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ENIGMA and global neuroscience: a decade of
large-scale studies of the brain in health and
disease across more than 40 countries

Abstract
This review summarizes the last decade of work by the ENIGMA (Enhancing NeuroImaging Genetics through Meta
Analysis) Consortium, a global alliance of over 1400 scientists across 43 countries, studying the human brain in health
and disease. Building on large-scale genetic studies that discovered the first robustly replicated genetic loci associated
with brain metrics, ENIGMA has diversified into over 50 working groups (WGs), pooling worldwide data and expertise
to answer fundamental questions in neuroscience, psychiatry, neurology, and genetics. Most ENIGMA WGs focus on
specific psychiatric and neurological conditions, other WGs study normal variation due to sex and gender differences,
or development and aging; still other WGs develop methodological pipelines and tools to facilitate harmonized
analyses of “big data” (i.e., genetic and epigenetic data, multimodal MRI, and electroencephalography data). These
international efforts have yielded the largest neuroimaging studies to date in schizophrenia, bipolar disorder, major
depressive disorder, post-traumatic stress disorder, substance use disorders, obsessive-compulsive disorder, attention-
deficit/hyperactivity disorder, autism spectrum disorders, epilepsy, and 22q11.2 deletion syndrome. More recent
ENIGMA WGs have formed to study anxiety disorders, suicidal thoughts and behavior, sleep and insomnia, eating
disorders, irritability, brain injury, antisocial personality and conduct disorder, and dissociative identity disorder. Here,
we summarize the first decade of ENIGMA’s activities and ongoing projects, and describe the successes and challenges
encountered along the way. We highlight the advantages of collaborative large-scale coordinated data analyses for
testing reproducibility and robustness of findings, offering the opportunity to identify brain systems involved in clinical
syndromes across diverse samples and associated genetic, environmental, demographic, cognitive, and psychosocial
factors.

Introduction
The ENIGMA (Enhancing NeuroImaging Genetics

through Meta Analysis) Consortium is a collaboration of
more than 1400 scientists from 43 countries studying the
human brain. ENIGMA started 10 years ago, in 2009, with
the initial aim of performing a large-scale neuroimaging
genetic study, and has since diversified into 50 working
groups (WGs), pooling worldwide data, resources and
expertise to answer fundamental questions in neu-
roscience, psychiatry, neurology, and genetics (Fig. 1

shows a world map of participating sites, broken down by
working group). Thirty of the ENIGMA WGs focus on
specific psychiatric and neurologic conditions. Four study

Q1different aspects of development and aging. Others study
key transdiagnostic constructs, such as irritability, and the
importance of Q2evolutionarily interesting genomic regions
in shaping human brain structure and function. Central to
the success of these Q3WGs are the efforts of dedicated
methods development groups within ENIGMA. There are
currently 12 WGs that develop and disseminate multi-
scale and ‘big data’ analysis pipelines to facilitate harmo-
nized analyses using genetic and epigenetic data,
multimodal (anatomical, diffusion, functional) magneticCorrespondence: Paul M. Thompson (pthomp@usc.edu)
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resonance imaging (MRI) and spectroscopy (MRS) mea-
sures, in combination with genetic and epigenetic data,
and data from electroencephalography (EEG).Q4

The Consortium has been a formidable force for dis-
covery and innovation in human brain imaging, sup-
porting more than 200 active studies. The disorder-
specific WGs have published the largest neuroimaging
studies to date in schizophrenia (SCZ; total N= 9572;
4474 cases)1, bipolar disorder (BD; total N= 6503; 2447
cases)2, major depressive disorder (MDD; total N=
10,105; 2148 cases)3, post-traumatic stress disorder
(PTSD; total N= 1868; 794 cases)4, substance use dis-
orders (SUD; total N= 3240; 2140 cases)5, obsessive-
compulsive disorder (OCD; total N= 3665; 1905 cases)6,
attention-deficit/hyperactivity disorder (ADHD; total N=
4180; 2246 cases)7, autism spectrum disorder (ASD; total
N= 3222; 1571 cases)8, epilepsy (N= total 3876; 2149
cases)9, and 22q11.2 deletion syndrome (22q11DS; total
N= 944; 474 cases)10. Key results of these studies are
summarized in Table 1. Building on this work, the focus
of the ENIGMA disorder-specific WGs now goes beyond
traditional diagnostic boundaries. As these first large-scale

studies are being completed, ENIGMA is beginning to
identify shared and distinct neuroimaging patterns in
brain disorders with known genetic or clinical over-
lap11,12, and to delineate the role of transdiagnostic risk
factors (e.g., childhood trauma) and clinical phenomena
(e.g., suicidal thoughts and behaviors). In addition,
ENIGMA’s genetic studies are now analyzing imaging and
genetics data from more than 50,000 people to uncover
genetic markers that most robustly associated with brain
structure and function, or imaging derived neurobiologi-
cal traits related to various disease conditions13–16.
As we detail in this review, the ENIGMA Consortium

has made multiple, seminal contributions to neuroscience
and psychiatry, including (a) characterization of robust
neuroimaging profiles for various brain disorders, (b)
standardization of metrics used to assess clinical symp-
toms of patients across multiple research sites, and (c) use
of dimensional approaches that go beyond the
case–control comparisons of individuals with categorical
diagnoses, and further enable the investigation of specific
genetic, and environmental features or neurobiological
markers associated with disorder risk and treatment

Fig. 1 World Map of ENIGMA’s Working Groups. The ENIGMA Consortium has grown to include over 1400 participating scientists from over 200
institutions, across 43 countries worldwide. ENIGMA is organized as a set of 50 WGs, studying 26 major brain diseases (see color key). Each group
works closely with the others and consists of worldwide teams of experts in each brain disorder as well as experts in the major methods used to
study each disorder. The diseases studied include major depressive disorder, bipolar disorder, schizophrenia, substance use disorder, post-traumatic
stress disorder, attention-deficit/hyperactivity disorder, obsessive-compulsive disorder, and autism spectrum disorder, and several neurological
disorders, including Parkinson’s disease, epilepsy, ataxia, and stroke. In recent years, new WGs were created that grew into worldwide consortia on
epilepsy (Whelan9), eating disorders (King104), anxiety disorders (Groenewold107), antisocial behavior, and infant neuroimaging.
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Table 1 A Selection of key findings from ENIGMA’s Working Groups, along with key papers and current sample sizes.Q5

Working group Number of datasets Total N (patient N) Age range
(in years)

Relevant publications Main findings

Clinical

22Q11DS 14 863 (533) 6–56 Villalon-Reina, Mol
Psychiatr, 2019; Sun10

Widespread reductions in diffusivity, pronounced in
regions with major cortico-cortical and cortico-thalamic
fibers; thicker cortical gray matter overall, but focal
thickness reduction in temporal and cingulate cortex;
cortical surface area showed pervasive reductions; lower
cortical surface area in individuals with larger
microdeletion; 22q-related psychosis associated with
lower cortical thickness and significantly overlapped with
findings from ENIGMA-SCZ group.

Addiction/SUDs 118 18,823 (6,592) 7–68 Mackey5; Conrod86;
Mackey84

Common neural substrate shared in dependence;
differential patterns of regional volume as biomarkers of
dependence on alcohol and nicotine; lower volume or
thickness observed, with greatest effects associated with
alcohol use disorder; insula and medial orbitofrontal
cortex affected, regardless of dependence.

ADHD 37 4180 (2246) 4–63 Hoogman7; Klein47; Zhang-
James94; Hess92;
Hoogman91

Reduction in bilateral amygdala, striatal, and hippocampal
volumes in the ADHD population, especially in children;
lower cortical surface area values found in children with
ADHD, but not in adolescents or adults; lower surface area
associated with ADHD symptoms in the general
population in childhood; genetic association studies
suggest that genes involved in neurite outgrowth play a
role in findings of reduced volume in ADHD; gene-
expression studies imply that structural brain alterations in
ADHD can also be explained in part by the differential
vulnerability of these regions to mechanisms mediating
apoptosis, oxidative stress, and autophagy.

ASD 54 3583 (1774) 2–64 Postema97; van Rooij8 Altered morphometry in the cognitive and affective parts
of the striatum, frontal cortex and temporal cortex in ASD.

BD 44 11,100 (3100) 8–86 Favre69; Nunes23; Hibar,
Mol Psychiatr, 2017; Hibar68

Volumetric reductions in hippocampus and thalamus and
enlarged lateral ventricles in patients; thinner cortical gray
matter in bilateral frontal, temporal and parietal regions;
strongest effects on left pars opercularis, fusiform gyrus
and rostral middle frontal cortex in BD.

Eating Disorders 28 anorexia nervosa (AN); 12
bulimia nervosa (BN)

2531 (897 AN; 307 BN) 10–50 AN;
12–46 BN

Walton48 Signs of inverse concordance between greater thalamus
volume and risk for anorexia nervosa (AN); variation in
gene DRD2 significantly associated with AN only after
conditioning on its association with caudate volume;
genetic variant linked to LRRC4C reached significance
after conditioning on hippocampal volume.

Epilepsy 24 3876 (2149) 18–55 Whelan9 Patients with IGE showed volume reductions in the right
thalamus and lower thickness in the bilateral precentral
gyri; both MTLE subgroups showed volume reductions in
the ipsilateral hippocampus, and lower thickness in
extrahippocampal cortical regions, including the
precentral and paracentral gyri; lower subcortical volume
and cortical thickness were associated with a longer
duration of epilepsy in the all-epilepsies and right MTLE
groups.

HIV 12 1044 (all patients) 22–81 Nir124; Nir, MICCAI201;
Fouche, OHBM, 2015; Nir,
CNS, 2015

In the full group, subcortical volume associations
implicated the limbic system: lower current CD4+ counts
were associated with smaller hippocampal and thalamic
volumes; a detectable viral load was associated with
smaller hippocampal and amygdala volumes; limbic
effects were largely driven by participants on cART; in
subset of participants not on cART, smaller putamen
volumes were associated with lower CD4+ count.

MDD 38 14,249 (4379) 10–89 van Velzen67; Tozzi75;
Han72; Frodl74; Renteria
2017; Schmaal3; Schmaal70;
Ho137

Significantly lower hippocampal volumes; thinner
orbitofrontal cortex, anterior and posterior cingulate,
insula and temporal lobes cortex in adult MDD patients;
lower total surface area and regional reductions in frontal
regions and primary and higher-order visual,
somatosensory and motor areas in adoloescent MDD
patients; greater exposure to childhood adversity
associated with smaller caudate volumes in females,
independent of MDD; patients reporting suicidal plans or
attempts showed a smaller ICV volume compared to
controls.

OCD 38 3665 (1905) 5–65 Boedhoe, Front
Neuroinform, 2019; Hibar45;
Boedhoe6; Boedhoe88

Subcortical abnormalities in pediatric and adult patients;
pallidum (bigger) and hippocampus (smaller) key in
adults, and thalamus (bigger) key in (unmedicated)
pediatric group; parietal cortex consistently implicated
both in children and adults; more widespread cortical
thickness abnormalities in medicated adults, and more
pronounced surface area deficits (mainly in frontal
regions) in medicated pediatric OCD patients.

PTSD 16 3118 (1288) 17–85 Dennis76; Salminen80;
Logue4; O’Leary78;
Saemann, OHBM, 2018

Significantly smaller hippocampi, on average, in
individuals with current PTSD compared with trauma-
exposed control subjects, and smaller amygdalae.
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outcome. The large scale and inclusivity of these ana-
lyses—in terms of populations, sample sizes, numbers of
coordinating centers, and diversity of imaging and
genetic data—has been instrumental for demonstrating
robust associations between clinical factors and brain
alterations, and for stratifying patients with the same
diagnosis according to differential treatment out-
comes10,17. Thus, a valuable aspect of the existing
ENIGMA studies is the ability to identify the most
robust pattern of non-invasively measured neurobiolo-
gical features involved in clinical syndromes across

multiple samples that are more representative of the
global population. This also results in robust effect size
estimates, without the confounds of literature-based
meta-analyses based on published data with possible
publication bias (as noted in Kong et al., in prep)18.
These data also provide a unique opportunity to assess
important sources of disease heterogeneity, including
key genetic, environmental, demographic, and psycho-
social factors. Here, we provide a synopsis of the first
decade of ENIGMA’s activities and highlight the suc-
cesses and challenges encountered along the way.

Table 1 continued

Working group Number of datasets Total N (patient N) Age range
(in years)

Relevant publications Main findings

Schizophrenia 39 9572 (4474) 18–77 Guadalupe, 2019 (in press);
Holleran57; van Erp1;
Kelly56; Walton62; Walton63;
Kochunov66; van Erp, Mol
Psychiatr, 2015

Positive symptom severity was negatively related to
bilateral STG thickness; widespread thinner cortex and
smaller surface area, largest effect sizes in frontal and
temporal lobe regions; smaller hippocampus, amygdala,
thalamus, accumbens and intracranial volumes; larger
pallidum and lateral ventricle volumes; widespread
reductions in FA, esp. in anterior corona radiata and
corpus callosum; higher mean and radial diffusivity; left
MOFC thickness significantly associated with negative
symptom severity; link between prefrontal thinning and
negative symptom severity in schizophrenia.

CNV 37 16,889 (24 16p11.2 distal and 125
15q11.2 CNV carriers)

3–90 van der Meer100; Sonderby,
Mol Psychiatr53

16p11.2 distal CNV: Negative dose-response associations
with copy number on intracranial volume and regional
caudate, pallidum and putamen volumes. 15q11.2 CNV:
Decrease in accumbens and cortical surface area in
deletion carriers and negative dose response on cortical
thickness.

Non-clinical

EEG 5 8425 5–73 Smit40 Identified several novel genetic variants associated with
oscillatory brain activity; replicated and advanced
understanding of previously known genes associated with
psychopathology (i.e., schizophrenia and alcohol use
disorders); these psychopathological liability genes affect
brain functioning, linking the genes’ expression to specific
cortical/subcortical brain regions.

GWAS 34 22,456 3–91 Satizabal14; Grasby13; Hibar,
Nature Commun, 2017;
Adams, Nature Neurosci,
2016; Hibar25

Over 200 genetic loci where common variation is
associated with cortical thickness or surface area; over 40
common genetic variants associated with subcortical
volumes.

Laterality 99 17,141 3–90 de Kovel71; Kong90 (in
press); Postema97; Kong153;
Guadalupe, BIB, 2017

Average patterns of left-right anatomical asymmetry of
the healthy brain were mapped, as regards cortical
regional surface areas, thicknesses, and subcortical
volumes; fronto-occipital gradient in cortical thickness
asymmetry was found, with frontal regions generally
thicker on the left, and occipital regions on the right;
asymmetries of various structural measures were
significantly heritable, indicating genetic effects that differ
between the two sides; age, sex and intracranial volume
affected some asymmetries, but handedness did not;
disorder case–control analyses revealed subtle reductions
of regional cortical thickness asymmetries in ASD, as well
as altered orbitofrontal surface area asymmetry; little
evidence for altered anatomical asymmetry was found in
MDD; pediatric patients with OCD showed evidence for
altered asymmetry of the thalamus and pallidum.

Lifespan 91 14,904 healthy individuals 2–92 Dima et al., 2015; Frangou
et al., 2019 (in prep)

Thickness in almost all cortical regions decreased
prominently in the first two to three decades of life, with
an attenuated or plateaued slope afterwards; exceptions
to this pattern were entorhinal and temporopolar cortices
whose thickness showed an attenuated inverse U-shaped
relation with age, and anterior cingulate cortex, which
showed a U-shaped association with age; age at peak
cortical thickness was 6–7 years for most brain regions.

Plasticity 36 10,199 (2242) 6–97 Brouwer38; Brouwer39 Heritability estimates of change rates were generally
higher in adults than in children suggesting an increasing
influence of genetic factors explaining individual
differences in brain structural changes with age; for some
structures, the genetic factors influencing change were
different from those influencing the volume itself,
suggesting the existence of genetic variants specific for
brain plasticity.
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History
ENIGMA was launched in December 2009 to help

‘break the logjam’ in genetic studies of the brain. At the
time, most neuroimaging genetics studies were assessing
historically candidate genetic variations, mostly in very
small samples of a few tens to hundreds of participants
(e.g., COMT, 5-HTTLPR, BDNF). These studies typically
reported ‘candidate gene’ effects that did not replicate
when tested in independent cohorts19–21. It became
apparent that very large numbers of genetic loci con-
tributed to variation in complex neurological or psychia-
tric traits, including imaging-derived brain measures—
each with a very small effect size—and only a few genetic
loci accounted for more than 1% of the variance in any
complex brain condition or measure22. Thus, scientists
began to recognize the need to pool multiple datasets
worldwide to perform better-powered studies of these
traits. In response, the ENIGMA Consortium’s initial plan
was to merge two ‘big data’ sources—neuroimaging and
genetics—with the aim of discovering the impact of
genetic factors on brain systems, to determine whether
these genetic factors underlie manifestation of disorders
within the brain, and to identify diagnostic and prognostic
neuroimaging biomarkers. A further goal was to improve
on previous literature-based meta-analyses by using har-
monized processing and analysis protocols on an unpre-
cedented scale. This was the impetus that launched
ENIGMA’s early studies.
In 2014, the NIH Big Data to Knowledge (BD2K) pro-

gram awarded a consortium grant to ENIGMA with seed
funding for WGs on nine disorders: SCZ, BD, MDD,
OCD, ADHD, ASD, SUD, 22q11DS, and the effects of the
human immunodeficiency virus (HIV) on the brain. This
support led to the largest neuroimaging studies for the
nine targeted disorders, with results reported in over 50
manuscripts. These initial successes provided the driving
force to establish an additional 21 disease WGs (see
Working Group chart, Fig. 2).
Following the model established by the Psychiatric

Genomics Consortium (PGC), which emphasized har-
monization of genomic analysis protocols across sites, the
ENIGMA Consortium created harmonized protocols to
analyze brain structure and function, along with genetic,
and clinical data across its WGs. Instead of centralizing
data, ENIGMA opted to work as a ‘distributed con-
sortium’, asking groups to run standardized protocols
themselves, rather than the approach used in the PGC,
where data are centralized. At the time, ENIGMA design
was important for the rapid acceptance of the consortium
in the field, as it made contribution very easy; further, the
memoranda of understanding provided the basic guide-
lines for the trusted collaborative networks to develop. In
the meantime—with views on data sharing having chan-
ged quite considerably—many ENIGMA WGs now also

share (derived) individual data, allowing for more in-
depth analyses.
In ENIGMA’s genetic studies, many participating cen-

ters use different genotyping chips, so data were first
imputed to common genomic references (such as the

Fig. 2 ENIGMA’s Working Group Flowchart. ENIGMA’s working
groups are divided into technical groups that work on testing
harmonized methods, and clinical groups that study different disorders
and conditions across psychiatry and neurology, as well as some
behaviors (e.g., schizotypy and antisocial behaviors). The use of
harmonized analysis methods across all the working groups has enabled
cross-disorder comparisons (e.g., in the affective/psychosis spectrum of
depression to bipolar disorder to schizophrenia), and transdiagnostic
analyses of risk factors such as childhood trauma across a number of
disorders (such as major depressive disorder (MDD) and post-traumatic
stress disorder (PTSD)). Several working groups, such as brain trauma and
anxiety, consist of several subgroups examining subtypes (e.g., panic
disorder or social anxiety), and allow analyses of overlap and differences
(e.g., between military and civilian brain trauma).

Thompson et al. Translational Psychiatry Page 5 of 26
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1000 Genomes reference panel), allowing each partici-
pating site to perform the same association tests between
brain measures and genetic variation at over 10 million
loci across the genome. Furthermore, the ENIGMA
Consortium standardized procedures for the extraction of
brain metrics (such as cortical thickness, cortical surface
area, and subcortical volume) from raw neuroimaging
data, implemented consensus protocols for data quality
control and outlier handling, and pioneered new
meta-analytic methods for the analysis of aggregated
statistical information (http://enigma.ini.usc.edu/
protocols/). ENIGMA’s meta-analyses estimated the size
and precision of the effects after pooling evidence from
multiple cohorts, and they also ranked the neuroimaging
effect sizes of findings emerging from case–control
comparisons, thereby setting the stage for deeper, sec-
ondary analyses aiming to explore potential moderators of
psychiatric and neurological disease. More recently, many
ENIGMA groups have moved beyond cohort level meta-
analyses to pooled, or ‘mega’-analyses (Using brainQ6 volu-
metric data from ENIGMA’s OCD, ADHD, and ASD
working groups, Boedhoe et al.12 compared meta-analysis
to mega-analyses that model site or cohort effects as
random effects, showing broad agreement. Mega-analyses
allow more sophisticated statistical adjustments as they
pool more information across cohorts; meta-analyses tend
to be more efficient when ethical, legal or logistic con-
straints govern or restrict individual-level data transfer
(e.g., genome-wide genetic data).), where anonymized and
unidentifiable individual-level data are aggregated in a
central location, allowing more flexible statistical designs,
such as machine learning analyses23, reliable estimation of
interaction effects, and examination of polygenic risk
scores. The type and amount of data transferred for each
analysis is chosen pragmatically for each study. Dis-
tributed analyses promote scientific engagement from
many groups worldwide and take advantage of distributed
computing resources that scale up as the network grows;
here the data transferred is mainly aggregate measures
such as quality control metrics and the statistical metrics
derived from agreed-upon analytical tests. On the other
hand, the centralized analyses are preferable when a
variable of interest is sparsely distributed across sites, (e.g.,
individuals with 22q11DS exhibiting psychotic symptoms)
or when a specific method is being developed, and com-
putational power or expertise is available at only a few
sites; here the data transferred usually include uni-
dentifiable derived imaging metrics (e.g., hippocampal
volume) and demographic or clinical information (age at
scan, sex, diagnostic status, etc.); however, this form of
analysis may limit participation and requires individual
data transfer agreements with participating sites. We note,
because of these required agreements with potentially
clinically sensitive patient information, and the project-

specific design of the ‘centralized’ approaches, ENIGMA
does not curate a database for repeated or open access,
and each cohort PI approves of each project for which
they contribute data.

ENIGMA’s genetic studies
Uncovering the genetic basis of brain morphometric
variation
The first demonstration of the value of the ENIGMA

approach was the identification of genetic loci associated
with variation in subcortical volumes including the cau-
date, putamen, and hippocampus (see Fig. 3)14,24,25. These
genome-wide association studies (GWAS) yielded intri-
guing new leads regarding the genetic architecture of the
human brain that were only possible because ENIGMA
afforded increased power to detect subtle effects. More
recently, ENIGMA identified more than 200 individual
loci that significantly contribute to variation in brain
measures, with p-values reaching 10−180; each single locus
accounted for only 0.1–1% of phenotypic variance, but up
to 20% of the variance in aggregate. For this effort
ENIGMA had partnered with the CHARGE Consortium
and UK Biobank on a series of studies of 70 cortical
measures, including regional cortical thickness and sur-
face area13. These discoveries resulted in an annotated
atlas of common genetic variants that contribute to
shaping the human cerebral cortex. Of particular interest,
we found that genetic loci affecting brain morphology
show enrichment for developmentally regulated genes13

and human-specific regulatory elements26,27. Ongoing
efforts are beginning to map these genetic effects at a
finer-grained spatial resolution using shape analysis, sur-
face- and voxel-based analyses28–31. Moving beyond the
mass univariate methods, which analyze each brain
measure separately, ENIGMA has begun to use multi-
variate methods to meet the challenge of quantifying the
complex relationships between brain networks—or ‘con-
nectomes’—and the genome32–34.
Current ENIGMA sample sizes (which now exceed

50,000) are sufficiently large to identify genetic associa-
tions at a pace comparable to that of GWAS for other
phenotypes. In a recent analysis, Holland35 contrasted
rates of discovery of genetic loci by ENIGMA and the
PGC and noted the distribution of effect sizes for some
brain measures (e.g., putamen volume) may indeed be
enriched for slightly larger effects compared to behavioral
traits (see also Le and Stein36 and Franke et al.37). Still, a
central understanding gained from the ENIGMA asso-
ciation screens is that neuroimaging genetics studies—just
like analyses of behavioral measures, require tens (perhaps
hundreds) of thousands of participants to obtain robust
and reproducible effects of common polymorphisms.
Most individual effect sizes are very small explaining
<0.2% of variance, as for other complex human traits.
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GWAS of multiple imaging measures may offer a way to
parcellate the brain into clusters or sectors with over-
lapping genetic drivers, perhaps boosting the power to
discover genetic loci, by aggregating regions based on
their genetic correlation.

Uncovering the genetic basis of brain change
The quest to discover genetic loci that modulate brain

development and aging led to the launch of the ENIGMA-
Plasticity WG38, which uses longitudinal brain imaging

data from 36 cohorts worldwide to estimate rates of brain
growth or atrophy, and performs GWAS to find genetic
markers that may influence these rates of change. The
ENIGMA-Plasticity WG has established the heritability of
brain changes over time and has shown that distinct
genetic factors influence regional brain volumes and their
rate of change, implying the existence of genetic variants
specifically associated with change39. The WG is further
investigating how closely developmental and aging-related
genes overlap, and how they overlap with genetic loci that

Fig. 3 Genetic Influences on brain structure: effects of common and rare genetic variants. ENIGMA’s large-scale genetic analyses study the
effects of both common and rare genetic variants on brain measures. a A series of progressively larger genome-wide association studies have
revealed over 45 genetic loci associated with subcortical structure volumes (Hibar25, Satizabal14) and over 200 genetic loci associated with cortical
thickness and surface area Grasby13. The Manhattan plots here (adapted from Hibar25, show the genome (on the x-axis) and the evidence for
association (as a logarithm of the p-value, on the y-axis) for each common genetic variant (or SNP) with the volume of each brain structure shown.
b Genetics of Hippocampal Volume. A subsequent genome-wide association study (GWAS) of 33,536 individuals discovered six independent loci
significantly associated with hippocampal volume, four of them novel. Of the novel loci, two lie within key genes involved in neuronal migration and
microtubule assembly (ASTN2 and MAST4) (Hibar 2017). An interactive browser, ENIGMA-Vis—http://enigma-brain.org/enigmavis—can be used to
navigate ENIGMA’s genomic data. Initially started as a web page to plot ENIGMA summary statistics data for a specific genomic region, ENIGMA-Vis
grew over the years into a portal with tools to query, visualize, and navigate the effects, and relate them to other GWAS (Shatokhina197). c In
complementary work on rare variants by the ENIGMA-CNV Working Group, Sønderby and colleagues (2018) examined effects of the 16p11.2 distal
CNV that predisposes to psychiatric conditions including autism spectrum disorder and schizophrenia. ENIGMA (including the 16p11.2 European
Consortium) and deCODE datasets were combined to discover negative dose-response associations with copy number on intracranial volume and
regional caudate, pallidum and putamen volumes—suggesting a neuropathological pattern that may underlie the neurodevelopmental syndromes.
The agreement across datasets is apparent in the Forest plots for each brain region. [Data adapted, with permission from the authors and publishers].
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are associated with risk for development of psychiatric
and neurological disease throughout life. Overall, the high
rate of discovery driven by ENIGMA is offering initial
glimpses of the overlap among genetic drivers of brain
change throughout life with specific markers of brain
structure and function.

Uncovering the genetic basis of brain functional variation
The ENIGMA Consortium has also carried out genetic

association studies of EEG-derived phenotypes. The first
study40 of the EEG WG performed the largest GWAS to
date of oscillatory power across a range of frequencies
(delta 1–3.75 Hz, theta 4–7.75 Hz, alpha 8–12.75 Hz, and
beta 13–30 Hz) in 8425 healthy subjects. They identified
several novel genetic variants associated with alpha
oscillatory brain activity that were previously linked to
psychiatric disorders.

Characterizing the association between brain morphology
and disease-risk genes
In an early ENIGMA study, minimal overlap was detected

between schizophrenia-related and brain-related genetic
loci37. These questions were revisited with Bayesian mod-
els41 and LD-score regression methods42 which identified
stronger overlap between genetic loci involved in cortical
structure and loci implicated in insomnia, major depression,
Parkinson’s disease, and general cognitive ability or IQ13.
Despite initial negative results37, ENIGMA’s growing sam-
ple size led to more powerful results, allowing for the recent
successes in the discovery of brain-related genetic variants
that also affect risk for schizophrenia43,44, OCD45, anxiety
disorders46, PTSD46, ADHD47, anorexia nervosa48, Tourette
syndrome49, and insomnia13.
As the sample size of brain scans in the ENIGMA Con-

sortium increased beyond 50,000 MRI scans, it became
possible to discover further genetic loci associated with
multiple brain traits implicated in brain disorders. A recent
example is an ENIGMA-CHARGE GWAS of white matter
(WM) hyperintensities, a sign of vascular brain disease, by
Mather et al. (in prep), which found heterogeneous effects
for variants associated with lesions near the ventricles ver-
sus lesions elsewhere in the brain. An innovative feature of
this analysis was the use of anatomical clustering of traits to
yield more powerful brain GWAS results. Anatomical or
genetic clustering is yet another methodological improve-
ment implemented by ENIGMA, that can be used widely to
enhance detection of genetic associations in multiple brain
disorders (see Lorenzi, Couvy-Duchesne for other multi-
variate imaging GWAS approaches50,51).

Uncovering the epigenetic basis of brain morphometric
variation
Inspired by these successes, ENIGMA widened the

scope of its WGs to embrace the study of epigenetic

variations. ENIGMA’s Epigenetics group has already
identified two sites in the genome where methylation
relates to hippocampal volume (N= 3337)52. Ongoing
studies focus on brain measures sensitive to epigenetic
age, an index of biological as opposed to chronological
aging, in both health and disease.

From common nucleotide variations to rare copy number
variants (CNV)
The ENIGMA-CNV WG was launched to study the

effects of CNVs, relatively rare genetic variants predis-
posing individuals to various neuropsychiatric disorders.
The ENIGMA collaborative approach is ideal for studying
low-frequency variants, as such efforts require large
samples that are usually beyond the scope of a single
study. Their first reports were on the 16p11.2 distal53 and
15q11.295 CNVs (Fig. 3) and additional studies on other
CNVs are underway.

ENIGMA disorder-based neuroimaging studies
ENIGMA-schizophrenia
The Schizophrenia WG was formed in 2012, and has

since analyzed data from 39 cohorts worldwide and has
identified case–control differences in brain morpho-
metry1,54,55 and WM microstructure56,57, on an unpre-
cedented scale. ENIGMA-Schizophrenia was the first
working group to publish large-scale analyses of disease,
in two seminal papers on case–control differences in
brain morphometry based on the largest samples to date.
Van Erp and ENIGMA colleagues54 first reported that
patients with SCZ (N= 2028 patients) had smaller hip-
pocampus (Cohen’s d=−0.46), amygdala (d=−0.31),
thalamus (d=−0.31), nucleus accumbens (d=−0.25),
total intracranial volumes (d=−0.12), and larger palli-
dum (d= 0.21) and lateral ventricle volumes (d= 0.37)
compared to healthy controls (N= 2540). In a subsequent
study, the team1 expanded their sample to include 4474
individuals with SCZ and 5,098 controls to study cortical
structures. Compared to healthy controls, patients with
SCZ had globally thinner cortices (left/right hemisphere:
d=−0.53/−0.52) and smaller overall cortical surface area
(left/right hemisphere: d=−0.25/−0.25), with greatest
effect sizes in frontal and temporal regions.
Figures 4 and 5 present these cortical and subcortical

findings alongside data from several other disorders. It is
notable that these findings from ENIGMA13,54 were
replicated in a large independent study by the Japanese
COCORO Consortium58, and a recent Norwegian study
of 16 cohorts by Alnæs et al.59. The convergence of all
three studies, reviewed in Kochunov et al.60, represents a
new level of rigor and reproducibility in a field where the
existence of morphometric correlates of schizophrenia
was once hotly debated61.
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Brain alterations were also discovered in relation to
clinical features of the disease. In follow-up analyses,
Walton et al. found that positive symptom severity was
negatively related to the thickness of the superior tem-
poral gyrus bilaterally62, while the severity of negative
symptoms was negatively related to the cortical thickness
of several prefrontal regions and particularly the left
medial orbitofrontal cortex (MOFC)63.
At this point it is worth considering the added value of

other data modalities, such as diffusion MRI, which offers
complementary information on microstructural abnorm-
alities, especially in the WM, that are not detectable on
standard anatomical MRI. ENIGMA’s Diffusion MRI
working group, launched in 2012 with protocols for dif-
fusion tensor imaging (DTI), published a series of papers
on the heritability and reproducibility of DTI measures
derived with a protocol based on tract-based spatial sta-
tistics64–66. Over ten of ENIGMA’s working groups have
since used this protocol to rank effect sizes for DTI
metrics across key WM tracts.
Kelly et al. reported on widespread WM abnormalities

in schizophrenia, pooling data from 2359 healthy controls

and 1963 patients with SCZ from 29 independent inter-
national studies56. Significant reductions in fractional
anisotropy (FA) in patients with SCZ were widespread
across major WM fasciculi. While effect sizes varied by
tract and included significant reductions in the anterior
corona radiata (d= 0.40) and corpus callosum (d= 0.39,
specifically its body (d= 0.39) and genu (d= 0.37)),
effects were observed throughout the brain, with peak
reductions observed for the entire WM skeleton (d=
0.42). Figure 6 shows these findings alongside data from
two other disorders for which ENIGMA published large-
scale DTI analyses, MDD67, and 22q11DS17.

ENIGMA-BD
Formed shortly after the Schizophrenia WG, and fol-

lowing similar protocols, the ENIGMA’s BD WG reported
on cortical thickness and surface area measures using
anatomical MRI data from 1837 adults with BD and 2582
healthy controls, from 28 international groups68. BD was
associated with reduced cortical thickness in bilateral
frontal, temporal and parietal regions, and particularly in
the left pars opercularis (d=−0.29), the left fusiform

Fig. 4 ENIGMA’s large-scale studies of nine brain disorders. Cortical gray matter thickness abnormalities as Cohen’s d, are mapped for nine
different disorders, for which worldwide data were analyzed with the same harmonized methods. Although the cohorts included in the studies
differed, as did the scanning sites and age ranges studied, some common and distinct patterns are apparent. Cortical maps for major depressive
disorder (MDD), bipolar disorder (BD) and schizophrenia show gradually more extensive profiles of deficits. Across all disorders, the less prevalent
disorders tend to show greater effects in the brain: the relatively subtle pattern of hippocampal-limbic deficits in MDD broadens to include frontal
deficits in bipolar disorder (consistent with frontal lobe dysfunction and impaired self-control). In schizophrenia, deficits widen to include almost the
entire cortex—only the primary visual cortex (specifically the calcarine cortex) failed to show thickness alterations in patients, after meta-analysis.
Autism spectrum disorder (ASD) and the 22q deletion syndrome (22q11DS)—a risk condition for ASD—are associated with hypertrophy in frontal
brain regions, while patients with obsessive-compulsive disorder (OCD) and alcohol use disorder tend to show deficits in frontal brain regions
involved in self-control and inhibition. More refined analyses are now relating symptom domains to these and other brain metrics, within and across
these and other disorders.
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gyrus (d=−0.29), and left rostral middle frontal cortex
(d=−0.28). Interestingly, lithium use was associated with
thicker cortex in several areas. The WG also examined
case–control differences in subcortical volumes in 1710
patients with BD and 2594 healthy controls; they found
that BD was associated with reductions in the volume of
the hippocampus (d=−0.23) and the thalamus (d=
−0.15), and with enlarged lateral ventricular volume (d=

0.26). A follow-up study, showed that when applied to
regional cortical thickness, surface area, and subcortical
volumes, machine learning methods (based on support
vector machines) differentiated BD participants from
controls with above chance accuracy even in a large and
heterogeneous sample of 3020 participants from 13
ENIGMA cohorts worldwide23. Aggregate analyses of
individual subject data yielded better performance than
meta-analysis of site-level results. Age and exposure to
anticonvulsants were associated with greater odds of
correct classification. Although short of the 80% clinically
relevant threshold, the 65.2% accuracy (0.71 ROC-AUC)
is promising, as the study focused on a difficult to diag-
nose, highly heterogeneous condition and used only

Fig. 5 Subcortical abnormalities in schizophrenia, bipolar
disorder, major depressive disorder, and ADHD. a ENIGMA’s
publications of the three largest neuroimaging papers on
schizophrenia (SCZ), bipolar disorder (BD), and major depressive
disorder (MDD), suggested widespread cross-disorder differences in
effects (van Erp 2015, Hibar68, Schmaal 2015). By processing 21,199
people’s brain MRI scans consistently, we found greater brain
structural abnormalities in SCZ and BD versus MDD, and a very
different pattern in attention-deficit/hyperactivity disorder (ADHD;
Hoogman7). Subcortically, all three disorders involve hippocampal
volume deficits—greatest in SCZ, least in MDD, and intermediate in
BD. As a slightly simplified ‘rule of thumb’, the hippocampus,
ventricles, thalamus, amygdala and nucleus accumbens show volume
reductions in MDD that are around half the magnitude of those seen
in BD, which in turn are about half the magnitude of those seen in
SCZ. The basal ganglia are an exception to this rule—perhaps because
some antipsychotic treatments have hypertrophic effects on the basal
ganglia, leading to volume excesses in medicated patients. In ADHD,
however, the amygdala, caudate and putamen, and nucleus
accumbens all show deficits, as does ICV (ventricular data is not
included here for ADHD, as it was not measured in the ADHD study).
A web portal, the ENIGMA Viewer, provides access to these summary
statistics from ENIGMA’s published studies of psychiatric and
neurological disorders (http://enigma-viewer.org/About_the_projects.
html; Zhang198). b Independent work by the Japanese Consortium,
COCORO, found a very similar set of effect sizes for group differences
in subcortical volumes between schizophrenia patients and matched
controls.

Fig. 6 White matter microstructure in schizophrenia, major
depressive disorder, and 22q11.2 deletion syndrome. a White
matter microstructural abnormalities are shown, by tract, based on the
largest-ever diffusion MRI studies of these three disorders. In
schizophrenia (SCZ), fractional anisotropy, a measure of white matter
microstructure, is lower in almost all individual regions, and in the full
skeleton. In major depressive disorder (MDD), a weak pattern of effects
is observed, again with MDD patients showing on average lower FA
across the full white matter skeleton, when compared to controls. In
comparisons between 22q11.2 deletion syndrome (22q11DS) and
matched controls, by contrast, the average FA along the full white
matter skeleton does not show systematic differences; instead, while
some regions do show on average lower FA in affected individuals
compared with controls, several white matter regions show higher FA.
b Relative to appropriately matched groups of healthy controls (HC),
group differences in fractional anisotropy are shown for ENIGMA’s
studies of SCZ, MDD (both in adults), and 22q11.2 deletion syndrome.
[Data adapted, with permission of the authors and publishers, from
Kelly56, van Velzen67, and Villalon (2019); a key to the tract names
appears in the original papers; some tracts (i.e. the hippocampal
portion of the cingulum) were omitted from the 22q11DS analysis as
they were not consistently in the field of view for some cohorts of the
working group].

Thompson et al. Translational Psychiatry Page 10 of 26

http://enigma-viewer.org/About_the_projects.html
http://enigma-viewer.org/About_the_projects.html


UNCORRECTED P
ROOF

engineered features, not raw brain imaging data. ENIG-
MA’s multi-site design may also offer a more realistic
assessment of “real-world” accuracy, by repeatedly leaving
out different sites’ data for cross-validation. Future mul-
tisite brain-imaging machine learning studies will begin to
move towards sharing of more detailed individual subject
data, not only a selection of discrete features or site-level
results derived from a single modality; unsupervised
machine learning techniques may offer potential to better
understand the heterogeneity in the disorder. The
ENIGMA-BD DTI WG conducted both a mega- and
meta-analysis of 3,033Q7 subjects (1482 BD and 1551 con-
trols)69. Both analyses found lower FA in patients with BD
compared with healthy controls in most brain regions,
with the highest effect sizes in the corpus callosum and
cingulum.

ENIGMA-MDD
Brain morphometric analyses conducted by the

ENIGMA-MDD WG were based on MRI data from 1728
patients with MDD and 7199 controls for subcortical
volumes70 and from 2148 patients with MDD and 7957
controls for cortical measures3. These studies found that
patients with MDD had lower hippocampal volumes (d=
−0.14), an effect driven by patients with recurrent illness
(d=−0.17) and by patients with an adolescent (≤21
years) age of onset (d=−0.20). First-episode patients
showed no subcortical volume differences compared to
controls. Adult patients (>21 years) had reduced cortical
thickness in bilateral orbitofrontal cortex (OFC), anterior
and posterior cingulate cortex, insula, and temporal lobe
regions (d’s: −0.10 to −0.14). In contrast, adolescent
patients showed no differences in cortical thickness but
showed lower total surface area, which seemed to be
especially driven by lower surface area in frontal (medial
OFC and superior frontal gyrus), visual, somatosensory,
and motor areas (d=−0.26 to −0.57). Moreover, these
differences in gray matter morphometry observed in
MDD do not involve abnormal asymmetry, as shown in a
joint study by the Laterality and the MDD WGs involving
2540 MDD individuals and 4230 controls, from 32
datasets71.
A follow-up analysis on a subset of these aforemen-

tioned data found that the brain MRIs of adult patients
with MDD (18–75 years old) appeared, on average, 1.08
years older than those of controls (d= 0.14)72. This ‘brain
age’ estimate was based on a machine learning algorithm
trained to predict chronological age from morphometric
data from 2188 controls across 19 cohorts and subse-
quently applied to hold-out data from 2126 healthy con-
trols and 2675 people with MDD. The largest brain aging
effects were observed in antidepressant users (+1.4 years;
d= 0.15), currently depressed (+1.5 years; d= 0.18), and
remitted patients (+2.2 years; d= 0.18), compared to

controls. Within ENIGMA-MDD, Opel et al. also studied
the effects of obesity on structural brain metrics of
patients and controls (N= 6420)73. Obesity effects were
not different between patients and controls, but there was
a significant obesity by age interaction in relation to
cortical thickness, with thinner cortices in older obese
individuals. Cortical thickness deficits related to obesity
were strongest in the temporal and frontal cortical
regions, and overlapped with patterns observed in several
neuropsychiatric disorders, but exceeded those found in
MDD without regard for BMI —in terms of the effect
sizes and range of structures affected. The magnitude of
these effects suggests a need to better understand the
connections between BMI, brain aging and mental health.
Capitalizing on the statistical power of ENIGMA to

examine the role of risk factors, Frodl74 and Tozzi75

examined the association between retrospectively assessed
childhood maltreatment (including emotional, physical
and sexual abuse, or emotional and physical neglect), and
brain morphometry in 3036 and 3872 individuals (aged
13–89) with and without MDD, respectively. Greater
exposure to childhood maltreatment was associated with
lower cortical thickness of the banks of the superior
temporal sulcus and supramarginal gyrus, and with lower
surface area across the whole brain and in the middle
temporal gyrus. Sex differences were also observed: in
females, greater maltreatment severity was associated with
overall lower gray matter thickness and smaller caudate
volumes, whereas in males, greater maltreatment severity
was associated with lower thickness of the rostral anterior
cingulate cortex.
In addition to these investigations of gray matter in

MDD, a large-scale analysis of WM microstructure with
DTI has also been completed, comparing 1305 adults and
adolescents with MDD to 1602 healthy controls from
20 samples worldwide67. In adults with MDD, widespread
lower FA values were found in 16 out of 25 WM tracts of
interest (d’s= 0.12–0.26), with the largest differences in
the corpus callosum and corona radiata. Widespread
increased radial diffusivity (RD) was also observed (d’s=
0.12–0.18) and was driven by patients with recurrent
MDD and an adult-onset of depression.

ENIGMA-PGC post-traumatic stress disorder
In partnership with the PGC, ENIGMA launched a WG

on PTSD that has analyzed neuroimaging and clinical
data from 1868 individuals (including 794 patients with
PTSD) from 16 cohorts. In this first ENIGMA-PTSD
study, Logue and colleagues found that patients with
current PTSD had smaller hippocampal volumes (d=
−0.17) compared to trauma-exposed controls4. Child-
hood trauma predicted smaller hippocampal volume (d=
−0.17) independent of diagnosis. In a subsequent study,
the WG found that cortical thickness in 3378 individuals
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(including 1309 patients with PTSD) was lower in PTSD
in the orbitofrontal cortex, cingulate cortex, precuneus,
insula, and lateral parietal cortices. In addition, a DTI
meta-analysis of 3057 individuals (including 1405 patients
with PTSD) from 25 cohorts found alterations in WM
organization in the tapetum, a structure that connects the
left and right hippocampus76. Structural covariance net-
work analysis applied to data from 3505 individuals
(including 1344 patients with PTSD), which examined
correlated patterns of cortical thickness and surface area,
found that PTSD is associated with network centrality
features of the insula and visual association areas77. To
extend these findings, ongoing studies are assessing cor-
tical structure78,79 and hippocampal subfields in PTSD
and MDD80–83, to better understand the pattern and
regional specificity of hippocampal deficits in the two
disorders, and whether these patterns coincide.

ENIGMA-addictions/SUD
The ENIGMA-Addictions/SUDs WG has 33 partici-

pating sites, contributing MRI data from 12,347 indivi-
duals of whom 2277 are adult patients with SUD relating
to one of five substances (alcohol, nicotine, cocaine,
methamphetamine, or cannabis)5,84,85. In these data,
Mackey5 observed lower cortical thickness/subcortical
volume in cases relative to controls in regions that play
key roles in evaluating reward (MOFC, amygdala), task
monitoring (superior frontal cortex), attention (superior
parietal cortex, posterior cingulate) and perception/reg-
ulation of internal body states (insula). While the most
pervasive case–control differences appeared to be related
to alcohol dependence, some effects were observed for
substance dependence generally (e.g., the insula and
MOFC). A support vector machine trained on cortical
thickness and subcortical volume successfully classified
set-aside test sets for both alcohol (ROC-AUC: 0.74–0.78;
p < 0.0001) and nicotine dependence (ROC-AUC:
0.60–0.64; p < 0.0001), relative to non-dependent con-
trols5. A separate meta-analysis also compared the effect
size of addiction-related brain impairment to that of other
psychiatric disorders: effect sizes of alcohol-related brain
differences in subcortical brain regions were equivalent to
those reported for schizophrenia86.

ENIGMA-obsessive-compulsive disorder
The ENIGMA’s OCD WG grew out of a previously

established consortium (the OCD Brain Imaging Con-
sortium, or OBIC)87, and has published the largest studies
to date of brain structure in adult and pediatric OCD,
using both meta- and mega-analytic approaches6,88. The
first study analyzed MRI scans from 1830 patients diag-
nosed with OCD and 1759 controls across 35 cohorts
from 26 sites worldwide88. Unmedicated pediatric OCD
patients demonstrated larger thalamic volumes, while the

pallidum was enlarged in adult OCD patients with disease
onset at childhood. Adult OCD patients also had sig-
nificantly smaller hippocampal volumes (d=−0.13), with
stronger effects in medicated patients with adult-onset
OCD compared to healthy controls (d=−0.29). A cor-
tical study included data from 1905 patients diagnosed
with OCD and 1760 healthy controls across 38 cohorts
from 27 sites worldwide. In adult patients diagnosed with
OCD versus controls, significantly smaller surface area of
the transverse temporal cortex (d=−0.16) and a thinner
inferior parietal cortex (d=−0.14) were found. Medi-
cated adult patients with OCD also showed thinner cor-
tices throughout the brain (Cohen’s d effect sizes varied
between −0.10 and −0.26). Pediatric patients with OCD
showed significantly thinner inferior and superior parietal
cortices (d’s=−0.24 to −0.31), but none of the regions
analyzed showed significant differences in cortical surface
area. However, medicated pediatric patients with OCD
had smaller surface area in frontal regions (d’s=−0.27 to
−0.33), that may indicate a delayed cortical maturation.
The absence of cortical surface area abnormalities in adult
patients with a childhood onset of OCD could indicate a
normalization of these abnormalities—a hypothesis that is
now being explored with longitudinal data collection.
To assess whether the anatomical differences could be

used to create a neuroimaging biomarker for OCD, a
machine learning analysis of the cortical and subcortical
data was performed with 2304 OCD patients and 2068
controls. Classification performance across ten different
machine and deep learning approaches was poor. With
site-stratified cross-validation, the ROC-AUC ranged
between 0.57 and 0.62. The performance dropped to
chance level when leave-one-site-out cross-validation was
used, with classification performance between 0.51 and
0.54. This indicates that these anatomical brain features
do not provide a biomarker for OCD. But when patients
were stratified according to whether they had used med-
ication, classification performance improved remarkably.
Medicated OCD patients and controls could then be
distinguished with 0.73, unmedicated OCD and controls
with 0.61, and medicated and unmedicated OCD patients
with 0.86 ROC-AUC. These multivariate results therefore
mirror the univariate results, and highlight that medica-
tion use is associated with large differences in brain
anatomy89.
The OCD WG, in conjunction with the Laterality WG,

studied brain asymmetry in OCD using 16 pediatric
datasets (501 patients with OCD and 439 healthy con-
trols), and 30 adult datasets (1777 patients and 1654
controls)90. In the pediatric datasets, the largest
case–control differences were observed for volume
asymmetry of the thalamus (more leftward in patients
compared to controls; d= 0.19) and the pallidum (less
leftward in patients compared to controls; d=−0.21). No
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asymmetry differences were found in the adult datasets.
These findings may reflect altered neurodevelopmental
processes in OCD, affecting cortico-striato-thalamo-
cortical circuitry, which is involved in a wide range of
cognitive, motivational and emotional processes.

ENIGMA-attention-deficit/hyperactivity disorder
ENIGMA’s ADHD WG has analyzed data from up to

2264 participants with ADHD and 1934 controls from up
to 36 sites (age range: 4–63 years; 66% males)91. Volumes
of the nucleus accumbens (d=−0.15), amygdala (d=
−0.19), caudate (d=−0.11), hippocampus (d=−0.11),
putamen (d=−0.14), and ICV (d=−0.10) were smaller
in cases relative to controls. Effect sizes were highest in
children. No statistically significant univariate
case–control differences were detected in adults. Volume
differences were found to have similar effect sizes in those
treated with psychostimulant medication and those naïve
to psychostimulants. Bioinformatics analyses suggested
that the selective subcortical brain region vulnerability
was associated with differential expression of oxidative
stress, neurodevelopment and autophagy pathways92.
The ENIGMA-ADHD WG was the first WG in

ENIGMA to perform a detailed investigation of the case/
control effects on the cerebellum. Differential age trajec-
tories were identified for children with ADHD when
compared with typically developing children for the cor-
pus medullare93.
In an analysis of the cerebral cortex, lower surface area

values were found, on average, in children with ADHD,
mainly in frontal, cingulate, and temporal regions; the
largest effect was for total surface area (d=−0.21).
Fusiform gyrus and temporal pole cortical thickness were
also lower in children with ADHD. All effects were most
pronounced in early childhood. Neither surface area nor
thickness differences were found in the adolescent or
adult groups7, but machine learning analyses supported
the hypothesis that the case–control differences observed
in childhood could be detected in adulthood94. Impor-
tantly, many of the same surface area features were
associated with subclinical ADHD symptoms in children
from the general population that do not have a clinical
psychiatric diagnosis. Several of the observed brain
alterations fulfilled many of the criteria of ‘endopheno-
types’ (An endophenotype is a trait, such as brain struc-
ture or function, related to the biological process of a
disorder; to qualify as an endophenotype, the trait, should
be heritable, co-segregate with an illness, yet be present
even when the disease is not, and be found in non-affected
family members at a higher rate than in the general
population95,96), as they were also seen in unaffected
siblings of people with ADHD in a subsample analysis of
the cortical features. The stronger effects in children may
reflect a developmental delay, perhaps due in part to

genetic risk factors, given recent findings of overlap
between the genetic contributions to ADHD and to sub-
cortical volumes13,47.

ENIGMA-autism spectrum disorders
The ENIGMA-ASD WG published the largest neuroi-

maging study of autism analyzing data from 1571 parti-
cipants with ASD and 1651 controls, from 49 sites
worldwide (ages 2–64 years)8. Unlike most of the dis-
orders discussed so far, the direction of effects seen in
ASD varied by brain region, and did so across the age span
analyzed. ASD was associated with larger lateral ventricle
and intracranial volumes, greater frontal cortical thickness
and lower temporal cortical thickness (d=−0.21 to 0.20).
Participants with ASD also had, on average, lower sub-
cortical volumes for the pallidum, putamen, amygdala,
and nucleus accumbens. Post hoc fractional polynomial
analyses showed a sharp increase in volumes in the same
regions in childhood, peaking in adolescence and
decreasing again in adulthood. Overall, patients with ASD
showed altered morphometry in the cognitive and affec-
tive associated-regions of the striatum, frontal cortex, and
temporal cortex.
The ASD group worked together with the Laterality

group to produce the largest ever study of brain asym-
metry in ASD, involving 1774 patients and 1809 controls,
from 54 datasets97. Generally, subtle but widespread
reductions of cortical thickness asymmetries were present
in patients with ASD compared to controls, as well as
volume asymmetry of the putamen, and surface area
asymmetry of the MOFC (the strongest effect had
Cohen’s d=−0.16). Altered lateralized neurodevelop-
ment may, therefore, be a feature of ASD, affecting
widespread cortical regions with diverse functions.

Neurogenetic disorders, CNV, and rare
neurodevelopmental conditions
Several neurodevelopmental disorders arise due to the

abnormal duplication or deletion of segments of the
genome. ENIGMA has dedicated WGs studying 22q11DS,
Gaucher’s disease, and Hepatic Glycogen storage dis-
ease98,99, along with a CNV WG meta-analyzing imaging
data from carriers of several other CNVs53,100. Here, we
focus on the work of the two most established groups,
that examine carriers of 22q11.2 deletions and
other CNVs.

ENIGMA- 22q11.2 deletion syndrome
22q11DS is associated with a 20-fold increased risk for

psychosis, and an elevated risk for developmental neu-
ropsychiatric disorders such as ASD. 22q11DS provides a
‘genetics-first’ framework to study the brain markers
underlying complex psychiatric phenotypes. The
ENIGMA-22q11DS working group analyzed the largest
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dataset to date of brain images from patients with
22q11DS from 10 cohorts including 466 individuals with
22q11DS and 374 matched controls. Compared to con-
trols, 22q11DS individuals showed overall thicker cortical
gray matter (left/right hemispheres: Cohen’s d= 0.61/
0.65), but pervasive reductions in cortical area (left/right
hemispheres: d=−1.01/−1.02), with specific anatomic
patterns. Machine learning methods were applied to the
cortical thickness and area measures to achieve a high
accuracy (sensitivity 94.2%; specificity 93.3%) in classifying
22q11DS cases and controls10. ENIGMA subcortical
shape analysis pipelines also identified complex structural
differences across many subcortical structures between
individuals with 22q11DS and controls101. Analysis of
diffusion MRI from the same subjects (N= 594) revealed
abnormalities in the corpus callosum, superior long-
itudinal fasciculus, and corona radiata17. Ongoing work
uses more advanced imaging protocols17—including
‘multishell’ diffusion protocols that allow for the estima-
tion of biophysical compartments in the tissue—to test
hypotheses about specific cellular processes and specific
fiber tracts that may be especially vulnerable in 22q11DS
(e.g., the corpus callosum), as well as fiber tracts that
appear to be relatively spared (e.g., the cortico-fugal
tracts17).

ENIGMA-copy number variations
This WG was set up to examine the effect of rare CNVs,

risk factors for a variety of neuropsychiatric disorders, on
brain structure. Due to their low prevalence102,103, their
effects on the brain have been hard to establish. Sønderby
and colleagues focused on the 16p11.2 distal CNV that
predisposes to psychiatric conditions including ASD and
schizophrenia. ENIGMA (including the 16p11.2 European
Consortium) and deCODE datasets were combined to
compare subcortical brain volumes of carriers of 15
16p11.2 distal deletion and 18 duplication to 7714 non-
carriers which led to the discovery of negative dose-
response associations with copy number on intracranial
volume and regional accumbens, caudate, pallidum and
putamen volumes—suggesting a neuropathological pat-
tern that may underlie the neurodevelopmental syn-
dromes53. A further study100 including the UK Biobank
assessed the association of the 15q11.2 CNV with cogni-
tion and cortical and subcortical morphology in more
than 45,000 individuals from 38 datasets (203 individuals
with a 15q11.2 deletion, 45,247 non-carriers, and 306
duplication carriers). The authors found a clear pattern of
widespread poorer cognitive performance, smaller surface
area and thicker cortices for deletion carriers compared to
non-carriers and duplication carriers, particularly across
the frontal lobe, anterior cingulate and pre/postcentral
gyri. The pattern of results fits well with known molecular
functions of the genes in the 15q11 region and suggests

involvement of these genes in neuronal plasticity and
cortical development. Thus, the results from ENIGMA-
CNV have shown that several CNVs cause abnormal brain
patterns and inform on genetically determined variation
in brain development and their relation to neurodeve-
lopmental disorders. Additional studies on other CNVs
are in progress.

Newly established working groups
In the last two years, seven additional ENIGMA WGs

have formed to study specific disorders and important
transdiagnostic conditions: anxiety disorders, suicidal
thoughts and behavior, sleep and insomnia, eating dis-
orders (including bulimia and anorexia nervosa sub-
groups104), irritability, antisocial behavior, and
dissociative identity disorder. The starting point of the
anxiety group was an international voxel-based morpho-
metry mega-analysis on social anxiety disorder105, sup-
ported by findings demonstrating that structural brain
alterations related to social anxiety run in families106. At
present, the anxiety WG has four subgroups including
over 5000 patients: besides social anxiety disorder (1250
patients)107, there are groups devoted to generalized
anxiety disorder (1329 patients), panic disorder (1300
patients), and specific phobia (1224 patients), allowing for
disorder-specific and cross-disorder comparisons. The
antisocial behavior WG aims to clarify how conduct dis-
order, psychopathy, and antisocial personality disorder
relate to differences in brain structure, function, and
connectivity. Its goals include examination of different
phenotypes (e.g., reactive vs proactive aggression),
population-based samples with dimensional measures of
antisocial behavior, and genetic data from case–control
and population-based studies.
Building on the promising findings from the psychiatric

WGs, ENIGMA established seven WGs studying specific
conditions in neurology and cancer-related cognitive
impairment: epilepsy, traumatic brain injury, Parkinson’s
disease, neuro-HIV, ataxia, stroke recovery, and cancer/
chemotherapy effects on the brain108,109.

ENIGMA-Epilepsy
The ENIGMA-Epilepsy WG combined data from 24

centers across 14 countries to create the largest neuroi-
maging study to date of epilepsy9. Data from 2149 indi-
viduals with epilepsy were divided into four common
epilepsy syndromes: idiopathic generalized epilepsies (N
= 367), mesial temporal lobe epilepsies with hippocampal
sclerosis (MTLE; left, N= 415; right, N= 339), and all
other epilepsies in aggregate (N= 1026), compared to
1727 matched healthy controls. Compared to controls, all
epilepsy groups showed lower volume in the right thala-
mus (d=−0.24 to −0.73), and lower thickness in the
precentral gyri bilaterally (d=−0.34 to −0.52). Both
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MTLE subgroups also showed profound volume reduc-
tion in the ipsilateral hippocampus (d=−1.73 to −1.91),
and lower thickness in cortical regions, including the
precentral and paracentral gyri (d=−0.36 to −0.52)
compared to controls. Notably, the effect sizes for cortical
differences in this neurological disorder were much
greater than those seen in all complex psychiatric dis-
orders. In an approach known as ‘virtual histology’, a
follow-up study110 overlaid the cortical deficit maps on
gene-expression data from the Allen Brain Atlas, and
detected enrichment for microglial markers in regions
with greater deficits. The WG is currently combining DTI
data and exploring putative neuroanatomical biomarkers
of medication treatment resistance and post-operative
outcomes.

ENIGMA-brain injury
ENIGMA’s Brain Injury WG111 combines data from 72

centers, and is organized into ten separate subgroups that
focus on (1) acute mild traumatic brain injury (TBI), (2)
adult moderate/severe TBI112, (3) pediatric moderate/
severe TBI113,114, (4) military-related brain injury115–118,
(5) sports-related concussion119, (6) intimate partner
violence120, (7) MR spectroscopy121, (8) arterial spin
labeling, (9) resting state fMRI, and (10) cognitive end-
points. These groups have recently started-up compared
to other ENIGMA WGs, but are rapidly expanding in
membership and focus. In addition to meta- and mega-
analyses of relevant existing datasets, the Brain Injury
WGs endeavor to further extend efforts to promote
increased consistency in prospective data collection, both
in terms of imaging data and associated cognitive out-
come data. Additionally, the WGs are engaged in the
development of novel pipelines and analytic tools that
address brain-injury specific issues or incorporate
sequences or techniques that are potentially useful in
addressing injury associated pathology. For example,
future planned studies will compute structural pathology
profiles for individual TBI patients, including (i) mapping
of the heterogeneous lesions using advanced lesion
mapping methods (such as disconnectome symptom
mapping), (ii) accurate quantification of brain atrophy (of
the different brain regions) using tensor based morpho-
metry, and (iii) identification of subject-specific epicenters
best predictive of neurodegeneration using network
spread models. Finally, the Brain Injury WGs will inter-
face with other disease-specific WGs where comorbidity
with brain injury is high (e.g., substance use, PTSD, MDD,
ADHD), as well as with methods-focused WGs (e.g., dif-
fusion imaging, etc.). A preliminary report on 117 parti-
cipants with military-relevant blast-related versus 227
participants with non-blast related injury revealed higher
FA in veterans and service members with blast-related
injuries, and altered subcortical volumes in the group with

military TBI overall117. Work is ongoing to study the
effects of injuries sustained during and outside deploy-
ment, and severity and mechanisms of injury.

ENIGMA-Parkinson’s disease
ENIGMA’s Parkinson’s disease WG has analyzed scans

from 11 cohorts spanning 10 countries including 1288
patients with PD and 679 controls (age: 20–89
years)122,123. A PD diagnosis was associated with moder-
ately larger thalamic volumes (left: d= 0.29; right: d=
0.17) and smaller pallidal volumes (left: d=−0.25; right:
d=−0.21). There was also widespread and lower cortical
thickness in PD patients, while sparing the limbic and
insular cortices. Ongoing work on a larger sample is
relating brain structure and WM microstructure to dis-
ease severity, medication status and history and duration
of the illness as modifiers of these robust differences
between patients and controls.

ENIGMA-human immunodeficiency virus
The availability of combination antiretroviral therapy

(cART) has now transformed HIV-infection from a pos-
sibly fatal diagnosis to a chronic condition, allowing for
viral suppression and stable immune function; however,
despite inconsistencies in neuroimaging studies, neuro-
logical symptoms and consequences persist. This WG has
pooled data from 12 independent neuro-HIV studies from
Africa, Asia, Australia, Europe, and North America;
volume estimates for eight subcortical brain regions were
extracted from anatomical MRI from 1044 HIV+ adults
(age: 22–81 years) to identify associations with plasma
markers reflecting immunosuppression (CD4+ T-cell
count) or viral load124. Across participants, lower cur-
rent CD4+ count was associated with smaller hippo-
campal and thalamic volumes. A detectable viral load was
also associated with smaller hippocampal (d= 0.24) and
amygdalar volumes (d= 0.18), supporting the importance
of achieving viral suppression and immune restoration.
These limbic effects are in contrast to many of the early
neuro-HIV findings that focused on basal ganglia struc-
tures, yet we found the limbic associations were largely
driven by participants on cART, while basal ganglia effects
(putamen) were detected in the subset of participants not
on cART. These findings demonstrate the continuing
effects of HIV on the brain in the current “cART era”.
Alterations in brain structures that are essential for
learning and memory has clinical significance given
mounting evidence of HIV-associated deficits in these
cognitive domains among older HIV+ adults, and the
possibility that HIV may contribute to abnormal brain
aging125.
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ENIGMA-Ataxia
This WG includes 21 sites pooling data from more than

750 individuals with inherited ataxias, including Frie-
dreich Ataxia and Spinocerebellar Ataxia (SCA) 1, 2, 3, 6,
and 7 (the poly-glutamine SCAs), alongside over 800
controls. This group is undertaking optimization and
standardization of protocols for cerebellar voxel-based
morphometry and parcellation, upper spinal cord cross-
sectional area, and brainstem volume, in line with the key
regions of pathology in these diseases. Preliminary work
indicates that gray matter degeneration principally
impacts the cerebellar anterior lobe in Friedreich ataxia,
while all areas of the cerebellum are affected in the poly-
glutamine SCAs. However, both the magnitude and pat-
tern of cerebellar gray matter degeneration are distinct
across these diseases and evolve with disease progression
and severity.

ENIGMA-stroke recovery
The ENIGMA-stroke recovery WG has addressed a

major gap in stroke research relating to the large-scale
definition of lesion masks. Researchers in this WG have
released a public archive of 304 T1-weighted MRIs with
manually segmented stroke lesion masks126 (https://www.
icpsr.umich.edu/icpsrweb/ADDEP/studies/36684), and
developed open-source software127 and analyses specific
for scalable128, reproducible lesion analyses (https://
github.com/npnl/PALS). In addition to this major meth-
odological contribution they have analyzed data from 629
participants from 22 sites worldwide to identify reliable
predictors of motor function after stroke129,130. They
found that motor-related subcortical volumes in the basal
ganglia and thalamus are positively associated with post-
stroke motor performance, and depend on impairment
severity, time since stroke, and lesion laterality. In con-
trast, enlarged lateral ventricles are associated with worse
post-stroke motor outcomes. The group now has data
from 1625 participants from 32 sites worldwide, and
ongoing work in the group focuses on quantifying lesion
overlap with major motor-related structures, such as the
corticospinal tracts and subcortical regions131,132, and
relating these measures with subcortical volumetric
measures to motor outcomes133.

ENIGMA-methods focused working groups
The ENIGMA Consortium functions as a driving force

for the development, validation and implementation of
novel methods to address the complexities of analyses of
large imaging datasets and to derive more mechanistic
insights into the processes that underpin variation in
brain organization in health and disease. To achieve this,
ENIGMA has dedicated WGs focused on the develop-
ment of more innovative pipelines for data analyses to be
applied for various dataset worldwide. The ENIGMA

Diffusion MRI WG on DTI is one of the most long-
standing. DTI offers information on microstructural
abnormalities that are not detectable on standard anato-
mical MRI. As mentioned earlier, this WG has published a
series of papers on the heritability and reproducibility of
DTI measures derived with a custom protocol based on
tract-based spatial statistics64,134. Diagnosis-based WGs
have used this protocol to rank effect sizes for DTI
metrics as previously described or are undertaking similar
studies including in 22q11DS17, epilepsy, PTSD76, military
TBI113, HIV135, and OCD136.
Other methodological WGs have focused on anatomical

shape analyses that enable a more precise characterization
of regional brain alterations thus resolving subregional
effects in the basal ganglia, amygdala, and hippo-
campus55,85,137–142. Other approaches currently used in
ENIGMA include brain structural covariance analysis
(graph theory approach for intra-individual brain struc-
tural covariance networks in OCD77,143, sulcal morpho-
metry, hippocampal subfield analysis80–82,144 and disease
effects on lateralization (in OCD, MDD, and ASD)71,90,97.
More recently, ENIGMA’s Brain Age WG was formed to
apply various algorithmic estimators of ‘brain age’ across
several ENIGMA WGs72. From the ENIGMA-Brain
Injury group, the MR spectroscopy (MRS) WG has
formed to focus on the harmonization of MRS data which
could reach across other WGs in the future.

The impact of ENIGMA
The ENIGMA Consortium has been a driving force in

the field of neuroscience by making substantial con-
tributions to the science of brain variation and shaping
the working practices of the field at various levels. In
reflecting on the key achievements, three areas stand out:

Promoting robustness and reproducibility
ENIGMA’s “big data” approach to neuroimaging

addresses directly the reproducibility challenges that
plague many areas of biomedical science—including
neuroscience145–147. Neuroimaging has received con-
siderable scrutiny regarding the reliability of published
findings, given the literature replete with studies based on
small samples and seemingly unlimited methodological
freedom148,149. Many other approaches also aim to tackle
this reproducibility crisis, by building data repositories
that can be accessed for replication150–152; yet ENIGMA
offers an opportunity to collaborate with teams of diverse
experts irrespective of whether or not any data is shared.
In one recent study by ENIGMA’s Laterality group, the
authors examined brain asymmetry in 99 MRI datasets
worldwide (from N= 17,141 people) and found that, as
expected, the reproducibility of findings increased with
the effect size and sample size, in a setting that was free
from publication bias (data available at: http://conxz.net/
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neurohemi/)18,153. For example, for effect sizes of d ≥ 0.6,
the reproducibility rate was higher than 90% even when
including the datasets with sample sizes as low as 15,
while it was impossible to obtain 70% reproducibility for
small effects of d < 0.2, even with a relatively large mini-
mum sample size threshold of 500. The unprecedented
size of the datasets analyzed across ENIGMA boosts
statistical power to detect the effects of disease and their
moderators73,154. Through data sharing, investigators can
now identify patterns of brain abnormalities that con-
sistently characterize disorders or clinical syndromes,
while assessing their reproducibility across continents.
This is exemplified by the close match between the
schizophrenia findings by ENIGMA54,60 and independent
work by the Japanese Consortium, COCORO58 and a
recent Norwegian study of 16 cohorts by Alnæs59. In all
three studies, schizophrenia patients showed enlargement
of the lateral ventricles, pallidum, putamen, and caudate,
and volume reduction in the hippocampus, amygdala,
thalamus and accumbens, with a strong agreement in the
magnitude and rank order of effects from highest to least
group difference. Similarly, a recent GWAS study of the
UK Biobank dataset155 was able to replicate the majority
of the genetic loci discovered by ENIGMA in two separate
GWAS of subcortical volumes24,25. Thus, the interna-
tional, multi-site nature of ENIGMA studies likely pro-
motes representative findings that are widely
generalizable. Meanwhile, the larger and more diverse
samples are valuable resources for understanding the
heterogeneity across different studies, and may provide
new insights into the reproducibility issue faced by the
neuroimaging community. Moreover, ENIGMA offers a
platform for investigators to converge on methods for
sharing and analyzing data acceptable to the community.
ENIGMA also offers new opportunities to change the

landscape for how data can be used. In current research
practices, a great resource of data remains largely
untapped that is often known as “long-tail” data: data sets
collected in individual laboratories that accumulate over
many years and funding cycles156. Much valuable data
remains dormant (and unpublished) due to a lack of
personnel and time to analyze it, and this is going to
increase with studies including larger samples than before.
Efforts through ENIGMA to leverage ‘dormant’ data in

labs throughout the world have at least three important
advantages. First, data sharing increases the scope of the
science, enhancing opportunities for analyses not other-
wise possible with small sample sizes. Second, data shar-
ing naturally engages scientists from distinct disciplines—
a crucial step for advancing the clinical neurosciences157.
A final benefit that is sometimes overlooked in global
scientific collaborations is their power to build and
enhance diplomatic relations and transcend political
conflicts between nations158. With representation from 43

countries—some of which have minimal diplomatic ties—
collaborations are not only constructive in terms of col-
lective problem solving, but they also build connections
between high income countries and the poorest nations
across the globe and to build capacity in the latter158.

Setting methodological standards
The ENIGMA Consortium has provided a blueprint for

multi-site standardization in terms of mining legacy
neuroimaging and genetic data. The success of this
approach is obvious when considering the volume of over
50 published works that has relied on the ENIGMA
pipelines. Furthermore, funding bodies, such as the
National Institutes of Health in the United States, have
gained interest in such approaches; program announce-
ments requesting applications on aggregating existing
biomedical data, or making use of existing resources, have
become increasingly common. Moving forward, ENIGMA
remains a test-bed of unprecedented scale and power for
developing and benchmarking novel analytic methods.
This contribution is of paramount importance as
advanced statistical modeling and bioinformatics become
essential for analytic pipelines. In efforts complementary
to the technical advances made in multisite data collec-
tion initiatives such as the Alzheimer’s Disease Neuroi-
maging Initiative, the Human Connectome Project, and
the UK Biobank, ENIGMA’s studies have required us to
continually develop new scientific approaches to analyze
data from diverse and independent populations. ENIGMA
has made several technical advances that may be adapted
to other domains, including creating, adapting, and
extensively testing harmonized methods for distributed
analysis, meta-analysis, and cross-site data integration
(see Supplementary Appendix A: Technical Contributions
of ENIGMA).

Driving discovery
Neuroimaging and genetics are fields of both large and

small effects. For common, complex chronic diseases,
effects on brain metrics can be very subtle, but for rare
monogenic disorders and across the field of neurology—
including epilepsy, brain injury, stroke and neuro-oncol-
ogy, disease effects can be relatively large (although not
exclusively). In the 10 years since ENIGMA was founded,
the primary lesson has been on the power of worldwide
collaboration to discern subtle patterns in brain data, and
advance neuroscience beyond the capacity of any one
group of researchers collecting data on their own. New
discoveries regarding the factors that influence brain
organization and its association with health and disease
are predicated on having adequate statistical power and
on developing new neuroimaging approaches aiming to
lead to more mechanistic explanations of the multi-scale
organization of the brain.
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Challenges and future directions
Even given the advances made through ENIGMA dur-

ing its first decade, as a growing consortium, ENIGMA
faces important challenges. Thus far, ENIGMA has largely
relied on existing data, which implies a degree of het-
erogeneity with respect to phenotyping—including clin-
ical assessments, scanners and imaging protocols.
Another limitation of this type of data is that the depth of
phenotyping varies across centers, which can lead to a
limited set of clinical and other scales shared by all cen-
ters. As we discuss below, ENIGMA is now beginning to
address these limitations with a series of newly funded
and planned studies111,112,114,118–121. The paucity of
longitudinal data in the literature is also reflected within
ENIGMA, which includes a limited number of long-
itudinal studies. Consequently, the data-driven approach
used in ENIGMA is complementary, but not always
superior, to well-designed, hypothesis-driven, smaller-
scale prospective single-center or multi-center studies
with in-depth phenotyping.

Extending imaging modalities and computational
approaches
ENIGMA’s future developments will include the coor-

dinated analyses of new data modalities (such as resting
state and task-related functional MRI159–162, as well as
geostatistical and mobile sensor data), and deeper or more
refined analyses of current imaging modalities. Diffusion
MRI, in particular, is moving towards multi-shell proto-
cols that can better differentiate cellular and

microstructural sources of variance that may explain
patterns observed with DTI17. Multimodal projects that
pool data across imaging modalities are likely to boost the
accuracy of machine learning methods for differential
diagnosis, outcome prediction, and subtyping. Unsu-
pervised learning—applied to imaging and clinical data—
may also help to identify homogeneous subgroups within
and across disorders. Deep learning, for example, benefits
from very large datasets, such as those analyzed in
ENIGMA, and these and other artificial intelligence
methods show promise in identifying unsuspected fea-
tures and patterns in images beyond those derived using
traditional methods. From its inception, ENIGMA has
accommodated varying data sharing practices across
institutions and countries, has used strategies (such as
meta-analysis) to overcome some of these, and is working
with field experts on novel strategies (like COINSTAC or
other distributed analysis approaches)163 to allow for
more powerful analysis without sending data around the
globe. On the ‘omics’ side, whole genome sequencing
promises to refine our understanding of causal loci across
all phenotypes, from plasma markers and brain metrics to
environmental exposure and clinical measures of disease
burden.

Cross-disorder analyses
ENIGMA has recently created cross-disorder groups to

answer transdiagnostic questions that draw on data from
multiple WGs164. An exemplar of this approach is the
newly formed ENIGMA-Relatives WG which examines

Fig. 7 Topology of large-scale scientific collaboration. a The topology of scientific collaboration in ENIGMA has some properties that resemble a
modular hierarchical network (Ravasz and Barabasi199, Slaughter200). In this diagram (a), nodes represent individual scientists working on a project,
and links denote active scientific collaborations (that might result in co-authored publications, like this review, for example). ENIGMA’s WGs resemble
the yellow sets of nodes: guided by a small group of WG chairs, several clusters of scientists coordinate projects applying various methods to the
same datasets (e.g., MRI and DTI meta-analysis, machine learning, and modeling of clinical outcomes). WGs study different disorders with the same
harmonized methods, enabling to cross-disorder collaborations across WGs. The modular organization allows independent and coordinated projects
to proceed in parallel, distributing work and coordination, without requiring a central hub for all communication. Real clusters may differ in their
number of members and links [(b) shows a different graph with a similar hierarchical modular form], and may change dynamically over time as new
groups and projects form and projects end.
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brain organization in the unaffected first-degree relatives
of patients with psychiatric disorders. The first study from
this group focused on identifying common and distinct
anatomical patterns in patients with SCZ (N= 1016) or
BD (N= 666) and their unaffected relatives (N for SCZ
relatives= 1228 and for BD relatives= 852)11. A
remarkable finding from this study is that the first-degree
relatives of BD patients had larger ICV compared to
controls (d= 0.16) while first-degree relatives of SCZ
patients had smaller ICV and lower cortical thickness, and
when controlling for ICV, had regionally smaller thalamic
volumes. Other newly formed groups aim to aggregate
data across the spectrum of mental illness that may be
prone to similar symptoms and outcomes, such as suicidal
ideations and actions. Cross-disorder initiatives have
formed within ENIGMA as partnerships between existing
group members. The topology of collaboration (Fig. 7)
includes working partnerships between group members
working on similar problems, providing natural connec-
tions between topics of study of the different groups.

Sex differences
ENIGMA’s sex differences Initiative is probing disease

WG datasets to better understand sex disparities in risk
factors, disease effects, or outcomes and their relationship
with brain organization. In a new initiative, the ENIGMA-
Transgender WG is contributing additional insights with
respect to the biological underpinnings of sex assigned at
birth versus gender identity165. The first study from this
group was based on more than 800 scans and pooled
various MRI-based measures (cortical thickness, surface
area, and volume) across eight international sites. While
effects varied depending on the morphometric measure
applied and the brain regions considered, a general pat-
tern emerged: transgender men (assigned female at birth)
mostly resemble cis-gender women, whereas transgender
women (assigned male at birth) range between cis-gender
men and cis-gender women166. Ongoing initiatives
examining sex-differences focus on sex-specific GWAS
studies, and developmental and aging trajectories.

Global health disparities
Health disparities, including those that exist in low and

middle income countries, are also a topic of great interest
for ENIGMA, as prevalence, treatments, and access to
healthcare varies within and across countries. While the
analyses in ENIGMA so far tend to show cross-national
agreement in brain signatures and associated genetic loci
of various psychiatric diseases, more in-depth phenotyp-
ing may reveal circumstances where risk factors apply
more strongly to specific ethnic or sociodemographic
groups, and means to remediate them, consistent with the
concept of precision public health.

In closing, we reiterate ENIGMA’s mission statement,
which reads: “Individually, we contribute little to the Q8

quest for truth, but working together, the whole vast
world of science is within our reach.” Q9(Aristotle, 350
BCE)69,134,167–196.
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