data, ease its
reusability, and facilitate its interoperability. Ontologies are usually formalized
in the Web Ontology Language (OWL) [6], a W3C recommendation to represent
the semantics of a domain in a machine-readable way. However, OWL has a steep
learning curve due its inherent complexity [12], and newcomers may get confused
with the meaning of constraints, axioms or the Open World Assumption.

This problem has become evident in the case of developers who have an in-
terest in taking advantage of the data available in existing knowledge graphs
but are not used to Semantic Web technologies. Instead, developers are famil-
iar with REST APIs as a resource-access way which hides details about the
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implementation of operations for resource management or how such resources
have been described according to the data models. To describe APIs, several
Interface Description Languages have been defined to document their domain,
functional and non-functional aspects. The OpenAPI Specification3 (OAS) is a
broadly adopted de facto standard for describing REST APIs in a programming
language-agnostic interface. OAS allows both humans and computers to under-
stand and interact with a remote service. Due to its wide adoption, OAS has a
big community behind, wich has provided tools to allow developers to generate
API documentation, server generation, mockup design, etc.

In this paper we describe additional work in the direction of making ontology-
based data available though REST APIs. We define a mapping specification
between OWL and OAS to facilitate the work of those who are interested in
using data represented by semantic technologies and have to face the challeng-
ing task of developing ontology-based applications. Our mapping also aims to
enhance adherence to the FAIR data principles [13] by facilitating: Findability,
as it provides a template for finding types of available resources in knowledge
graphs; Accessibility because it allows translating the ontology to an interface
that developers are used to; Interoperability because the mapping matches two
recommendations, the OWL W3C recommendation and OAS de facto standard;
and Reusability because the mapping also translates explicit and understand-
able data definitions available in the ontology and generates an HTML document
with the API details that may be published on the Web.

Our work has the following contributions: 1) A mapping specification between
OWL and OAS to provide ontology-based API definitions (Section 2); and 2)
A reference implementation to automatically transform OWL ontologies into
an OAS document according to our mapping specification (Section 3). We also
present work related to our approach in Section 4 and discuss conclusions and
future work in Section 5.

2 Mapping OWL to OAS

In this section we provide the details about our mapping specification. First, we
explain the methodology followed to generate the mapping. Then, we present a
summarized description of the main characteristics of the specification. Finally,
we give an example on how an OWL ontology is translated into OAS according
to our mapping specification.

2.1 Method for mapping generation

The method followed to generate the mapping included the following steps:

1. Manual analysis of the OWL constructs. We analyzed the constructs from
the OWL 2 Web Ontology Language [4]. We also analyzed the RDFS [1]
constructs and the XSD datatypes [8] that are used in OWL 2.

3 https://github.com/OAI/OpenAPI-Specification
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2. Manual analysis of the OAS definitions. We analyzed the definitions provided
by the OpenAPI specification v3.0.3.4

3. Manual generation of the mapping specification. Once the analysis of OWL
and OAS constructs and definitions had been completed, we selected the
OAS definitions which allow representing the OWL constructs. Then, we
wrote a specification document to describe the equivalences found. To show
how these equivalences could be implemented, we developed a sample OWL
ontology and its corresponding OAS representation. The mapping specifica-
tion and the examples are available online.5

2.2 Mapping definitions

We summarize below the main concepts of OAS that we use in this mapping:

1. A Schema Object allows defining input and output data types. For example,
we may specify objects such as Person, or any concept that has its own
attributes, primitives, or any expression to specify types of values.

2. A Component Object holds a set of reusable definitions of schemas, param-
eters, responses, etc. that may be referenced from somewhere in the API
definition. For example, a component may hold a Person schema definition.

3. A Reference Object allows linking to other components in the specification
instead of defining them inline. For example, to reuse the Person schema def-
inition we reference it from its definition specified in the Component Object.

4. A Path Object holds the resources exposed in an API. For example, the path
of the Person resource may be /persons. It contains Path Item Objects.

5. A Path Item Object describes the available operations (HTTP methods to
manage the resource) on a single path. For example, we may specify that
the /persons path allows the GET method.

Figure 1 illustrates these concepts with an example of a Person schema. Each
number in the figure corresponds to the number shown in the enumeration list
presented above. Table 1 describes the prefixes that we use throughout this pa-
per. Regarding the mapping specification details, we present them in three main
sets corresponding to classes and properties, restrictions, and boolean combina-
tions. Table 2 shows the similarities between OWL classes and properties and
OAS definitions.

In general, OWL classes are similar to a Schema Object that must be defined
as an object type. OWL object and data properties are similar to the Schema

Object’s properties and depending on the property type its value can be a data
type or an object. Also, when a property is functional it must be defined as
an array with 1 as the maximum number of array items. Additional details
about similarities between OWL and OAS data types are provided in our online
specification,6 including a naming strategy for Schema Objects and Paths. Each

4 http://spec.openapis.org/oas/v3.0.3
5 https://w3id.org/OWLToOAS
6 https://owl-to-oas.readthedocs.io/en/latest/mapping/#data-types 1
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Fig. 1. Example of OAS definitions: a) A Component Object which contains some
Schema Object definitions; b) A Path Object wich includes some Path Item Objects.

Table 1. Prefixes used in this document

Prefix Namespace

owl http://www.w3.org/2002/07/owl#
rdfs http://www.w3.org/2000/01/rdf-schema#
rdf http://www.w3.org/1999/02/22-rdf-syntax-ns#
xsd http://www.w3.org/2001/XMLSchema#
ex https://w3id.org/example#

Table 2. Classes and Properties Mapping

OWL OAS Implementation details

Classes

owl:Class Schema Object The Schema Object must be defined as a type: object in
the Component Object.

rdfs:subClassOf Schema Object
and allOf

The Schema Object must be defined in the same manner as
the owl:Class. The allOf field must also be included refer-
encing to the parent class defined as a Reference Object.

Properties

owl:DatatypeProperty properties Defined as a Schema Object’s property.
owl:ObjectProperty properties Defined as a Schema Object’s property.
rdfs:domain Schema Object Defined as the Schema Object where the property should

be defined.
rdfs:range type Defined as the property type value.
owl:FunctionalProperty maxItems The property must be defined as a type: array with 1 as

the maximum number of items (maxItems: 1).

OWL class has a Path Item Object (as shown in Figure 1). Depending on the
method used (GET, POST, PUT or DELETE), a class may be referenced as
part of the Response or Request Body.

Table 3 shows the similarities between OWL restrictions and OAS. In general,
properties must be defined as an array, except for properties with a specific value
restriction (owl:hasValue). If that is the case, the property must be defined as
default and it must specify its corresponding literal (for data properties) or its
individual URI value (for object properties). When a property is restricted to
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Table 3. Restrictions Mapping

OWL OAS Implementation details

owl:onProperty properties The restriction must refer to the property name where it
is applied.

owl:onClass Schema
Object

The restriction must refer to the schema name where it is
applied.

owl:hasValue default The restriction must be defined as a default property.
Depending on whether it is on a data or object property,
it will be a literal or an indvidual URI value.

owl:someValuesFrom type,
nullable

The property must be defined as a not nullable (nullable:
false) array (type: array). Depending on whether it is on
a data or object property the item’s type value will be the
restricted data type or Reference Object.

owl:allValuesFrom type,
nullable

The property must be defined as a nullable (nullable:
true) array (type: array). Depending on whether it is on
a data or object property the item’s type value will be the
restricted data type or Reference Object.

owl:minCardinality minItems The restriction must be defined as the minimum number
of array items (minItems).

owl:maxCardinality maxItems The restriction must be defined as the maximum number
of array items (maxItems).

owl:cardinality minItems
and
maxItems

The restriction must be defined as the same minimum
(minItems) and maximum (maxItems) number of array
items.

owl:minQualifiedCardinality minItems The restriction must be defined as the minimum number
of array items (minItems).

owl:maxQualifiedCardinality maxItems The restriction must be defined as the maximum number
of array items (maxItems).

owl:qualifiedCardinality minItems
and
maxItems

The restriction must be defined as the same minimum
(minItems) and maximum (maxItems) number of array
items.

owl:someValuesFrom or owl:allValuesFrom, a type of value must define the
type of array items as a data type or as a Reference Object. When a property
has a cardinality restriction, the maximum or minimum number of array items
should be adjusted accordingly. Note that we used a Close World Assumption
for translating the existential constructs because it is what developers expect
when inserting and retrieving instances from an API.

Table 4 presents the translation of OWL boolean combinations into OAS. In
general, these combinations may be applied to the Schema Object’s properties.
Depending on the combination, it is allowed to represent that a property value
must be compliant with all or any schema type, or that it must not be valid
against a certain schema. Also, a property may have one value included in an
enumeration list.

Table 5 summarizes the coverage of our mapping specification in terms of
SROIQ expressiveness, the description logic underlying OWL 2 DL. The map-
ping covers functional properties (F), concept negation (C), hierarchies (H), nom-
inal values (O), cardinality (N) and qualified cardinality restrictions (Q), and data
types (D). Role disjointness (R) and inverse properties (I) are not covered because
OAS does not have a similar definition to represent them. OAS can represent
unions (U), but we consider to be partially covered, as OWL allows defining
complex combinations that are not possible in OAS, like the union of the inter-
section between concepts. Similarly, the existential qualification expression (E)



6 P. Espinoza-Arias et al.

Table 4. Boolean combinations

OWL OAS Implementation details

owl:intersectionOf allOf The combination must be defined as allOf which validates the prop-
erty value against all the schemas.

owl:unionOf anyOf The combination must be defined as anyOf which validates the prop-
erty value against any (one or more) of the schemas.

owl:complementOf not The combination must be defined as not which validates that the
property value is not valid against the specified schema.

owl:oneOf enum The combination must be defined as enum which holds the possible
property values.

Table 5. Mapping OWLToOAS specification coverage (X= covered, - = partially cov-
ered, and x = not covered)

Expressivity Coverage Expressivity Coverage

F X O X
E - I x
U - N X
C X Q X
H X D X
R x

is also partially covered in our mapping, except when complex combinations are
included in OWL.

2.3 Mapping example

To showcase our mapping, we provide a code snippet of an example ontology
and its OAS representation. The OAS definitions are provided in YAML and
the OWL constructs in Turtle. Listing 1.1 presents an ontology snippet with the
Professor class and its data and object properties, e.g. Professor has a degree
(hasDegree) from a list of values. Professor is subclass of Person, thus it inherits
all the restrictions from the Person. Restrictions defined over properties, e.g. a
Professor belongsTo a Department, must be also taken into account as part of
the Professor class definition.

1 ex : P ro f e s s o r rd f : type owl : Class ;
2 r d f s : subClassOf : Person ,
3 [ r d f : type owl : R e s t r i c t i o n ;
4 owl : onProperty : hasDegree ;
5 owl : someValuesFrom [ rd f : type owl : Class ;
6 owl : oneOf (<https :// w3id . org /example/ r e sou r c e /Degree/MS>
7 <https :// w3id . org /example/ r e sou r c e /Degree/PhD>) ] ] .
8 ex : Person rd f : type owl : Class ;
9 r d f s : subClassOf [ rd f : type owl : R e s t r i c t i o n ;

10 owl : onProperty : address ;
11 owl : maxQual i f i edCard ina l i ty ”1”ˆˆ xsd : nonNegat iveInteger ;
12 owl : onDataRange xsd : s t r i n g ] ;
13 r d f s : comment ”A human being regarded as an i n d i v i d u a l . ”@en ;
14 r d f s : l a b e l ”Person”@en .
15 ex : belongsTo rd f : type owl : ObjectProperty ;
16 r d f s : domain : P ro f e s s o r ;
17 r d f s : range : Department ;
18 r d f s : l a b e l ” be longs to ”@en .

Listing 1.1. Ontology code excerpt
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Listing 1.2 shows the OAS definitions corresponding to the previous ontology.
This snippet was obtained from the YAML generated by our mapping implemen-
tation (described in Section 3). The Component Object includes the Professor
schema (a Schema Object) which represents the Professor class including its
own properties and those inherited from the Person.

1 components :
2 schemas :
3 Pro f e s s o r :
4 type : ob j e c t
5 d e s c r i p t i o n : A u n i v e r s i t y academic .
6 p r o p e r t i e s :
7 address :
8 i tems :
9 type : s t r i n g

10 maxItems : 1
11 n u l l a b l e : t rue
12 type : array
13 belongsTo :
14 i tems :
15 $ r e f : ’#/components/ schemas/Department ’
16 n u l l a b l e : t rue
17 type : array
18 hasDegree :
19 i tems :
20 enum :
21 − <https :// w3id . org /example/ r e sou r c e /Degree/MS>
22 − <https :// w3id . org /example/ r e sou r c e /Degree/PhD>
23 format : u r i
24 type : s t r i n g
25 type : array

Listing 1.2. OAS snippet of a Component Object that includes the Profesor schema

Listing 1.3 shows the path assigned to Professor in the API. This Path

Item defines a GET operation, including a successful response which delivers a
Professor schema:

1 paths :
2 / p r o f e s s o r s :
3 get :
4 d e s c r i p t i o n : Gets a l i s t o f a l l i n s t a n c e s o f P ro f e s s o r
5 r e sponse s :
6 200 :
7 content :
8 a p p l i c a t i o n / j son :
9 schema :

10 i tems :
11 $ r e f : ’#/components/ schemas/ Pro fe s sor ’
12 type : array

Listing 1.3. OAS snippet of a Path Item Object generated from the OWL ontology

3 Mapping implementation

We implemented our mapping specification by extending the Ontology Based
APIs Framework (OBA) [3], an existing tool for helping users create REST
APIs from ontologies. OBA generates a server with a REST API based on an
OpenAPI specification, and includes the automated management of SPARQL
query templates for common operations; but has a limited support for OWL
constructs (mostly limited to rdfs:Class, rdfs:domain and rdfs:range).
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We extended the OBA Specification Generator module, which takes the on-
tology code and generates the OAS document in YAML, to support our mapping
specification. It is worth mentioning that OBA does not check for consistency or
syntactic correctness of an ontology, assuming that it has been evaluated before.
The implementation release is available at the OBA’s GitHub repository.7

Our implementation allows generating API definitions for ontologies of dif-
ferent sizes with a reasonable overhead. We tested our implementation in an
average laptop (Intel Core i7 2.6Ghz with 16 GB of RAM) with the example
ontology we defined to illustrate our mapping specification,8 an ontology which
contains 119 logical axioms, including 36 class axioms, 42 object property ax-
ioms, and 37 data property axioms. The corresponding OAS was generated in 6
seconds. We also tested the DBPedia ontology,9 which contains over 6000 logical
axioms, including over 700 class axioms, over 2000 object property axioms, and
over 2000 data property axioms. The DBpedia OAS took 64 seconds to build. In
both cases, we generated only GET operation for each path in the specification.

4 Related Work

Several efforts have attempted to promote and facilitate Semantic Web technol-
ogy adoption by web developers, providing Web APIs to allow developers access-
ing and managing data from knowledge graphs. Specifications like the Linked
Data API10 (LDA), the Linked Data Platform (LDP) [9], and the Triple Pat-
tern Fragments (TPF) [11] have been proposed to describe how to define such
interfaces. LDA details how to define read-only interfaces to Linked Data, LDP
describes how to design read/write HTTP interfaces to RDF data, and TFP de-
fines read-only interfaces to specific triples from a dataset to provide an efficient
client-side querying execution. However, they do not use ontologies as templates
for the API generation, hence developers have to deal with them to manage
APIs. Works like BASIL [2] and GRLC [7] have been proposed to generate Web
APIs on top of SPARQL endpoints; both generate Swagger specifications for the
resulting APIs. However, these specifications are generated from the SPARQL
queries, GitHub query repositories and SPARQL decorator notation which have
to be defined manually by developers. Thanks to our mapping implementation,
a full OAS can be generated from an ontology without human intervention.

Other recent approaches focus on generating API definitions from ontolo-
gies. In this regard, two efforts have recently appeared: the Ontology Based
APIs Framework (OBA) [3] (which we extended with our mapping implemen-
tation) and the OWL2OAS Converter.11 Both efforts generate OAS documents
from OWL, and were efforts developed in parallel. The main differences between
them and our implementation are summarized in Table 6. On the one hand, OBA

7 https://github.com/KnowledgeCaptureAndDiscovery/OBA/releases/tag/3.4.0
8 http://tiny.cc/3eyjsz
9 https://wiki.dbpedia.org/services-resources/ontology

10 https://code.google.com/archive/p/linked-data-api
11 https://dev.realestatecore.io/OWL2OAS
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Table 6. Comparison ontology-based APIs approaches (X= included, x = not included,
- = less coverage, and + = more coverage of OWL constructs)

Proposal OWL2OAS OBA Our approach

OWL to OAS mapping available X X X
Expressiveness + - ++

REST Server X X X

provides an initial mapping to describe details on translation of OWL constructs
into OAS. However, the expressiveness covered by OBA is basic; restricted to
the translation of classes, subclasses, object and data properties with singleton
ranges. Despite its basic expressiveness, OBA provides extra functionality for im-
plementing the API as a REST API server which allows validating requests from
users, generating tests for API calls, etc. On the other hand, OWL2OAS does not
include a specification of its coverage from OWL into OAS. By manually inspect-
ing the OWL2OAS’s code repository we can see that, in addition to OBA’s cover-
age, it includes support for functional properties, class and property restrictions
(owl:onClass, owl:onProperty), existential and some cardinality restrictions.
However, it does not support specific values (owl:hasValue) and boolean combi-
nations (owl:oneOf, owl:unionOf, owl:intersectionOf, owl:complementOf)
which we cover (partially) in our mapping.

Our contribution proposes a detailed mapping between OWL and OAS,
aimed at facilitating a specification, including examples on how to transform
an ontology into an API definition, and an implementation to automatically
generate an OAS document based on this mapping. Our mapping and its imple-
mentation have been built on top of OBA, reusing the work previously done.

5 Conclusions and Future Work

In this work, we proposed a mapping specification to translate OWL ontologies
into OAS. This specification facilitates the creation of REST APIs that enables
developers to access ontology-based data. Our mapping includes examples and
details on how to define each OWL construct as an OAS definition using a Close
World Assumption. Since manually editing OAS definitions can be tedious, time
consuming, and error-prone, we extended the Ontology Based API framework
to automatically translate OWL constructs into OAS. However, not all OWL
constructs are covered in our specification, because they do not have an equiv-
alent OAS definition. For example we cannot represent the equivalence between
classes or restrictions that include complex unions and intersections.

As future work, we plan to extend OBA to improve the schema and path
naming strategy used in the API. We would like to generate these names from
the ontology class and property labels instead of the URI fragments as OBA
currently does. We also plan to use the smartAPI specification [14], an extended
version of OAS for defining key API metatada, to annotate our resulting APIs to
maximize their FAIRness. This way, API providers may publish their APIs into
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the smartAPI registry to make them more discoverable, connected and reusable.
Finally, given the limitations of OAS to represent some OWL constructs, we
will explore how to combine our API definitions with the Shapes Constraint
Language (SHACL) [5]. SHACL was created for data validation and therefore
allows defining the restrictions that data from knowledge graphs must fulfill.
With SHACL, those OWL constructs that are not covered in our mapping may
be defined as shapes to validate the requests received by an API.
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