

OKG-Soft: An Open Knowledge Graph with

Machine Readable Scientific Software Metadata

Daniel Garijo

Information Sciences Institute,

University of Southern California

Marina del Rey, CA, USA

dgarijo@isi.edu

Varun Ratnakar

Information Sciences Institute,

University of Southern California

Marina del Rey, CA, USA

varunr@isi.edu

Maximiliano Osorio

Information Sciences Institute,

University of Southern California

Marina del Rey, CA, USA

mosorio@isi.edu

Yolanda Gil

Information Sciences Institute,

University of Southern California

Marina del Rey, CA, USA

gil@isi.edu

Deborah Khider

Information Sciences Institute,

University of Southern California

Marina del Rey, CA, USA

khider@isi.edu

Abstract—Scientific software is crucial for understanding,

reusing and reproducing results in computational sciences.

Software is often stored in code repositories, which may contain

human readable instructions necessary to use it and set it up.

However, a significant amount of time is usually required to

understand how to invoke a software component, prepare data

in the format it requires, and use it in combination with other

software. In this paper we introduce OKG-Soft, an open

knowledge graph that describes scientific software in a machine

readable manner. OKG-Soft includes: 1) an ontology designed

to describe software and the specific data formats it uses; 2) an

approach to publish software metadata as an open knowledge

graph, linked to other Web of Data objects; and 3) a framework

to annotate, query, explore and curate scientific software

metadata. OKG-Soft supports the FAIR principles of

findability, accessibility, interoperability, and reuse for

software. We demonstrate the benefits of OKG-Soft with two

applications: a browser for understanding scientific models in

the environmental and social sciences, and a portal to combine

climate, hydrology, agriculture, and economic software models.

Keywords—software metadata, software registries, FAIR,

knowledge graphs, software composition, software interoperability

I. INTRODUCTION

Software is a key product of scientific research, as it can
be used to understand and reproduce the findings reported in
a publication (e.g., by rerunning a hydrology model, a genome
sequence analysis or testing a trained machine learning
model). The importance of software is increasingly
recognized [1], with publishers and community initiatives
encouraging researchers to make their software openly
available to others.1

Scientific software created by scientists should be
appropriately documented and curated to facilitate reuse by
other researchers. Code repositories such as GitHub 2 or
BitBucket3 provide the means to store and version code, while
software container repositories such as DockerHub4 capture
the execution environment required to run software. However,
there is usually a lack of important information that makes
software difficult to discover and reuse, such as descriptions
of the main features of the software, unambiguous usage
instructions, incomplete sample data, etc. Moreover, when

1 https://paperswithcode.com
2 github.com/
3 https://bitbucket.org/

this kind of information is present, it is not machine readable,
so it is hard to develop tools to facilitate those tasks for users.

A major barrier to reuse is the time and effort required to
understand how to run scientific software. Researchers need
to understand how to prepare data for software, how to invoke
it, and how to interpret the results produced after its execution.
Despite the desire to use standards, different software codes
operate with heterogeneous data formats. Studies have shown
that scientists spend between 60% and 80% performing data
preparation steps when composing software together in
scientific workflows [2]. This problem is compounded in
numerous applications that require combining software that
has been developed by independent third parties. For example,
combining software for population genomics with another for
genomic network analysis, or combining a hydrology model
software with an agriculture model.

While many common formats and standards have been
proposed, 5 this alone will not solve the interoperability
problem. First, there are still quite diverse standards for the
same kind of data, and a given software package usually
adopts only one. A researcher that wants to use the software
with data from more than one source often needs to understand
that particular format adopted by the software, then write code
to do the necessary transformations. Second, when composing
different software, it is often the case that the data formats are
different. In some cases, the software and standards may have
been developed by different communities (e.g., hydrology and
agriculture). Addressing these challenges requires that
scientific software is described with sufficient details about
the data used, in terms of both format and content. And if these
representations are machine readable then it would be possible
to develop tools to do data transformations automatically.

In this paper we present OKG-Soft, a framework to
capture and publish machine-readable software metadata.
OKG-Soft builds on OntoSoft [3], [4], our previous work to
capture scientific software metadata, and expands it with
machine readable descriptions of the expected contents of
inputs and outputs of software. OKG-Soft has three main
novel contributions:

1- A modular ontology to describe software and its
associated input and output metadata.

4 hub.docker.com/
5 https://frictionlessdata.io/specs/

This work was funded by the Defense Advanced Research

Projects Agency with award W911NF-18-1-0027, and the

National Science Foundation with award ICER-1440323

2- An approach to publish software metadata within an
open knowledge graph, and linking it to the Web of
Data following Linked Data principles [5], [6].

3- A framework designed to populate, query, explore,
and curate software metadata.

We demonstrate the benefits of our approach by capturing
metadata for software from environmental and social sciences,
including software models from climate, hydrology, economy
and agriculture, and by showing how this metadata can be
used to explore, understand, and compose diverse software.

Our approach with OKG-Soft captures and publishes
machine-readable metadata in support of the FAIR principles
of findability, accessibility, interoperability, and reuse for
software [7].

The rest of the paper is structured as follows. Section 2
describes related work for capturing, storing and accessing
software metadata. Section 3 explains the insights of OKG-
Soft, i.e., the rationale behind the ontologies we propose and
reuse; how the knowledge graph is populated, linked and
enriched with existing knowledge bases; and how different
types of developers can access the content of OKG-Soft
through our proposed APIs. Section 4 presents how we have
validated our approach with a series of queries to gather
insight about the software entries in the knowledge graph,
together with two showcase applications, one for exploring
software model metadata and another one for composing
software. Finally, Section 5 concludes the paper discussing
our current efforts and future work.

II. RELATED WORK

In this section we discuss existing ontologies for capturing
different aspects of software metadata, along with systems that
facilitate describing, capturing and sharing software.

A. Ontologies for Capturing Software Metadata

A number of ontologies have been proposed to describe
software at different levels of granularity. In our previous
work we presented OntoSoft [8] and OntoSoft-VFF [4], which
capture scientific software metadata from a scientist’s
perspective through a series of questions they are familiar
with. In this work we extended OntoSoft to expose additional
metadata, context and semantic relationships between entities
associated with software. This includes the expected contents
of software input and output files, which help determining
compatible software components.

The CodeMeta project6 [9] is a community driven effort
that presents a generic crosswalk from common terms used by
code repositories to describe software (e.g., pointing to the
code repository, readme file instructions, license, metadata,
etc.). CodeMeta includes a mapping to OntoSoft and extends
the Schema.org vocabulary, 7 which has been widely adopted
by the community. This vocabulary does not semantically
structure the contents of software (i.e., inputs, outputs and
executable information), but we have reused in our work to
incorporate generic metadata about software.

6 https://github.com/codemeta
7 http://schema.org/
8 http://usefulinc.com/ns/doap
9 http://km.aifb.kit.edu/sites/cos/
10 http://purl.obolibrary.org/obo/swo.owl
11 http://purl.obolibrary.org/obo/ro.owl

The Description of a Project Ontology (DOAP) 8 is
designed to describe software projects, emphasizing the
description of the organization of software (issues, bug
tracking, wiki discussions, etc.). While this effort is related to
software, it goes beyond the scope of this paper.

The Core Software Ontology (CSO)9 and Core Ontology
of Software Components (COSC) [10] extend the DOLCE
[11] upper ontology to describe software libraries and web
services in detail. CSO specifies concepts related to software
and data, and includes both software components and services.
COSC extends CSO to define software components further.
An interesting aspect of these ontologies is that inputs and
outputs of software are defined as roles, played by different
types of data. Roles are adopted for addressing policies, which
have to be specified by users. Such formalizations require
users to understand logic inference in ways that makes the
vocabularies difficult to reuse. The link between software
inputs and their expected contents is not modeled in CSO.

In the bioinformatics domain, the Software Ontology
(SWO)10 extends some of the Open Biomedical Ontologies,
such as the Basic Formal Ontology [12] and the Relations
Ontology 11 to describe software relationships. SWO also
extends the EDAM Ontology [13], which describes common
data types and formats used in bioinformatics, linking them to
a taxonomy of software. In addition, SWO describes a
thorough taxonomy of programming languages, but defines
them as classes instead of instances. SWO does not describe
the expected contents of inputs, outputs or formats.

Finally, other ontologies have been designed to address
specific aspects of software. For example, the DockerPedia
ontology [14] captures executable information of software
containers, such as their installed packages and potential
vulnerabilities. DockerPedia builds on WICUS [15], an
ontology to describe computational infrastructure for
scientific experiments. We use these ontologies to inform our
work in OKG-Soft.

B. Software Repositories and Software Metadata Registries

Scientists are increasingly using software repositories to
store versions, test, integrate and disseminate their code.
Repositories such as GitHub, GitLab 12 and BitBucket are
perhaps the most widely used by the community, but don’t
usually hold much metadata besides license, creator and
installation instructions. When releasing code, scientists may
refer to other more specific platforms, such as Figshare 13 or
Zenodo,14 as they provide DOIs stating how to cite a particular
code. Package repositories such as CRAN, 15 Pypi, 16 or
Maven Central17 focus on the ability to execute and import
code, but not necessarily on its usability. Software container
repositories such as DockerHub address the execution of
software with complex dependencies, but usually lack
metadata necessary for effectively understand software.

Software metadata registries focus on metadata
descriptions of software, complementing code repositories
which focus on the code. Software metadata registries may not
store the code itself, but will likely have a pointer to a code
repository to find it. Examples of software metadata registries

12 https://gitlab.com/
13 https://figshare.com/
14 http://zenodo.org/
15 https://cran.r-project.org/
16 https://pypi.org/
17 https://search.maven.org/

are the Community Surface Dynamics Modeling System
(CSDMS), which contains hundreds of codes for models for
Earth surface processes [16], the Computational Infrastructure
for Geodynamics, 18 which emphasizes metadata on how to
perform model specific operations such as coupling and
regridding; the Astrophysics Source Code Library (ASCL),
which contains unambiguous code descriptions in
astrophysics [17]; and OntoSoft [18], which describes
software for geosciences. These software registries contain
instructions on how to run software, but do not usually
represent this information in a machine-readable manner to
facilitate software reuse and composition.

Scientific gateways such as NanoHub [19] allow
describing and finding software, even executing tools
individually. Similarly, scientific workflow systems combine
software together to represent larger analyses. Scientific
workflows usually include many software codes from a
particular domain, e.g., LONI Pipeline for neuroimaging
genomics[20], GenePattern and Galaxy for genomics [21],
and Taverna for bioinformatics services [22]. However, while
automated workflow composition based on inputs and outputs
of software has been researched (e.g., [23], [24]) there is not
much work in describing how the contents of inputs and
outputs may be related to each other.

III. OKG-SOFT: A KNOWLEDGE GRAPH FOR SCIENTIFIC

SOFTWARE

OKG-Soft is an open knowledge graph designed to
represent software metadata in a machine-readable manner.
OKG-Soft pays special attention to the description of inputs
and outputs of software, in order to represent their expected
formats and contents that can support automated data
preparation and software composition. We organize OKG-
Soft in three main components: 1) an ontology designed to
describe software and capture machine-readable metadata; 2)
an open knowledge graph of software descriptions that
publishes this metadata and 3) a curation and exploitation
framework to facilitate developers and domain scientists
exploring and reusing the contents of OKG-Soft. We further
describe each of these components below.

A. Software Description Ontology

We have developed the Software Description Ontology
(with prefix sd), the core ontology we propose for representing
entities in OKG-Soft. The latest version of the ontology is
available and documented at https://w3id.org/okn/o/sd.

1) Development Methodology
The Software Description Ontology relies on our previous

work in OntoSoft [8] and OntoSoft-VFF [4]. The main
differences with previous work are highlighted in Figure 1,
and consist of a simplification of the core model, an extension
of its semantics to relate concepts instead of textual
descriptions and the addition of variables and metadata to
capture how software may be used in composition with other
software. The ontology was developed in an iterative manner,
expanding the requirements from [18]. A list of our complete
requirements may be found in [25] .

We have favored the reuse of existing vocabularies and
standards in our ontology development. We adopt Codemeta
[9] to describe all basic software attribution terms, such as

18 https://www.earthsystemcog.org/projects/esmf/
19 http://www.qudt.org/release2/qudt-catalog.html

author, maintainer, funding, license, associated publications,
etc. Codemeta is a community-driven initiative that uses
Schema.org as core vocabulary to represent software
(schema:SoftwareApplication). As shown in Figure 1, we
extend Schema.org to align our concept to that vocabulary and
inherit all its metadata properties. An advantage of using
Codemeta is that it has become a reference vocabulary
between different code repositories, and hence it facilitates
interoperability between software metadata entries.

We have also extended the W3C Data Cubes standard [26]
with dataset specifications (subclass of
qb:DataStructureDefinition, as indicated in Figure 1). The
Data Cube standard defines how to structure n-dimensional
cubes of observations, and although it is tailored towards
representing the observed values, the representation of the
structure of a cube satisfies our needs for dataset
representation.

Next, we reused NASA’s Quantities, Units, Dimensions,
and Data Types vocabulary(QUDT)19 for representing units of
variables, enriched with the canonicalization compound unit
representation and transformation ontology (CCUT) 20 that
provides additional properties to describe how to perform unit
transformations.

Finally, we extend the DockerPedia ontology [14] to
describe the executable containers that may be associated with
a software component. DockerPedia was initially aimed at
representing Docker containers, but other container
frameworks can be easily represented in a similar manner.
DockerPedia includes classes and properties to represent very
specific descriptions of a software container, such as the
software packages included, size of the image, dependent
layers, testing commands, etc. Having these descriptions is
useful to find commonalities between different software and
potential vulnerabilities.

2) Overview of the Software Description Ontology
Figure 1 shows an overview of the main concepts of the

Software Description Ontology. We use sd:Software as a
general concept that refers to any piece of software we may
want to describe. Scientific software is quite diverse, and may
include generic software packages such as Scikit-learn21 (a
popular machine learning analysis framework), web services
or concrete software scripts configured to run with a particular
dataset. Software may have one or more sd:SoftwareVersions,
which represent the evolution of a software component across
time. It is important to describe the code for different software
versions separately when reporting scientific results, as
otherwise the results may differ from previous executions with
another software version. Versions may be associated with
one or more sd:SoftwareConfigurations, which represent a
unique executable function of a particular software. For
example, one software configuration of Scikit-learn may
include a primitive invocation that imputes a target dataset,
while another one may expose a trained model with a
classifier. Software configurations are key to appropriately
capturing heterogeneous functions in complex software
libraries that can be used for multiple purposes (e.g., dataset
analysis, creating visualizations of results, preparing data,
etc.); and capture how a software component is invoked.

20 https://w3id.org/mint/ccut#
21 https://scikit-learn.org/

Software configurations also link to the expected structure
(sd:DatasetSpecification) of those inputs (sd:hasInput),
parameters (sd:Parameter) and outputs (sd:hasOutput) used
or produced by software. Note that dataset specifications may
define the structure of other sources besides files, such as data
streams, APIs or database accesses that software connects to.
Dataset specifications capture critical metadata such as the
format of an expected input (sd:hasFormat) and the variables
it may contain (sd:VariablePresentation). Examples of
variables include the population of a district in a city from a
census file used for creating a map visualization; precipitation
measurements used to create a weather report; or the
prediction of a trained machine learning model. Most software
use a structured format to read data from inputs and serialize
the output, even when performing simple tasks such as split
and merge data. By capturing the expected structure of inputs
and outputs, we can relate different software configurations in
terms of the expected variables they use and produce.
Software using generic functions on variables (e.g.,
calculating the average of a column in a file) may be described
using anonymous variables.

Different software configurations may use different
identifiers to refer to their variables. For instance, a climate
model may expect a CSV file with a variable named “PREC”
to refer to precipitation. Other software may use “P” to refer
to the same variable. Fortunately, different scientific
communities have developed and adopted naming standards,
such as Climate and Forecast (CF)22 in the climate community
or the Scientific Variables Ontology23 in geosciences, which
aim at helping scientists use the same variable names based on
their meaning. We have included the term
sd:StandardVariable to allow linking different variables in
dataset specifications to an existing standard (such as CF).

3) Accessibility and Modularity
Each version of the Software Description Ontology (SD)

is stored independently and can be found in human readable
and machine readable way to facilitate its reusability. The
ontology aims to describe common aspects of software, and is
organized in a modular manner. Therefore, anyone can import
our ontology as part of another ontology that describes
software at a more granular level. As an example, in our work
we extended SD in the Software Description Ontology for
Models (https://w3id.org/okn/o/sdm), which contains
properties and classes specific to software for scientific

22 http://cfconventions.org

models (e.g., spatial grids, time intervals at which the model
operates, model assumptions, equations, processes captured
by a model, etc.)

B. Publishing Software Metadata in the Web of Data

A major aspect of how OKG-Soft supports FAIR
principles for software is the publication of software
descriptions as an open knowledge graph in the Web of Data
according the Linked Data principles [5], [6]: 1) we used
derreferenceable HTTP URIs as identifiers for all the elements
in the graph; 2) we used W3C standards (RDF [27] and
SPARQL [28]) to return valuable information when accessing
a URI, and 3) we linked relevant URIs together. We also used
a permanent URI structure to ensure the long term availability
of URIs, following the convention:

https://w3id.org/okn/i/[datasetID]/[instanceName]

Where datasetID denotes the name of the dataset we want
to contribute to (e.g., in case we want to organize the graph for
different software communities) and instanceName represents
the identifier of a resource in the dataset.

Next, we populated OKG-Soft in two phases. In the first
phase, we conducted a manual collection process of the
information about the software models we wanted to add to
the graph. In the second phase we expanded the collected
information by linking it to external knowledge graphs with
additional metadata. We describe these phases below.

1) Manual Software Metadata Collection
In a first iteration, we held a series of community meetings
and workshops with software developers and environmental
modelers to collect the metadata needed to describe and
execute complex environmental models, including their data
preparation and post-processing steps. This effort was
performed within the scope of the Model Integration project
(MINT) [29], which aims to provide a framework to reduce
the time needed to integrate and compose complex software
models from different disciplines, ranging from Climate to
Agriculture or Economy. These types of software models are
usually complex to set up and prepare data for, and therefore
constitute an excellent testing ground for our ontology and
knowledge graph. As a result of this process, we added 8
models (2 from climate sciences, 4 from hydrology, 2 from

23 http://www.geoscienceontology.org/svo

Figure 1: Overview of the main concepts of the Software Description Ontology, used to model OKG-Soft.

agriculture and 1 from economics), 31 software configurations
that include software on how to transform, prepare and
visualize data for the included models; and more than 280
relevant variables which describe their input and output data
in detail.

2) Linking OKG-Soft to the Web of Data
We have enriched OKG-Soft by linking parts of the graph

to existing initiatives and knowledge graphs for describing
different aspects of software. We describe them below:

a) Semantic Description of Units.

Expert users and developers describe units associated with
variables in a human readable manner (e.g., “m/day”).
However, this representation is not enough if we aim to
automatically find compatible variables (authors may describe
variables using different notations) or plan to perform
automated unit transformations. We need a semantic
representation of units and their atomic components so they
can be effectively reused by automated systems.

We leverage the work presented in [30] to transform the
textual representations into a structured format. After this
transformation, a unit such as “m/day” would turn into the
structured RDF representation presented in Listing 1. The
listing includes prefixes to represent the namespace of the
vocabularies that are used, i.e., qudt (the NASA standard),
ccut (a custom extension of qudt presented in [30]), mint (to
refer to the entities in OKG-Soft) and rdfs (W3C standard).
This representation has a clear separation between a target unit
(m/day) its constituents (meter, day), their dimensions (length,
time) and their relationship (length by time). Other units such
as “km/month” share the dimension “L T-1” (length by time),
making it easy to assess their compatibility.

b) Semantic Description of Variables

We use the Scientific Variables Ontology (SVO) [31],24
an evolved version of the Geoscience Standard Names [32],
as our main vocabulary for linking variables to a unique
unambiguous standard representation. SVO was designed to
serve as a semantic mediation hub between software models
and it defines a set of principles and guidelines to create
unique variable identifiers based on its characteristics. For
example, while two different software models may refer to
“temperature” as a variable in their inputs, the first model may
expect temperature to be at sea level, while the second model
may expect it at a certain soil reference depth. In SVO, both
of these variables correspond to two separate identifiers,
namely “sea_surface_water__temperature” and
“soil__reference_depth_temperature”, which are semantically
related to “temperature”.

We used the identifiers provided by expert modelers and
software developers (built following the principles from SVO)
to extract the context associated with each identifier and bring
it into OKG-Soft. An example can be seen in Listing 2 for a
variable “PRCP” that belongs to a hydrology model and
corresponds to “main__precipitation_leq_volume_flux”:

The example shows how one variable from a hydrology
model (pihm_PRCP), defined as PRCP by the model in one
of its input files, is associated with the unique standard
variable atmosphere_water__precipitation_leq_volume_flux,
which refers to water, quantifies a precipitation process and

24 http://www.geoscienceontology.org/svo

refers to the property precipitation_leq_volume_flux, a type of
volumetric flux.

Variable context is crucial for proper interpretation and
reusability of software. It can also be used to detect
inconsistencies in the data, e.g., if the expected dimension
linked by a standard variable does not match the variable
presentation unit dimension.

c) Semantic Description of Software Images

Nowadays it is commonplace to use software containers to
facilitate the execution and set up of software. In OKG-Soft
any container framework can be linked. We are using Docker
containers 25 that include all executable packages and
dependencies required to run each of the software entries
described in the knowledge graph. However, the content of a
container may be difficult to explore by a user. We use
DockerPedia’s web service26 to analyze and create a semantic
representation of each container. This analysis includes all the
software dependencies of a software configuration. Listing 3
shows an excerpt of one of the container descriptions

25 https://bit.ly/30EyFYS
26 dockerpedia.inf.utfsm.cl/

@prefix qudt: <http://qudt.org/1.1/schema/qudt# > .
@prefix ccut: <https://www.w3id.org/mint/ccut#> .
@prefix mint: < https://w3id.org/ okn/i/mint/> .
@prefix rdfs:< http://www.w3.org/2000/01/rdf-schema# > .
mint:m_day_1L_T_1 a qudt:Unit;
 rdfs:label "m day-1" ;
 ccut:hasPart " mint: u_L_meter_m, mint: u__1_T_day_day ;
 ccut:hasDimension "L T-1";
 qudt:abbreviation "m day -1".
mint:u_L_meter_m a qudt:Unit;
 rdfs:label "m" ;
 ccut:hasDimension "L";
 ccut:QuantityKind qudt:Meter;
 ccut:symbol "m".
mint:u__1_T_day_day a qudt:Unit;
 rdfs:label "day-1" ;
 ccut:exponent "-1";
 ccut:hasDimension "T";
 ccut:QuantityKind qudt:Day;

 ccut:symbol "d".

Listing 1: Machine readable representation of the unit “m/day”. The unit is

divided in two parts (meter and day), also described as units.

@prefix mint: < https://w3id.org/okn/i/mint/> .
@prefix rdfs:<http://www.w3.org/2000/01/rdf-schema# > .
@prefix sd: <https://w3id.org/okn/o/sd#> .
@prefix svu: <http://www.geoscienceontology.org/svo/svu#> .
mint:pihm_PRCP a sd:VariablePresentation;
 rdfs:label "PRCP" ;
 dc:description “Value of precipitation“;
 sd:usesUnit ms:m_day_1L_T_1;
 sd:hasStandardVariable
<main__precipitation_leq_volume_flux>.
<main__precipitation_leq_volume_flux>
 rdfs:label "atmosphere_water__precipitation_leq_volume_flux";
 svu:describesProcess
<http://www.geoscienceontology.org/svo/svl/process#precipitation> ;
 svu:hasObject
<http://www.geoscienceontology.org/svo/svl/matter#water>,
<http://www.geoscienceontology.org/svo/svl/body#atmosphere> ;
 svu:hasProperty
<http://www.geoscienceontology.org/svo/svl/property#precipitation_l
eq_volume_flux> ;
 svu:quantifiesProcess
<http://www.geoscienceontology.org/svo/svl/process#precipitation> .

Listing 2: Machine readable description of a variable “PRCP” that is linked

to SVO (main__precipitation_leq_volume_flux).

generated by DockerPedia for a climate model, which are also
available as Web of Data objects (included software packages
have been reduced for readability).

d) Expanding Software Descriptions with Wikidata

Wikidata27 [33] is an open, crowdsourced knowledge base
that contains more than 50 million statements about entities of
interest in the world. Wikidata is a great source of machine-
readable knowledge about entities relevant to software, and is
continuously growing thanks to a community of users who
curate available contents. We use Wikidata as an additional
source to enrich software descriptions. We link software,
atomic variables, and units that have an exact match in
Wikidata to elements in OKG-Soft. We use an interactive
process to clarify with a user whenever a term is ambiguous.
For instance, terms like “albedo” may have several definitions
in Wikidata, as it could be a physical property, a role-playing
game or a color.

Listing 4 shows how an enriched term appears in OKG-
Soft. Note the owl:SameAs link to the Wikidata term, which
indicates that that the albedo entity in the software description
and the Wikidata P4501 entity refer to the same thing. The
schema:description definition is imported from Wikidata.

All the software developed to facilitate enriching and
linking OKG-Soft with existing work is openly available
online under a CC-BY license [34].

C. Programmatically Accessing OKG-Soft

In order to maximize the usability of the contents in OKG-
Soft, we have strived to make the knowledge graph accessible
to software developers and users with and without knowledge
representation or RDF/SPARQL skills.

Figure 2 shows an overview of the OKG-Soft API
architecture. The lower part of the figure depicts our SPARQL
endpoint,28 which we use to organize the contents of OKG-
Soft according to the Software Description Ontology. The
SPARQL endpoint is targeted towards users familiar with
Semantic Web technologies. In order to manage software
contributions from users, we have organized the SPARQL
endpoint in named graphs [35], where each contributor can
edit their own graph. Therefore, all users can explore software
entries added by other users, but only corresponding authors
can delete their own contents.

As shown in the medium part of Figure 2, we have
designed REST APIs for developers without SPARQL skills
to access, add and edit software entries in our SPARQL

27 http://wikidata.org/
28 https://endpoint.mint.isi.edu/ds/query
29 https://github.com/mintproject/MINT-ModelCatalogQueries

endpoint. We have adopted GRLC [36] to implement our
access queries, as it provides a framework to configure REST
APIs by specifying SPARQL queries in a GitHub repository.29
Whenever a new GET API call is required, we write the
corresponding SPARQL query and GRCL will automatically
make it available in the API. GRLC enables us to quickly
integrate any new API requirements in a matter of seconds,
without having to worry about configuration or deployment of
the system.

New software entries for OKG-Soft are validated and
managed through an Open API implementation,30 following
the best practices adopted by developers. Developers may
issue requests in JSON or JSON-LD [37], following the
classes and properties defined in our ontology. We do not
require creating complete software entries. Instead, software
developers may edit and expand existing software entries by
using a PUT operation. Since the amount of triples required to
fully describe a software component is usually within
hundreds of triples, we do not expect scalability issues
(current triple stores can handle millions of triples without an
issue). Both access and edit APIs can be found online31 along
with documentation and examples.

Finally, as shown in the center of Figure 2, we have also
designed programmatic clients to facilitate using our proposed
APIs. In this case, our target are users who are familiar with
scripting languages such as Python, but are not familiar with
REST APIs. An example stating how to use our Python client
can be found in an online notebook.32

IV. USING OKG-SOFT TO EXPLORE AND COMPOSE SOFTWARE

In order to illustrate the benefits of OKG-Soft, we show in
this section how queries can be answered to obtain machine-
readable metadata. We also show how it can be used to
explore different software metadata at various levels of
complexity through two applications that exploit the contents

30 https://github.com/mintproject/MINT-ModelCatalogIngestionAPI
31 https://query.mint.isi.edu/api/mintproject/MINT-ModelCatalogQueries#
32 https://github.com/mintproject/MINT-ModelCatalogAPI-client

Figure 2 OKG-Soft API structure

@prefix dp:
<http://dockerpedia.inf.utfsm.cl/resource/SoftwareImage> .

@prefix dps:

<http://dockerpedia.inf.utfsm.cl/resource/PackageVersion> .
@prefix dpv: <http://dockerpedia.inf.utfsm.cl/vocab# >.

@prefix rdfs:< http://www.w3.org/2000/01/rdf-schema# > .

dp:mintproject-weather-generator_latest
 rdfs:label "mintproject/weather-generator" ;

 dpv:imageIdentifier "mintproject/weather-generator:latest" ;

 dpv:tag "latest";
 dpv:containsSoftware dps:python-pip-9.0.1-2.3~ubuntu1,

dps:expat-2.2.5-3.

@prefix sv:< http://www.geoscienceontology.org/svo/svl/property#> .

@prefix schema: <https://schema.org/> .

@prefix owl: <http://www.w3.org/2002/07/owl#> .

sv:albedo

 rdfs:label "albedo","reflection_coefficient" ;
 owl:sameAs <http://www.wikidata.org/entity/P4501> ;

 schema:description "ratio of reflected radiation to incident radiation"

Listing 3: Fragment of a container description for a climate model

Listing 4: Linking OKG-Soft variables with Wikidata descriptions

of the knowledge graph to facilitate software understanding
and composition.

A. Answering Queries about Software

We designed queries to evaluate OKG-Soft based on the
requirements collected in our ontology development phase.
That is, the queries aim to test how well a software component
can be described to ease its understanding (i.e., input and
output description) and composition with other software.
Given the domain we chose to populate the knowledge graph,
we use queries based on environmental software models.
However, these can be generalized to describe any other type
of software. The queries and answers used in this section are
available in [38].

Query 1: What is the basic description of a given software
component?

This is perhaps the simplest query to start understanding
the details of a software and its metadata, as it returns a
description of its functionality, authorship and pointers to
other details of software, such as its available versions,
categories, etc. If we use Cycles 33 (an agriculture model
derived from [39]) as our target software, the query would
look as illustrated in Listing 5.

Query 2: What is the information about the execution
requirements for all available versions and configurations of
a given software component?

This query serves a dual purpose: it finds all the versions
and configurations of a given software component and
retrieves pointers to their executable information, i.e., the
location of the scripts detailing how to invoke software and
whether it has associated containers for its execution. For
Cycles, the resultant query is shown in Listing 6.

Query 3: What are the expected inputs and outputs of a
software configuration?

This query gives an insight into how a specific software
component can be executed by listing its required inputs and
expected outputs. Optional outputs are returned as part of a
configuration, even if they are not always present in the
execution of the component. In the case of Cycles, the query
in Listing 7 returns all its configurations, with their associated
inputs and outputs grouped together.

Query 4: Given an input or output, what are its associated
variables and metadata?

Once the inputs and outputs used by a software
configuration are clear, the next step is to find more about their
contents, i.e., the different variables they describe. For
example, in the previous example one of the inputs of Cycles
is a “weather” file (mint:cycles_weather), that contains
relevant variables for the software model related to weather.
Listing 8 displays the query required to further describe the
file. The results of the query produce a table, where each row
is a variable with its label, its description, the units it is
measured in and the standards variable it corresponds to. For
example, one of the variables included in the file is “Tn”
(minimum temperature of the day), measured in Celsius,
which corresponds to the SVO term
“air__daily_min_of_temperature”.

33https://plantscience.psu.edu/research/labs/kemanian/models-and-

tools/cycles

Query 5: Which software produces a variable that may be
used as input for another software component?

This query expands on how a software component may be
composed with other software. Specifically, it retrieves those
software entries that produce a resulting variable required to
run another software. Following our previous example for

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

prefix sd: <https://w3id.org/okn/o/sd#>
select ?version ?configuration where {

 ?model sd:hasSoftwareVersion ?version;

 rdfs:label "Cycles".
 ?version sd:hasConfiguration ?configuration.

 OPTIONAL {?configuration sd:hasComponentLocation ?loc}

 OPTIONAL {?configuration sd:hasContainer ?cont.}
}

@ prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .
@ prefix sd: <https://w3id.org/okn/o/sd#> .

select distinct ?configuration (group_concat (distinct ?input;

separator=', ') as ?input_variables) ((group_concat (distinct ?output;
separator =', ') as ?output_variables) where {

 ?soft sd:hasSoftwareVersion ?version.

 ?soft rdfs:label "Cycles".
 ?version sd:hasConfiguration ?configuration.

 ?configuration sd:hasInput/rdfs:label ?input;

 sd:hasOutput/rdfs:label ?output .

}

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
prefix sd: <https://w3id.org/okn/o/sd#>

prefix mint: < https://w3id.org/okn/i/mint />

select distinct ?label ?longName ?unit ?sn where {

mint:cycles_weather sd:hasPresentation ?variable.

 ?variable sd:usesUnit/rdfs:label ?unit;

 rdfs:label ?label;
 sd:hasLongName ?longName;

 sd:hasStandardVariable/rdfs:label ?sn.

}

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>

prefix sd: <https://w3id.org/okn/o/sd#>

select distinct ?model_config where {
 ?io a sd:DatasetSpecification.

 ?io sd:hasPresentation / sd:hasStandardVariable / rdfs:label

"air__daily_min_of_temperature".
 ?soft_config sd:hasOutput ?io.

}

Listing 6: Query to retrieve all versions and configurations of a software
component (?soft) and their respective executable information.

Listing 7: Query to retrieve inputs and output of a software component.I

Listing 8: Query to retrieve the inputs and outputs of a software

configuration (?soft_config)

Listing 9: Query to retrieve software compatible with a given software input
(mint:cycles_weather)

prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#>
SELECT ?property ?value

WHERE {

 ?software ?property ?value.
 ?software rdfs:label “Cycles”

}

Listing 5: Query to retrieve basic descriptions of software

Cycles, we can query for software entries that generate
estimates on the minimum temperature of the day, as shown
in Listing 9.

The result of the query (available online with the rest of
the queries shown in this section [38]) returns a software
configuration from a weather generator which can be used to
inform an agriculture model.

A very similar query (by replacing sd:hasOutput with
sd:hasInput) may be used to retrieve which software
configurations are compatible with a given result from Cycles,
and thus retrieve which other software entries Cycles can be
combined with.

In summary, these queries show how the contents of
OKG-Soft may be used to gather insight about the different
ways of running software, its expected inputs, outputs and
variables; and how it may interoperate with other software. All
queries return results in less than a second.

B. An Application for Exploring Software Components:

Model Explorer

We have designed Model Explorer,34 an application for
finding and exploring software models and metadata available
in OKG-Soft without having to interact with the APIs or
clients designed for developers. A snapshot of the application
can be seen in Figure 3, highlighting the main capabilities of
Model Explorer.

As shown on the top left of Figure 3, users can search for
existing software models by typing their names, or sorting
them out by category (e.g., Agriculture, Climate, etc.). Once a
model is selected, the application will show its available
versions and software configurations so users can explore
their corresponding inputs and outputs (highlight 2 on Figure
3). If several software configurations are available for a
particular model version, the application will display them
side by side to enable comparison. If several versions of a

34 http://models.mint.isi.edu

software component are available, by default the system will
display the last one, allowing users to select others.

Elements shown in model configurations are interactive
and will lead the users to pages with more information about
a software component. For example, highlight 4 in Figure 3
shows the variable description table that appears after clicking
on one of the inputs of a hydrology model. Highlight 3 shows
an interactive graph of the variables included on a model, and
how they affect each other in a particular software
configuration. The code of the Model Explorer application is
available online.35

C. An Application for Facilitating the Integration and

Composition of Software Models: MINT

One of the most challenging aspects of using software
models is selecting the appropriate input data products and
preparing them according to the models to run. MINT [29],
[40] is a novel framework for model integration that uses
semantic representations to describe datasets and models to
support users in data search and transformation; model
selection, setup and combination into end-to-end workflows,
and execution and visualization of results. MINT is integrated
with OKG-Soft, exploiting the contents of the knowledge
graph to assist users when running individual software models
or when running software models in combination with other
models. Figure 4 shows a simplified overview of how the
system interacts with users to assist in their analysis. First,
users specify a set of variables of interest for the modeling
question they want to address. For example, in Figure 4 a user
is interested in analyzing how different aspects of rainfall
would affect crop production for a given region. MINT uses
this information to locate software models that produce the
target variable (crop production), and how to derive it from
the driving variable of the analysis (rainfall). Since rainfall is
a variable that could refer to different specific properties (mass
flux, average volume, volume flux or time integral of volume
flux), the system considers all of them when looking for
candidate software models. Then, MINT suggests appropriate

35 https://github.com/mintproject/MINT-ModelCatalogExplorer/

Figure 3: An overview of the Model Explorer, and application to navigate scientific software models included in OKG-Soft. Model Explorer allows searching
for models (1), analyzing which are the inputs and outputs of a given model configuration (2) viewing potential relationships between variables (3) and finding

out more about the contents of model files (4)

combinations of models, along with the necessary data
transformations composed together as a workflow.

V. CONCLUSIONS AND FUTURE WORK

In this paper we have presented OKG-Soft, a framework
for capturing, publishing, and using machine-readable
metadata for software. We have organized the contents of
OKG-Soft by extending the Software Description Ontology
with descriptions of input and output datasets of the software
in terms of format and contents. We have tested our ontology
by modeling and curating environmental software, including
domains such as hydrology, climate and agriculture. We
publish the software descriptions as an open knowledge graph
with links to the Web of Data using Linked Data principles.
Our framework supports the FAIR principles with respect to
scientific software by exposing software descriptions on
public APIs for search purposes (findability), using persistent
HTTP URIs to refer to software and its associated contents
(accessibility), using common vocabularies and standards to
describe software (interoperability) and by describing the
inputs and outputs of software (easing reusability). Two
applications (Model Explorer and MINT) demonstrate how
the infrastructure we developed may be used to explore and
combine software models.

We are supporting additional queries and improving the
documentation of our APIs to facilitate their usability. We are
also working with third party developers of scientific software
who are starting to and curate the contents of OKG-Soft and
posing new requirements.

As for the population of OKG-Soft, while adding a new
entry on the knowledge graph can be achieved through an API
call, we still have to address the curation and editing of
software metadata. Creating complete metadata for a piece of
scientific software can take a significant amount of time for
contributors, but we argue that the process only needs to be
completed once, and the payoff in terms of composition,
understanding and reusability is worth the extra effort.
Nevertheless, our current and future work aims to address this

issue by moving towards an automatic metadata ingestion
approach. We plan on testing text metadata extraction
techniques to retrieve relevant software metadata (license,
contributors, variable information, etc.) typically buried in
readme files, instruction manuals or even source code.

We are also working on describing the format of files in
terms of how variables are represented within input and output
files (e.g., their position in a CSV), so as to automatically
reformat files and convert variables. Finally, we are working
towards creating an executable environment to test the
software entries defined within OKG-Soft.

ACKNOWLEDGMENTS

This work was funded by the Defense Advanced Research
Projects Agency with award W911NF-18-1-0027 and the
National Science Foundation with award ICER-1440323. We
would like to thank Dhruv Pattel, Rohit Mayura, Amrish Goel
and Anuj Doiphode for their help and work in the Model
Explorer and APIs. We would also like to thank all the
researchers who have contributed to OKG-Soft and MINT,
including Christopher Duffy, Lele Shu, Scott Peckham,
Armen, Kemanian, Kelly Cobourn, Zeya Zhang and Maria
Stoica.

REFERENCES

[1] Y. Gil et al., “Toward the Geoscience Paper of the Future: Best

practices for documenting and sharing research from data to

software to provenance: Geoscience Paper of the Future,”

Earth Space Sci., vol. 3, no. 10, pp. 388–415, Oct. 2016.

[2] D. Garijo, P. Alper, K. Belhajjame, O. Corcho, Y. Gil, and C.

Goble, “Common motifs in scientific workflows: An empirical

analysis,” Future Gener. Comput. Syst., vol. 36, pp. 338–351,

2014.

[3] Y. Gil, V. Ratnakar, and D. Garijo, “OntoSoft: Capturing

scientific software metadata,” in Proceedings of the 8th

International Conference on Knowledge Capture, 2015, p. 32.

[4] L. Carvalho, D. Garijo, C. B. Medeiros, and Y. Gil, “Semantic

Software Metadata for Workflow Exploration and Evolution,”

Figure 4: Overview of the process followed by MINT to guide users for model composition. First, users select the driving variables (inputs) and response
variables (outputs) to focus on (1). Then, the system looks for available combinations of software models from OKG-Soft (2). Finally, a workflow including

all necessary transformations is shown to users (3), highlighting different modeling domains in different colors.

in Proceedings of the Fourteenth IEEE International

Conference on eScience, Amsterdam, The Netherlands, 2018.

[5] T. Berners-Lee, “Linked Data: Design Issues,” World Wide

Web Consortium, Jul. 2006.

[6] C. Bizer, T. Heath, and T. Berners-Lee, “Linked Data - The

Story So Far,” Int. J. Semantic Web Inf. Syst., vol. 5, no. 3,

2009.

[7] M. D. Wilkinson et al., “The FAIR Guiding Principles for

scientific data management and stewardship,” Sci. Data, vol.

3, p. 160018, Mar. 2016.

[8] Y. Gil, V. Ratnakar, and D. Garijo, “OntoSoft: Capturing

Scientific Software Metadata,” 2015, pp. 1–4.

[9] M. B. Jones et al., “CodeMeta: an exchange schema for

software metadata. KNB Data Repository.” KNB Data

Repository, 2016.

[10] D. Oberle, S. Lamparter, S. Grimm, D. Vrandečić, S. Staab,

and A. Gangemi, “Towards Ontologies for Formalizing

Modularization and Communication in Large Software

Systems,” Appl Ontol, vol. 1, no. 2, pp. 163–202, Apr. 2006.

[11] A. Gangemi, N. Guarino, C. Masolo, A. Oltramari, and L.

Schneider, “Sweetening Ontologies with DOLCE,” in

Knowledge Engineering and Knowledge Management:

Ontologies and the Semantic Web, Berlin, Heidelberg, 2002,

pp. 166–181.

[12] A. D. Spear, W. Ceusters, and B. Smith, “Functions in Basic

Formal Ontology,” Appl. Ontol., vol. 11, no. 2, pp. 103–128,

Jun. 2016.

[13] J. Ison et al., “EDAM: an ontology of bioinformatics

operations, types of data and identifiers, topics and formats,”

Bioinformatics, vol. 29, no. 10, pp. 1325–1332, May 2013.

[14] M. Osorio, H. Vargas, and C. Buil Aranda, “DockerPedia: a

Knowledge Graph of Docker Images,” in Proceedings of the

ISWC 2018 Posters & Demonstrations, Industry and Blue Sky

Ideas Tracks co-located with 17th International Semantic Web

Conference (ISWC 2018), Monterrey, 2018.

[15] I. Santana-Pérez and M. Pérez-Hernández, “Towards

Reproducibility in Scientific Workflows: An Infrastructure-

Based Approach,” Sci. Program., vol. 2015, p. 11, 2015.

[16] S. D. Peckham, E. W. H. Hutton, and B. Norris, “A

component-based approach to integrated modeling in the

geosciences: The design of CSDMS,” Comput. Geosci., vol.

53, pp. 3–12, 2013.

[17] L. Shamir et al., “Practices in source code sharing in

astrophysics,” Astron. Comput., vol. 1, pp. 54–58, Feb. 2013.

[18] Y. Gil, D. Garijo, S. Mishra, and V. Ratnakar, “OntoSoft: A

distributed semantic registry for scientific software,” in e-

Science (e-Science), 2016 IEEE 12th International Conference

on, 2016, pp. 331–336.

[19] L. Zentner, M. Zentner, V. Farnsworth, M. McLennan, K.

Madhavan, and G. Klimeck, “nanoHUB.org: Experiences and

Challenges in Software Sustainability for a Large Scientific

Community,” J. Open Res. Softw., vol. 2, no. 1, Jul. 2014.

[20] I. D. Dinov et al., “Efficient, Distributed and Interactive

Neuroimaging Data Analysis Using the LONI Pipeline,” in

Frontiers in Neuroinformatics, 2009, vol. 3.

[21] B. Giardine et al., “Galaxy: a platform for interactive large-

scale genome analysis,” Genome Res., vol. 15, no. 10, pp.

1451–1455, Oct. 2005.

[22] K. Wolstencroft et al., “The Taverna workflow suite:

designing and executing workflows of Web Services on the

desktop, web or in the cloud,” Nucleic Acids Res., 2013.

[23] Y. Gil, “Workflow Composition: Semantic Representations for

Flexible Automation,” in Workflows for e-Science, I. J. Taylor,

E. Deelman, D. B. Gannon, and M. Shields, Eds. London:

Springer London, 2007, pp. 244–257.

[24] A.-L. Lamprecht, S. Naujokat, B. Steffen, and T. Margaria,

“Constraint-Guided Workflow Composition Based on the

EDAM Ontology,” CoRR, vol. abs/1012.1640, 2010.

[25] D. Garijo and D. Khider, “Requirements for the Software

Description Ontology (May, 2019).” Figshare, 2019.

[26] R. Cyganiak and D. Reynolds, “The RDF Data Cube

Vocabulary,” W3C, W3C Recommendation, Jan. 2014.

[27] G. Klyne, J. J. Carroll, and B. McBride, Resource Description

Framework (RDF): Concepts and Abstract Syntax. 2004.

[28] S. Harris and A. Seaborne, “SPARQL 1.1 Query Language,”

W3C, W3C Recommendation, Mar. 2013.

[29] Y. Gil et al., “MINT: Model Integration Through Knowledge-

Powered Data and Process Composition,” in Proceedings of

the Ninth International Congress on Environmental Modeling

and Software, Ft Collins, CO, 2018.

[30] B. Shbita, A. Rajendran, P. Jay, and K. Craig, “Parsing,

Representing and Transforming Units of Measure,” presented

at the Modeling the World’s Systems, 2019.

[31] M. Stoica and S. D. Peckham, “An Ontology Blueprint for

Constructing Qualitative and Quantitative Scientific

Variables,” in Proceedings of the ISWC 2018 Posters &

Demonstrations, Industry and Blue Sky Ideas Tracks co-

located with 17th International Semantic Web Conference

(ISWC 2018), Monterey, USA, October 8th - to - 12th, 2018.,

2018.

[32] S. D. Peckham, E. W. H. Hutton, and B. Norris, “A

component-based approach to integrated modeling in the

geosciences: The design of CSDMS,” Comput. Geosci., vol.

53, pp. 3–12, 2013.

[33] D. Vrandečić and M. Krötzsch, “Wikidata: a free collaborative

knowledgebase,” Commun. ACM, vol. 57, no. 10, pp. 78–85,

Sep. 2014.

[34] D. Garijo, D. Khider, and Y. Gil, “OKG-Soft code release

(1.0.0).” Zenodo, 02-May-2019.

[35] J. J. Carroll, C. Bizer, P. Hayes, and P. Stickler, “Named

graphs, provenance and trust,” in Proceedings of the 14th

international conference on World Wide Web - WWW ’05,

Chiba, Japan, 2005, p. 613.

[36] A. Meroño-Peñuela and R. Hoekstra, “GRLC Makes GitHub

Taste Like Linked Data APIs,” in The Semantic Web, vol.

9989, H. Sack, G. Rizzo, N. Steinmetz, D. Mladenić, S. Auer,

and C. Lange, Eds. Cham: Springer International Publishing,

2016, pp. 342–353.

[37] G. Kellogg, M. Lanthaler, and M. Sporny, “JSON-LD 1.0,”

W3C, W3C Recommendation, Jan. 2014.

[38] D. Garijo, “Validation queries for the paper OKG-Soft: An

Open Knowledge Graph with Machine Readable Scientific

Software Metadata.” Figshare, 2019.

[39] A. R. Kemanian and C. O. Stöckle, “C-Farm: A simple model

to evaluate the carbon balance of soil profiles,” Eur. J. Agron.,

vol. 32, no. 1, pp. 22–29, Jan. 2010.

[40] D. Garijo et al., “An Intelligent Interface for Integrating

Climate, Hydrology, Agriculture, and Socioeconomic

Models,” in Proceedings of the 24th International Conference

on Intelligent User Interfaces: Companion, New York, NY,

USA, 2019, pp. 111–112.

