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Abstract—Scientific software has become a key asset
to reproduce and understand the products of scientific
research in many disciplines. However, scientific software is
becoming increasingly complex and, as a result, researchers
need to spend a significant amount of time finding, reading
and understanding software documentation to set it up.
In this paper we describe SoMEF, a Software Metadata
Extraction Framework designed to help highlighting the
most important parts of scientific software documentation.
SoMEF processes the README files in GitHub repositories
to automatically extract which parts of their text refer
to the description, installation, invocation, or citation of
a software component. Despite its simple features, SoMEF
successfully categorizes README excerpts with a mini-
mum 0.92 precision and 0.90 ROC AUC. These results,
tested on a corpus of over 70 scientific software repositories,
are a promising start towards automatically generating
knowledge graphs of scientific software metadata.

I. INTRODUCTION

Within the past few decades, computational science
has increasingly become recognized as a fundamental
approach to answer scientific questions alongside theory
and experimentation [1]. However, the continuous devel-
opment of new software makes it difficult for scientists
to keep track of different method implementations and
to evaluate whether a certain piece of software suits
their needs [2]. Scientists are required to spend time
poring through available software documentation and
source code in order to understand the software used in
a project [3] and how to properly cite it. This process is
time consuming and unappealing to scientists due to the
heterogeneity and lack of unified structure in software
documentation.

Existing efforts have attempted to simplify this prob-
lem by avoiding “wordy, unstructured, introductory de-
scriptions” in favor of a specialized language just for
documentation [3]. However, text documentation contin-
ues to grow at an exponential rate [4].

In this paper we aim to ease the process of un-
derstanding, reusing and attributing scientific software
by presenting SoMEF [5], a Software Metadata Ex-
traction Framework that automatically extracts relevant
software metadata from its documentation. SoMEF takes
as input a README file from a GitHub repository
and identifies its description, installation instructions,

invocation setup and citation. Our approach uses binary
classification methods and organizes the results into a
structured format that is comprehensible to both humans
and machines. In addition, SoMEF will extract additional
metadata about a piece of software beyond its documen-
tation by exploiting the GitHub REST API v31.

The paper is outlined as follows. We first define
and illustrate the main metadata fields we extract from
software documentation in Section II. Then, we cover
our methodology and results in Section III. Finally,
we provide an analysis of SoMEF in the context of
related work and conclude the paper discussing related
approaches and our planned future work.

II. EXTRACTING METADATA FROM SOFTWARE
DOCUMENTATION

We focus on four different categories of scientific
software metadata: description, installation instructions,
invocation, and citation. A description tells the reader
what the software does, when to use it, and why to
use it. Installation instructions are the set of steps and
dependencies necessary for the for a software component
to run. An invocation is the series of commands neces-
sary to execute an instance of a software component.
A citation provides credit to the authors who developed
the work. Table I describes an example documentation2

from these four categories.
These categories, constitute a basic software docu-

mentation, which emphasizes the following aspcects of
software:

1) Understandability: users can easily recognize what
a software component does, when to use it, and
why to use it. A description provides most of this
information in a concise manner.

2) Usability: users can quickly identify how to use a
software component. The installation instructions
and the invocation of the code are a crucial aspect
for usability.

3) Attribution: users can identify traits or identifiers
for the software. These traits are available elements

1https://developer.github.com/v3/
2README from https://github.com/whimian/pyGeoPressure

https://developer.github.com/v3/
https://github.com/whimian/pyGeoPressure


TABLE I
DEFINITIONS AND EXAMPLES FOR description, installation, invocation, AND citation.

Category Questions Answered Example

Description (understandability, discovery): What does this soft-
ware do? When or why it?

A Python package for pore pressure prediction using
well log data and seismic velocity data.

Installation (understandability, usability): What setup is neces-
sary before I can use this software?

pip install pygeopressure

Invocation (understandability, usability): How do I use this
software? Snippets?

import pygeopressure as ppp
survey = ppp.Survey("CUG")
well = survey.wells[’CUG1’]

Citation Who should get credit for this software? Yu, (2018). PyGeoPressure: Geopressure Prediction
in Python. Journal of Open Source Software, 3(30),
992, https://doi.org/10.21105/joss.00992

of the description, but usually a citation is pro-
vided by authors to indicate other researchers how
to credit them for their work.

Software documentation often contains headings that
identify sections of text as one of the four categories
we aim to recognize (i.e., description, installation, in-
vocation, and citation). For example, “Overview”, “In-
stallation”, “Usage”, or “Citation” are common headings
designed to help the reader locate pertinent sections.
However, there is no standardized practice to structure
documentation in README files. One possible approach
to locate information pertinent to each category would
be to separate different sections by section headers, i.e.
pattern matching [4]. However, this method is not robust
because different authors structure, word, and describe
their documentation differently. This paper explores an
information retrieval approach that exploits Machine
Learning techniques to extract each of these four cat-
egories, i.e. description, installation, invocation, and
citation from software documentation. This approach
consists of a binary classifier for each category that
predicts whether or not a text excerpt belongs to a certain
documentation category.

A. Corpus

With more than 96 million repositories in 2018,
GitHub is the largest host of source code today [6].
For this reason, this paper focuses on the software
metadata of GitHub repositories. GitHub’s popularity has
contributed to the diversity of its projects, which range
from web development tools like Facebook’s React 3

to machine learning libraries like Google’s Tensorflow.4

When a user selects a repository on GitHub, GitHub
presents two displays: a list of files in the root directory
and a rendered version of the default README. We
therefore focus by default on READMEs as the source of
documentation, as a README is usually a repository’s
main source of documentation.

3https://github.com/facebook/react
4https://github.com/tensorflow/tensorflow

1) Selection Criteria: In total, the corpus consists of
the README documentation from 74 GitHub repos-
itories and manual annotations (see Section II-A2).
GitHub’s enormous number of repositories signifies di-
versity in documentation maturity, software purpose, and
programming language. Since the overall goal of this
project is to improve scientific transparency, scientific
software contributed the most to the selection of reposi-
tories, although other well-documented software, e.g. for
web development, made their way into the corpus too.
Awesome5 curations of repositories for scientific domains
or tools such as Geoscience, GeoJSON, Open Climate
Science, Geospatial, etc. provided links to relevant sci-
entific projects whose quality of documentation served
as the metric for inclusion.

While software code does not often manifest directly
in documentation, programming language variability
does influence the syntax of installation and invocation
commands (e.g. for package managers such as pip or
npm. As a result, repositories covered a wide variety of
programming languages. Table II shows the total number
of bytes that each programming language took up across
all repositories in the corpus.

TABLE II
TOTAL BYTES OF LANGUAGES IN COLLECTED REPOSITORIES

Language Bytes Percent

C++ 77692823 32.66%
Python 74125620 31.16%
Jupyter Notebook 55637798 23.39%
JavaScript 11187134 4.70%
HTML 6633188 2.79%
Lasso 2377884 1.00%
Go 1670128 0.70%
Cuda 1377119 0.58%
C 1191690 0.50%
Other 6010474 2.53%

Total 237903858 100%

2) Annotation Specifications: (GitHub) Markdown
format syntax can provide hints to the function of an
excerpt. For example, three back ticks (‘‘‘) identify

5https://awesome.re/
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https://awesome.re/


a block of code text. Sometimes, a researcher appends
the programming language name to the back ticks to
produce correct syntax highlighting. These code texts
often display the installation or invocation instructions
for a software.

While such properties may help a human identifying
the information they need from documentation, we can-
not rely on them because a researcher may choose to not
follow this practice. Similarly, researchers may provide
descriptive instructions instead of specific commands,
e.g. for GUI applications. Consequently, the corpus con-
sists of plain text rendered Markdown. For convenience,
we used a newline delimiter which splits the corpus
into paragraph excerpts. Table III displays the number
of excerpts per category and the average excerpt length.

TABLE III
NUMBER OF PARAGRAPH EXCERPTS COLLECTED

Category Count Mean Excerpt Length (words)
Description 275 27.95 ± 28.46
Installation 719 9.24 ± 11.39
Invocation 1092 7.74 ± 9.88
Citation 252 8.20 ± 7.40

3) Balancing the Corpus: For each binary classi-
fier, we transformed the corpus to label the category
to be predicted as True and all other categories as
False. This transformation resulted in an unbalanced
corpus. Therefore, we sampled negative excerpts such
that corpus is composed of 50% positive samples and
50% negative samples. In addition to the three other
categories, the negative class contained random samples
of control sentences from the Treebank [7] corpus as
a background to make the system more robust, e.g. to
ensure that the classifiers do not devolve into a code vs
natural text classifier. All four categories of negative text
contribute equally to the 50% negative excerpts. Table
IV illustrates a breakdown of the description corpus as
reference for all other corpora. An approximate ratio is
given in the third column because rounding changes the
ratios slightly.

TABLE IV
DESCRIPTION CORPUS BREAKDOWN

Truth Value Category Apprx. Ratio Count

True Description 0.5 275

False

Installation 0.125 68
Invocation 0.125 68
Citation 0.125 68
Treebank 0.125 68

Total 1.0 547

B. Data Preparation

Stemming algorithms are useful because they prevent
a feature matrix from becoming too sparse. However,

while word stemming is useful for natural language,
command line inputs and computer language lexicons
are very precise and do not exhibit variations found in
human languages. To maintain this distinction, we used
the scikit-learn [8] TfidfVectorizer to compute a TF-IDF
matrix of unigram features without any stemming, stop
words, or stemming to perform an initial analysis.

C. Classifiers

We used of the following classifiers from the Scikit-
learn package [8].

1) Logistic Regression: liblinear solver and balanced
class weights because of small corpus size and imbal-
ances that may arise from undersampling. We selected
a Logistic Regression rather than a Support Vector Ma-
chine in order to obtain probabilities for better insights
into model performance.

2) Multinomial Naive Bayes (MNB): additive smooth-
ing parameter of α = 1 as default fail-safe probability.

We focused on these two classifiers in this study
because they provided a good introductory analysis of
our approach. In particular, we were curious to see
how these two approaches would contrast each other
since Naive Bayes is a generative model while Logistic
Regression is a discriminatory model.

III. RESULTS AND DISCUSSION

We performed a stratified 5-fold cross validation to
evaluate the performance of each candidate model. We
used the same random seed selection of samples in
order to balance and and split the corpus. Tables V
and VI show summary metrics of our results, with
average and standard deviation of the Receiver Operating
Characteristic’s area under the curve (ROC AUC) for
each fold; and the average precision of each fold’s for the
Logistic Regression and MNB classifiers, respectively.

For a given text category, the Logistic Regression

TABLE V
LOGISTIC REGRESSION CROSS VALIDATION SUMMARY

Category Mean ROC AUC Mean Average Precision

Description 0.90± 0.03 0.92± 0.04
Installation 0.96± 0.01 0.97± 0.01
Invocation 0.94± 0.02 0.96± 0.01
Citation 0.97± 0.01 0.98± 0.01

TABLE VI
MULTINOMIAL NAIVE BAYES CROSS VALIDATION SUMMARY

Category Mean ROC AUC Mean Average Precision

Description 0.91± 0.04 0.93± 0.05
Installation 0.96± 0.01 0.97± 0.01
Invocation 0.95± 0.02 0.97± 0.01
Citation 0.97± 0.01 0.98± 0.01

and Multinomial Naive Bayes (MNB) classifiers yielded
similar results. Both classifiers identified citations with



the highest precision and AUC, and descriptions with the
lowest precision and AUC. This consensus validates our
approach to identify sections of documentation based on
their vocabularies.

Despite features so simple as unigrams without stem-
ming or lemmatization, the performance metrics from
V and VI demonstrate promising results because all
classifiers had low rates of Type I errors (hence average
precision of 0.93+) and had an average 0.91+ minimum
probability of ranking a positive sample higher than a
negative sample.

A. Example Output
In order to illustrate our approach, the following

excerpt exposes the results of our classifiers on the first
ten lines of the README of the PyGeoPressure
repository.

[{’description.sk’:
↪→ 0.4497832746871151, ’excerpt’:
↪→ ’<!-- # pyGeoPressure -->’},

{’description.sk’:
↪→ 0.39746669619634734,

’excerpt’: ’<img src="docs/img/
↪→ pygeopressure-logo.png" alt="
↪→ Logo" ’

’height="240">’},
{’description.sk’:

↪→ 0.7378379663396829,
’excerpt’: ’A Python package for

↪→ pore pressure prediction using
↪→ well log ’

’data and seismic velocity
↪→ data.’},

{’description.sk’:
↪→ 0.4734045518090183, ’excerpt’:
↪→ ’Cite pyGeoPressure as:’},

{’description.sk’:
↪→ 0.4380679608688805,

’excerpt’: ’Yu, (2018).
↪→ PyGeoPressure: Geopressure
↪→ Prediction in Python. ’

...}
...]

The result is returned as a JSON file which contains
the contents of the README separated by paragraphs
(newlines), along with their classification score. For
example, the excerpt “A python package for pore pre-
diction ...” was classified as being close to be a software
description. While our default threshold remains at 0.5,
we continue to analyze how different categories merit
different thresholds.

IV. EXTRACTING OTHER RELEVANT SOFTWARE
METADATA

A manual inspection of software documentation may
allow a users to identify what a software component

does, how to install or use it, and how to cite it. But
there are several other important attributes of software
metadata that are useful in the distribution and organi-
zation of software. Examples of such attributes include:

1) owner of the software for attribution and account-
ability

2) license of the software, which notifies researchers
on the availability and usage restrictions of a piece
of software

3) number of forks, which represent how the com-
munity perceives the usefulness of a software
component

4) programming language to help users identify soft-
ware that match their requirements

5) list of releases to help distinguish different ver-
sions of a software component and how often it
gets maintained.

In SoMEF, we developed a component for fetching
metadata from GitHub repositories by using the GitHub
APIs.6 This kind of metadata also helps complementing
any gaps left by our binary classifiers, as in some cases
it includes short descriptions that can be used to improve
our results. We describe further details on our approach
below.

A. Inputs and Outputs

SoMEF takes a GitHub repository URL as a command
line argument and returns a JSON file with the following
fields:

1) description
2) programming languages
3) license (including name and URL)
4) repository name
5) repository owner
6) list of releases each with author name, description,

release name, tag name, and URLs to the HTML,
link to tarball, release, and link to zipball

7) topics
We illustrate SoMEF with the Tensorflow repository7 in
the following excerpt:

{’description’: ’An Open Source
↪→ Machine Learning Framework for
↪→ Everyone’,

’forks_url’: ’https://api.github.com/
↪→ repos/tensorflow/tensorflow/
↪→ forks’,

’languages’: [’C++’,
’Python’,
’HTML’,
...
],

6https://github.com/KnowledgeCaptureAndDiscovery/SM2KG/blob/
master/helper scripts/fetchgithubmetadata.py

7https://github.com/tensorflow/tensorflow

https://github.com/KnowledgeCaptureAndDiscovery/SM2KG/blob/master/helper_scripts/fetchgithubmetadata.py
https://github.com/KnowledgeCaptureAndDiscovery/SM2KG/blob/master/helper_scripts/fetchgithubmetadata.py
https://github.com/tensorflow/tensorflow


’license’: {’name’: ’Apache License
↪→ 2.0’,

’url’: ’https://api.github.
↪→ com/licenses/apache
↪→ -2.0’},

’name’: ’tensorflow’,
’owner’: ’tensorflow’,
’readme_url’: ’https://github.com/

↪→ tensorflow/tensorflow/blob/
↪→ master/README.md’,

’releases’: [{’author_name’: ’
↪→ goldiegadde’,

’body’: ’# Release 1.15.0-
↪→ rc3\r\n’

...
}, ... ],

’topics’: [’tensorflow’,
’machine-learning’,
’python’,
’deep-learning’,
’deep-neural-networks’,
’neural-network’,
’ml’,
’distributed’]}

V. RELATED WORK

In this section, we first summarize other work that
analyzes or extracts information from unstructured docu-
mentation. We use these studies as a point of comparison
to distinguish SoMEF’s approach. Then, we discuss
how SoMEF ties into software organization in software
registries.

A. Characteristics of a Good README

SoMEF rests on the assumption that the README
is informative and has the information that addresses
understandability, usability, and attribution. However,
SoMEF is not very useful if the README is deficient
in quality. Previous work [9] demonstrates an analyzer
that measures a README’s quality based on the most
starred repositories of a language. While SoMEF and
[9] use similar classification models, they have different
ground truths because SoMEF looks for four specific
software metadata categories while [9] is based on an
average of most starred GitHub repositories.

B. Software Documentation to Development Tasks

In [10] the authors analyze a documentation corpus
and organize unstructured documentation into tasks such
as “add widget” or “add widget to page”. While its
approach is more complicated than SoMEF, the scope of
its problem is also different. SoMEF is more concerned
with smaller pieces of documentation, e.g. READMEs,
and searches for installation and invocation com-
mands, e.g. ”pip install pygeopressure” or

”import pygeopressure as ppp”, respectively,
rather than development tasks. Furthermore, SoMEF also
seeks to extract description and citation information to
make software more understandable, and usable.

C. Software Metadata Registries

Domain-specific disciplines have developed software
metadata registries with metadata descriptions of their
commonly used software, complementing code reposi-
tories which only store software code. Examples of soft-
ware metadata registries include the Community Surface
Dynamics Modeling System (CSDMS) for Earth surface
processes [11], the Astrophysics Source Code Library
(ASCL) in astrophysics [12]; and OntoSoft [13] and
OKG-Soft [14] in geosciences.

Software registries are very useful points of entry for
researchers to search and understand complex software
models. However, the software metadata entries in these
registries are usually curated by hand by experts who
have to skim through unstructured information of vari-
able quality. SoMEF is complementary to these efforts,
as it may be used to automatically suggest new candidate
entries in a more efficient and structured manner.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we have described a novel approach
that employs linguistic features to extract useful soft-
ware metadata, i.e. description, installation, invocation,
and citation, from software documentation. We have
implemented our approach with a baseline model that
extracts unigram features without stemming, lemmati-
zation, or stop words and obtains a minimum average
0.92 precision and 0.90 ROC AUC. We supplement this
model with a framework that fetches additional software
metadata. The baseline results are promising and yield
many possibilities for future work, which we further
describe below:

• Corpus expansion: Since the 74 GitHub reposi-
tories from the corpus are too few in number to
represent GitHub, let alone software as a whole,
we hope expand the corpus by soliciting the help of
crowdsourcing platforms such as Amazon Mechan-
ical Turk8. However, as identification of README
components requires human interpretation, this step
demands a guideline to standardize results and
filter out statistically erroneous interpretations and
annotator bias. We also hope that with this large
a corpus, we will be able to explore state of the
art deep learning techniques to capture semantic
elements within software documentation.

• Text separation: Currently, the model trains and
tests on samples of whole paragraphs, i.e. sections
surrounded by newline characters, because newlines
provided a convenient method to automatically split

8https://www.mturk.com/
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text. However, this method leads to two poten-
tial problems: one entire paragraph may contain
multiple classes sentence after sentence and some
classes, especially citation, consist of entire text
blocks instead of individual sentences. We hope to
refine the corpus to better reflect these realities.

• Exploring other linguistic features: The program-
ming language that built a software can influence
the instructions to install or invoke the software. For
example, installation of python software can require
prerequisite packages and the python command
runs these software. We hope to explore how feature
vectors that encode language-conscious information
may improve detect or distinguish installation or
invocation commands.

• Towards knowledge graphs of scientific software
metadata: Eventually, we hope to take advantage
of this research to automate the effort that scien-
tists spend on setting up scientific software. This
paper establishes the first step, identifying metadata
within a documentation, and we hope it will help
us teach a computer to set up software by itself
without human intervention. Before we get there,
however, we want to take the organized structures,
i.e. the JSONs, that SoMEF creates and integrate
them into Knowledge Graphs (KGs). KGs provide
a structured way to provide relationships between
different entities, thus making software more acces-
sible and easier to find.
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