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Major societal and environmental challenges involve complex systems that have diverse multi-scale interacting processes.  

Consider for example how droughts and water reserves affect crop production, and how agriculture and industrial needs 

affect water quality and availability. Preventive measures such as delaying planting dates and adopting new agricultural 

practices in response to changing weather patterns can reduce the damage caused by natural processes.  Understanding 

how these natural and human processes affect one another allows forecasting the effects of undesirable situations and study 

interventions to take preventive measures.  For many of these processes, there are expert models that incorporate state-of-

the-art theories and knowledge to quantify a system’s response to a diversity of conditions. A major challenge for efficient 

modeling is the diversity of modeling approaches across disciplines, and the wide variety of data sources available only in 

formats that require complex conversions.  Using expert models for particular problems requires integration of models with 
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third-party data, as well as integration of models across disciplines.  Modelers face significant heterogeneity that requires 

resolving semantic, spatio-temporal, and execution mismatches, which are largely done by hand today and may take more 

than two years of effort. 

We are developing a modeling framework that uses artificial intelligence (AI) techniques to reduce modeling effort while 

ensuring utility for decision making. Our work to date makes several innovative contributions: 1) An intelligent user interface 

that guides analysts to frame their modeling problem and assists them by suggesting relevant choices and automating steps 

along the way; 2) Semantic metadata for models, including their modeling variables and constraints, that ensures model 

relevance and proper use for a given decision making problem; and 3) Semantic representations of datasets in terms of 

modeling variables that enable automated data selection and data transformations.  This framework is implemented in the 

MINT (Model INTegration) framework, and currently includes data and models to analyze the interactions between natural 

and human systems involving climate, water availability, agricultural production, and markets. Our work to date demonstrates 

the utility of artificial intelligence techniques to accelerate modeling to support decision making and uncovers several 

challenging directions for future work. 

CCS CONCEPTS • Computing methodologies~Artificial intelligence • Computing methodologies~Ontology 

engineering • Computing methodologies~Planning and scheduling • Computing methodologies~Neural 

networks • Computing methodologies~Visual analytics • Computing methodologies~Modeling 

methodologies  • Applied computing~Decision analysis  • Applied computing~Agriculture  

Additional Keywords and Phrases: Intelligent user interfaces, integrated modeling, model metadata, regional-

level decision making, remote sensing data. 

1 INTRODUCTION 

Understanding complex systems requires developing models that can capture the underlying interacting multi-

scale processes governing behaviors, and analyzing possible actions that can change those behaviors to 

achieve desirable outcomes.  Quantifying how human activities affect natural resources and how natural 

processes affect human life requires complex model simulations that cut across disciplinary boundaries.  

Population growth brings urban growth and industrial growth, with increased needs for water and energy. Food 

production through agriculture also increases the use of water, and production is greatly affected by climate, 

particularly droughts and flooding. Agricultural production needs to be addressed sustainability, as land use 

change and agrochemical inputs (e.g., fertilizers) can pollute the environment. Understanding how weather 

predictions and agricultural practices affect water availability and irrigation allocation, or how flooding affects 

planting strategies and population migration, requires integrating physics-based climate and hydrology models, 

biologically informed agriculture models, and socio-economic models. The latter provides a mechanism for 

understanding how commodity prices and production costs, as well financial positions, affect farmers' choices 

and market distribution. A major challenge in integrating these models is that they can be complex, have limited 

software support, and can be designed for spatial and temporal operation scales that are not matched across 

models. As a result, it typically takes months to produce accurate results that can reveal useful insights for 

decision makers. 

Ideally, decision makers seek integrated models that enable them to gain a causal understanding of the 

effects of interventions and non-action. In addition to understanding the magnitude of intended effects, they 

reveal how an intervention may interact with other interventions so the expected effect may be reduced or 

amplified, and they expose unintended side effects.  In practice, simpler models are used that only allow the 

halting exploration of limited questions and do not result in effective decision making. 
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There are many areas in the world where understanding complex systems that involve human activities and 

natural resources is crucial for decision making. We introduce a few here.  Consider Texas and the South-

Central region of the US, where the population is expected to double in the next thirty years, with concomitant 

urban, agricultural, and industrial growth posing increasing demands on water and energy resources.  Major 

aquifers in the region are being depleted by hundreds of wells, reducing water reserves and causing sinking of 

land areas.  In addition, extreme events such as extended droughts and destructive floods require accurate 

modeling of the potential overflow of rivers particularly in urban areas.  What levels of pumping in wells are 

sufficient to conserve water for expected drought periods?  What areas will be safe from flooding so that 

infrastructure and critical services can be properly positioned?  Another example is Ethiopia and other countries 

in Sub-Saharan Africa, where droughts and flooding affect agricultural production and food availability in a large 

country with limited capacity to compensate local shortages with domestic or international trade, which results 

in migrations and in extreme cases famines.  When flooding is expected, planting could be delayed in order to 

save seed, labor, and ultimately the crop harvest.  But in what areas will flooding likely occur?  What crops and 

under what conditions can harvest be accomplished before the floods to avoid food shortages and migration?  

While long-term planning for such situations is desirable, decision makers pose questions that often require 

rapid response in order to prepare for natural disasters or to decide on near-term policies.  Creating models is 

effort intensive and hard to do in a timely manner.  Furthermore, once the model has been created, delivering 

modeling systems and model outputs in a form that allows decision makers to explore scenarios and policies 

remains a challenge.  

This paper presents a modeling framework that uses artificial intelligence (AI) to make modeling more 

efficient and useful for decision making.  The contributions of this work include:  

1. A semantic representation of models that captures different versions and settings, supports their 

execution, and identifies key model variables for decision making that enable the use of modeling 

goals to constrain modeling choices   

2. A semantic representation for datasets in terms of modeling variables that enable the use of AI 

planning for automated data selection and data transformations  

3. An intelligent user interface that guides users through interactive scenario exploration, which allows 

users to state modeling goals, guides them through modeling steps, assists them by constraining 

choices, and automates time-consuming aspects of data preparation  

4. An implemented framework that demonstrates the use of these AI techniques to analyze complex 

systems, designed to support a range of potential scenarios and interventions to support decision 

making  

Our current implementation in the MINT (Model INTegration) framework includes a range of models for 

weather, hydrology, agriculture, and econometrics as well as a wealth of regional-level data needed to run those 

models.  Geospatial and temporal aspects of the data and models are central considerations for these problems.  

The framework can be used to analyze interactions between natural and human systems concerning water 

availability and food production.    

The paper begins describing general modeling scenarios and requirements that motivate this work.  The 

next section discusses related work, as there is extensive literature in supporting specific aspects of modeling 
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and decision making.  The following section introduces our approach and contributions to frame modeling 

problems, represent models and data, and support users in modeling tasks. The paper also includes a 

description of the implementation of this approach in MINT, and a walkthrough of the MINT user interface as a 

user is guided through modeling steps and receives assistance along the way.  The paper then summarizes 

the benefits of the approach, and discusses, in a broader context, its merits for modeling and decision making.  

The final section concludes with a summary of the novel contributions and prospects for future work. 

2 MOTIVATING SCENARIOS AND REQUIREMENTS  

Creating a model in a specific domain or area of expertise is very challenging because there are many models 

that can be adapted for specific areas or situations.  Our focus has been on geoscience processes and their 

interaction with human processes. In this context, a model is an idealized representation of a physical system 

that can be used to characterize, understand, predict, and manage the system. The modeling approach can 

vary widely, from empirical (e.g., the likely return period of a weather event for a particular area based on prior 

events) to theoretical (e.g., biogeophysical laws), from having 2D to 3D spatial extent, varying spatial and 

temporal granularities, and different simplifications and assumptions. Although many basic modeling needs are 

shared in other domains, other domains may have specific requirements that are not addressed in our work.  

For example, synthetic biology requires the ability to compose hierarchical models of cells and their constituents, 

molecular dynamics simulations require atomic-level models that scale to billions of atoms, and network models 

require support for non-deterministic scenarios.  Our focus is on supporting modeling of geoscience processes 

and the human processes that affect them, specifically how floods and droughts affect crop production and food 

availability. 

Let us consider a hypothetical scenario where a decision maker wants to better understand how flooding in 

a specific area will affect roads in order to plan hunger relief shipments in case of crop failure. This complex 

scenario first requires understanding flooding in the area. Simple statistical models of flooding can be used to 

predict whether a 100-year flood could occur given a range of precipitation forecasts. While easy to use, such 

simple models give a binary answer: whether there could be a 100-year flood that season or not. But these 

simple models do not support many questions that may be of interest for decision makers, such as the water 

height in the area or drainage rate after the flood. This would require setting up more elaborate physics-based 

models that simulates how water would percolate through the ground and whether a river would break its banks. 

There are many hydrology models available off-the-shelf, and it would take some time to find one that produces 

useful flood maps and to understand how to use it.  Often times the questions relevant to decision making do 

not map very closely to the scientific questions that models were designed to answer.  So additional work needs 

to be done to understand how interventions to avoid undesirable outcomes can be represented in an off-the-

shelf model (e.g., putting sandbags to protect a road). 

Once an appropriate hydrology model is found, using it is also challenging. It takes significant effort to locate 

appropriate data about the area (e.g., about terrain elevation, soil types, weather, etc.) with the right quality and 

granularity required by the model.  It then takes time to understand and transform the data to the formats used 

in the target model.  Although there are tools available to do data transformations, they are not well integrated 

and require deep expertise.  Once that is done, some model parameters need to be customized to the particular 

area by tuning its parameters using historical data about that area.  Ideally, this needs to be a systematic 



   
 

7 

process independent of the user’s skills.  Tuning may also take many iterations and adjustments.  As a result, 

many months of effort are typically required for this process.  

Oftentimes, these off-the-shelf models are often themselves combinations of model components that handle 

specific processes. For instance, the hydrology model above could combine a soil component, to describe how 

water infiltrates into the ground, and a meteorological component, to describe how rain falls on the land (weather 

models only handle the atmospheric processes leading to the precipitation). When creating a composite model 

of these multiple components, it is generally still the case that each component has its own input data 

requirements.  The model takes as input a configuration file (or multiple files for each of its components), which 

is generally a set of key-value pairs. Values in these pairs may have any data type (e.g., integer, float, string), 

and some values of string type may simply be the names of other input files from which the model expects to 

read additional values (often as arrays of arbitrary dimensions and rank).  These other input files may contain 

initial values for some of the model variables, or forcing variables (e.g., rainfall rates) that vary in both space 

and time. A sophisticated spatial model may have a large number of input files, in addition to its configuration 

file.  

Each model (and associated components) is responsible for reading its own input files and therefore requires 

these files to adhere to supported file formats and data conventions. Models often fail if input data are not 

prepared correctly to meet these requirements. A model may or may not check whether all input values fall 

within a valid range, or whether every formatting rule is followed. Instructions for data preparation are generally 

provided in some type of user's guide or online help system. Model developers generally assume that users 

have a basic understanding of numerical stability issues, such as the fact that most models become numerically 

unstable when their time step is set too large in relation to parameters like grid cell size. For some models, 

stable time step size cannot be predicted by theory, and a trial-and-error approach is required. On the other 

hand, some models offer an automated approach to computing the time step, which can be adapted at each 

step.  

Data preparation steps for a sophisticated model can be quite involved, and spatially-distributed hydrologic 

models provide a good illustration of this. These models carefully track all of the water in a watershed, which 

includes water coming in via space-time rainfall, water leaving by evaporation, water leaving by infiltration into 

the soil (which may be multi-layered), water flowing in river channels, water flowing over hillslopes, water 

produced by melting snow, or water flowing into rivers from below ground (baseflow). All of this water tracking 

is based on physical laws, combined with empirical observations when necessary.  

To set up the hydrology model, one would first obtain data sets that describe properties of the topography, 

the river channels, the soils, the land use, and weather/climate variables (e.g., rainfall rate, temperature, relative 

humidity, wind speed) for the region of interest.  These types of data sets can be downloaded from a variety of 

sources, typically as 2D arrays of numbers (i.e., grids), in a variety of file formats.  Mosaicking may be required 

to patch together grids for smaller regions to span the region of interest, given as a geographic bounding box. 

Clipping may also be required to match the region's bounding box.  Resampling may be required to change the 

spatial resolution to match that of the model's computational grid.  Unit conversion may be needed to obtain the 

measurement units expected by the model.  Cleaning may be needed to deal with missing values.  File format 

conversion may be needed.  Reprojection (to a different map projection) may be needed.  In addition to these 

types of transformations, it is often necessary to compute other required inputs from these raw inputs.  For 

example, given a grid of elevations (a digital elevation model or DEM) for a region, many other required grids 
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can be computed as "derived products", such as: the flow directions, river channel network, topographic slope, 

total contributing area and river basin boundaries.  Similarly, given basic properties of the soil as grids for 

different soil layers, other properties can be computed from these that are needed to model the process of 

infiltration. Users may also need to identify points (as a longitude-latitude pair), polylines, or polygons of special 

interest.  These are typically provided using "vector" vs. "raster" file formats.  Many models provide utilities with 

their source code to help with data preparation, but others assume that these tasks will be performed with 

geographic information systems (GIS) software or some other set of scripts or tools. Computational notebook 

interfaces provide a good mechanism for explaining and sometimes automating data preparation steps required 

to setup a model.  

But decision making may not only involve flooding. In our example, a decision maker may want to know how 

the crop yield is affected if planting dates are moved forward to avoid the predicted floods in the farmland.  This 

could require finding and tuning both a hydrology model and an agriculture model, requiring twice the effort that 

was just described. In addition, when different models are used, their data and their assumptions must be 

compatible.  For example, the agriculture model will be better if it uses the results of the hydrology model, such 

as the soil moisture over time (more moisture means more growth of the crops) and the flooding areas across 

the cropland over time (since flooding destroys crops), but this requires that they use the same weather data 

and the same granularity in the simulation steps.  This kind of coordinated modeling introduces further 

complexity in the modeling tasks in each of the domains involved.  This severely limits the quality and timeliness 

of the models to the detriment of decision making, and discourages the creation of complex models in many 

cases because of the effort involved.  The models themselves are not easy for a non-expert to run.  As a result, 

decision makers might be unable to explore possible situations, underutilize the power of the models, and have 

to rely on modelers to do specific model runs and present specific model results.  The poor accessibility of the 

models severely limits their use by non-experts and tilts the balance towards simpler models and perhaps more 

uncertain and less robust assessments. 

Table 1: Overview of key problems and challenges in modeling 
Problems Challenges 

Delays in decision 

making 
• Locating data is difficult 

• When data is not available, workarounds must be designed 

• Transforming data to the desired formats is mostly done manually 

• Customizing a model to a region is mostly a manual process 

Limited scenario 

exploration 
• Models that consider no interventions or limited ones 

• It takes significant effort to explore the side-effects of interventions 

Restricted domain 

modeling 
• Models are designed to have dozens or hundreds of parameters, but those 

parameters may not need to be visible to decision makers 

• Modelers lack the expertise to use models from other disciplines and ensure 

consistency with their own models  
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Static analysis reports 
• Modeling tools do not support aggregation of modeling products 

• Visualizations of modeling products are generated manually 

The process we just described illustrates four major problems, which are summarized in Table 1:  

1. Delays in decision making: Several months are typically needed to generate modeling products.  This 

is because data must be located and transformed as needed by models. Workarounds have to be 

found when data is not available, and models have to be set up and refined to make accurate 

predictions.  
2. Limited scenario exploration: Decision makers are interested in exploring interventions that solve 

potential problems.  In contrast, many models typically focus on prediction from static inputs and have 

limited representations of interventions, if any.  
3. Restricted domain modeling: While the decision maker has holistic questions about the system, in 

practice models tend to have many parameters that can improve the quality of the model but are 

viewed as too detailed to matter for decisions.  Furthermore, model parameters are often not 

independent, and it requires substantial expertise to realize that altering one parameter means 

considering other parameters. When using several models, coordinating the settings of each increases 

the modeling complexity.  It takes significant effort for a modeler to learn to use correctly new models 

outside their area of expertise.    

4. static analysis reports: Reports that summarize previously run executions and predefined 

visualizations do not adequately support exploration and understanding of nuanced patterns about the 

behavior of the system that are key to decision making. 

3 RELATED WORK 

There is significant work on modeling frameworks, model repositories, and other infrastructure to support 

modelers that is reviewed in this section. 

3.1 Modeling Frameworks 

The Community Surface Dynamics Modeling System (CSDMS) [Peckham et al. 2013] provides an open-source, 

community repository of earth surface process models and an integrated execution environment.  The 

Community Earth System Model (CESM) contains atmospheric, oceanic, and land surface models.  The 

Computational Infrastructure for Geodynamics (CIG) includes deep earth process models.  The Earth System 

Modeling Framework (ESMF) [Hill et al. 2004] contains models of climate, weather, and other geosciences 

applications.  OMS (Object Modeling System) includes mostly agricultural models [David et al 2013]. 

Usually, the purpose of computational modeling is to predict how the values of one or more variables of 

interest in some system will change over time.  The general approach is to start with a mathematical model of 

the system of interest, which is a set of equations that must be satisfied by a set of variables.  These equations 

may be algebraic or differential, and they may be laws of physics or empirical (regression) formulas determined 

from data analysis.  Some of them must also exhibit time dependence, in order for future values to be computed 

from values at previous times.  Time is discretized, and these predictive models are often called "time-stepping 

models".  Whenever the values of any given variable can be obtained from somewhere else --- such as 

observational data values stored in a file, or as output from another model --- the number of equations the model 

must solve by numerical methods is reduced by one.  Coupling a model to other models and data sets (stored 
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in files) means making it possible for the model to retrieve the values of desired variables in the form that the 

model requires.  Keep in mind that the values for a single variable that varies spatially may be stored as a large 

2D or 3D array of values associated with a computational grid.  The reason this coupling is often difficult is there 

are many ways in which the form these values are provided in can differ from the form in which they are needed 

by the model.  For example, values may be provided on a different computational grid, with a different spatial 

or temporal resolution, with different measurement units, with a different variable name, with a different map 

projection, and so on.  These differences --- which result in what is often called "data friction" or "an impedance 

mismatch" --- can be reconciled by applying transformations such as regridding, resampling, unit conversion or 

reprojection.  In the absence of an integrated model coupling framework, these transformations must be applied 

by a knowledgeable user, often as pre-processing or data preparation steps.  However, sophisticated modeling 

frameworks like those above use a combination of a standardized model API and standardized metadata for 

variables and how they are stored in order to automatically apply these transformations with no user 

intervention.  The modules in the framework that do these transformations are called mediators.  Notice that 

this approach combines the well-known adapter pattern (via standardized data and model APIs, perhaps offered 

as services) and the mediator pattern.  Mediators made available as web services are often referred to as 

brokers.  

The modeling frameworks mentioned earlier, such as CSDMS, CESM, and CIG, support model coupling 

frameworks such as these generally employ some variant of the adapter-mediator pattern and include a 

repository of models.  

A key, distinguishing feature among model coupling frameworks is whether or not they support exchanging 

the (time-dependent) values of variables while the coupled models are running or whether each coupled model 

completes its execution before passing its values to another, subsequent model. For the first type of framework, 

computational efficiency is critical, so the time-dependent values are typically stored in RAM and passed by 

reference.  Passing values via file I/O is typically avoided since it is so much slower.  Examples of this type of 

framework include CSDMS, ESMF and OMS.  For the second type of framework, each model saves the values 

of the variables it computed in a file on exit, and the next model in the chain reads these values from that file 

as input before it executes.  Examples of this type of framework, typically called a workflow system (e.g., [Gil et 

al 2011]).  Both types of framework may utilize mediators to reconcile differences between coupled models 

before exchanging the values of variables, such as regridding to match the model scales and message passing 

across models to synchronize the processes they each model.  

Some computational models make extensive use of parallel processing and are meant to run on 

supercomputers.  Exchanging values between coupled, parallel models while they run is complicated by the 

fact that the values of a given variable are now spread across several processors.  A common situation is two 

models that each use "domain decomposition", but each uses a different number of processors.  ESMF and the 

(Model Coupling Toolkit (MCT) [MCT 2020] both handle this problem efficiently.   

The Basic Model Interface (BMI) [BMI 2016] provides standardized, noninvasive, and framework-

independent API for models [Peckham et al 2013]. BMI is easy to implement and yet provides all information 

needed to deploy a model in multiple model coupling frameworks.  This is an important form of model integration, 

but it is not addressed in our work.  While it greatly simplifies the coupling of models that must exchange data 

while they run, it does not address the many "upstream" issues associated with data preparation, nor the many 

"downstream" issues associated with visualization and analysis of model results. 
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3.2 Model Repositories 

General software repositories (e.g., [GitHub 2020]) help modelers store versions, test, integrate and 

disseminate their code. However, these repositories represent only basic metadata such as license, creator 

and installation instructions. Software container repositories (e.g., DockerHub [DockerHub 2020] address the 

execution of software with complex dependencies, but also lack metadata necessary for effectively 

understanding the functionality of the software.  None of those repositories has explicit knowledge or metadata 

to support reasoning and automation.   

nanoHUB [Zentner et al 2014] is a repository of nanotechnology models and software. HUBzero [McLennan 

and Kennell 2010] is the framework underlying nanoHUB, which has been used to develop repositories in many 

other domains.  A key added value of the repository is the measures of quality of the software, and tracks usage 

statistics and citations. The focus of these repositories is to allow users to run individual models and software 

interactively, but users still have to figure out how to use the models and how to find and prepare the necessary 

data.   

Some model repositories describe models using metadata organized in schemas or ontologies.  The 

modeling frameworks mentioned in the previous section contains source code for hundreds of models. Metadata 

is collected for each model, with information such as authors, programming languages, pointers to code, 

licenses, and test datasets. A feature of CSDMS is enabling users to describe models using standard names 

for model variables [Stoica and Peckham 2018], so that the variables can be shared consistently across models. 

These standard names are essentially ontologies of domain-specific terms in geosciences.  

Model metadata registries focus on metadata descriptions of executable models, complementing code 

repositories which focus on storing model code. Model metadata registries may not store the code itself, but 

will likely have a pointer to a code repository to find it. There are multiple existing model metadata registries in 

different domains. [Shamir et al 2013] describe the practical experiences with a software repository for 

astronomy that includes hundreds of entries, where users did not want to include metadata that was hard to 

track and instead found beneficial that the repository identifies the code accurately and without ambiguity.  

OntoSoft [Gil et al 2016, Gil et al 2015] was developed to capture extensive information that is needed by 

scientists to understand how models work.  Most of that information is available, but scattered in publications, 

manuals, code documentation, and web sites [Essawy et al 2017]. Having this information organized in a 

registry can save researchers a lot of time in understanding and comparing models. 

Prior work on annotating executable software components with semantics has shown that it facilitates their 

findability and composition. In bioinformatics, initiatives like the BioCatalog [Rodriguez-Tomé 1998] led to the 

proliferation of dozens of semantically described services with tools for bioinformaticians. Efforts like the SADI 

framework [Wilkinson et al 2011] leverage Semantic Web technologies to describe the inputs and outputs of 

components that users could combine in scientific workflow systems such as Galaxy [Afgan et al 2018], making 

them available to a wide range of researchers [Perkel 2017]. In the proteomics domain, new frameworks have 

been developed for automating workflow composition analysis [Palmblad et al 2019]. The community has also 

started to apply some of these techniques to simulation models, aligning them to community-curated biomedical 

ontologies [Hoehndorf et al 2011] and establishing best practices for requirements, design, and construction of 

biomedical simulations [Hellerstein et al 2019].  Our early work on the WINGS intelligent workflow system 

demonstrated the value of semantic metadata to automate workflow composition, interactive data and 

parameter selection, and validation of user-created workflows [Gil et al 2011]. We build on all this prior work, 



   
 

12 

however the software components are consuming or generating entity identifiers (e.g., a gene name or protein 

name), which are easier to describe than the spatio-temporal datasets containing many physical variables that 

are used in geoscience models. 

In summary, existing model catalogs contain useful metadata about models, and often facilitate model 

execution.  However, they lack important information such as model variables or model processes, which are 

used by modelers to discern whether the model is appropriate for their analyses or not. Furthermore, once a 

model is selected, it takes significant effort to understand how to set it up and how to interpret its results.   

3.3 Data Repositories 

Data repositories are ubiquitous in science. Some notable examples are Dataverse [King, 2007] and 

Humanitarian Data Exchange [HDX 2020]. While both provide mechanisms to describe and search datasets by 

the associated metadata, there are very few required types of metadata besides the high-level description (such 

as dataset’s name and description). On one hand, it makes it straightforward for data providers to share their 

datasets. However, on the other hand, this leads to large variability in metadata quality and vocabulary, making 

standardization and reconciliation of datasets difficult to automate. This is addressed to some extent by the 

recently introduced Google Dataset Search [Brickley et al., 2019] by using Schema.org [Guha at al., 2016] and 

W3C Data Catalog Vocabulary (DCAT) [DCAT 2020], which essentially offer general ontologies of core 

metadata for datasets. Domain-specific metadata requires effort to specify, and many data repositories only 

capture general metadata.  Unfortunately, data catalogs generally do not require machine-readable descriptions 

of data, deferring that effort to data consumers.   

In order to provide interoperable data, data catalogs must support many formats (e.g., XML, netCDF, 

Spreadsheets) and layouts (e.g., relational or matrix tables). Mapping a dataset from its original format and 

layout into a common representation (e.g., RDF [RDF 2020]) is a popular approach to address this problem. 

However, this mapping process is very labor-intensive and often requires users to write custom code. To 

accelerate this process, some users rely on tools to easily map a dataset by providing the dataset description. 

Methods such as RML [Dimou et al., 2014], xR2RML [Michel et al., 2015], KR2RML [Slepicka et al., 2015] are 

capable of handling datasets with heterogeneous formats such as XML, CSV, but they only work with data in 

the nested relational model layout. Other tools such as XLWrap [Langegger, et al., 2009], T2WML [Szekely et 

al., 2019] can describe data in many different layouts, but they can only map data in tabular formats. There is 

no unified tool that can be used for these different kinds of datasets.  

Creating representations of datasets generally requires a workflow of many steps, including describing the 

data types and data relationships. These tasks are referred to as semantic labeling and semantic modeling 

[Goel et al. 2012; Pham et al. 2016; Ramnandan et al. 2015; Ritze et al. 2015]. Semantic labeling and semantic 

modeling are necessary steps to create an ontological description of a dataset. Work from the information 

extraction community has considered classifying and mapping tables found on webpages [Cafarella et al.2008; 

Gatterbauer et al. 2007; Sarawagi et al. 2008] as well as using similar query-based approaches for relation 

extraction [Abulaish and Dey 2007; GuoDong et al. 2005]. Table understanding approaches have been 

described from a formal, database-centric perspective [Zanibbi et al, 2004] focused on layout, and more 

algorithmic approaches to understand table layouts [Koci et al., 2016; Dong et al., 2019].  Semantic descriptions 

of tables and other datasets are still largely created manually, and could be more automated.  
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Previous research [Krishnan et al., 2016] has developed approaches to allow easier data representation, 

cleaning and transformation. However, previous research still depends on human interaction in early data 

processing stages. Leveraging the power of D-REPR allows MINT to map different data formats and layouts 

into one common representation and thus allows MINT’s transformation system to be format-independent. 

There are multiple systems designed to tackle the data transformation/cleaning problem before. However, 

existing systems (e.g. OpenRefine [OR 2020], Wrangler [Kandel et al., 2011], Trifacta [TF 2020]) only support 

some popular input formats (e.g, csv, json, xml) and layouts of these input data needs to follow a set of common 

conventions so that the content can be handled correctly.  Many models use multi-dimensional formats such as 

netCDF4 or geotiff, which are not handled by these tools. 

Table 2. Approach to integrated modeling taken in MINT. 

Approach Key Ideas 

Goal-Oriented Modeling  

• Problem framing based on decision space 

• Models extended to expose potential interventions 

• Interactive dashboards to explore interventions and their outcomes 

Modeling as Problem 

Solving  • Model metadata that enables model discovery based on modeling goals 

• Automated checking of model requirements and data needs 

• Guided model configuration and calibration 

Representing and 

Transforming Data • Metadata that enables data discovery 

• Interoperability of data 

• Composable data transformations 

• Generating novel data for modeling 

Interactive Scenario 

Exploration • Interactive dashboards to explore model results 

• Stylized narratives of modeling choices and scenarios 

• Provenance records with metadata of model runs 

An important task in scientific data cleaning and normalization is the identification, representation and 

transformation of scientific measurement units that are associated with the data. Existing frameworks such as 

the yt Project [Turk et al., 2010] and Measurement-units-in-R [Pebesma et al., 2016] give users the option to 

enforce a unit of measure for a given fixed set of data. These frameworks enable one to add, subtract, multiply, 

and divide using quantities and dimensional arrays. When used in expressions, some of these platforms 

automatically convert units, and simplify them when possible. Measurement-units-in-R gives the user the 

flexibility to expand beyond predefined units but it requires an initial user definition and understanding of data.  

Even with these tools, the process of data understanding, normalization, and transformation is laborious and 

could be more automated. 
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4 TECHNICAL APPROACH 

Our approach has four key ideas:  

1. Goal-oriented modeling as a principle to encapsulate model software that takes into account the 

questions and framing of potential interventions and decisions. These interventions and decisions are 

both geographically dependent and time sensitive.  

2. Modeling as problem solving, where modeling goals drive the selection of models and their particular 

configurations and settings.  

3. Representing and transforming data for scientific modeling, where data is described using a 

variety of metadata extraction and generation techniques, and data transformations to create a desired 

format.  

4. Interactive scenario exploration, through a user interface that drives users through structured stages 

of modeling, provides dynamic visualizations of results, and generates provenance for model products 

to support explanation and reproducibility.  

These key ideas are summarized in Table 2 and elaborated in the rest of this section. 

4.1 Goal-Oriented Modeling 

A major difficulty in modeling is framing the problem in terms of what are the desired outcomes and decisions 

under consideration for a specific area within a defined timeframe, and how they should be mapped into 

modeling tasks that can help understand possible future situations, potential interventions, and decision 

tradeoffs.  A major source of this difficulty is that this framing determines what models and data are needed and 

what modeling detail is required.  This process takes significant effort, and it involves discussions about model 

capabilities, estimations of the effort involved in developing the models, and tradeoffs between the time and 

effort required for modeling and the criticality of the decision. 

Our approach is to guide users to do goal-oriented modeling, by casting their questions in terms of modeling 

tasks that capture modeling goals.  We define a modeling task as a tuple: 

MT = <TR, TD, TI, TA, TP> 

where: 

• TR is a response from the system that is relevant to the decisions under consideration.  System 

response can be estimated through a set of indicators that provide insights into the behaviors and 

patterns of the system under study. Indicators can be modeling variables, typically output variables of 

a model, or functions of modeling variables into an aggregate quantity (or index).  Examples of 

responses of interest include crop yield and drought indices.  

• TD are a set of drivers that enable studying different possible situations.  Drivers can be input variables 

to the models (e.g., rainfall), or adjustable parameters that reflect changes in initial conditions.  A thread 

could consider crop yield without flooding, another thread could consider a moderate amount of rain 

during the growing rainy season, and another thread major rainfall conditions.  

• TI represent interventions that represent actions that have the potential to affect outcomes.  For 

example, a desired outcome to increase crop yield could be addressed with interventions such as 

planting earlier or shorter cycle crops (or a combination of both in a fraction of the area) which would 
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allow harvesting earlier before flooding takes place.  The interventions we consider are those that can 

be incorporated into models through specific drivers.   

• TA is a geographical area for the model.  When decisions concern an administrative region, 

appropriate modeling areas would be identified.  For example, hydrology models would be created for 

specific river basins, and agriculture models would target different farms and land crop areas.  Each 

task would focus on a single modeling area.  

• TP is a time period for running a model for the task.  This is often several years, as some models 

require a spin up time for the simulation that enables the model to pick up seasonal patterns in the 

driving variables. 

Modeling tasks are often interrelated, we allow modeling tasks to be grouped thematically into modeling 

problems.  Modeling problems serve the purpose of aggregating the results from different tasks.  In some cases, 

modeling tasks may look at different modeling areas or regions.  For example, a modeling problem could be to 

analyze how flooding will affect crop yield in a region, which may lead to several tasks to do hydrology modeling 

for different basins and several tasks to do agriculture modeling in several farmlands taking into account the 

flooded areas.  In other cases, modeling problems can be fleshed out into in separate modeling tasks that each 

explore alternative interventions or responses (e.g., different drought indices). 

The time frame of a task does not necessarily reflect the time period where the model is run. For example, 

a task to analyze the effects of flooding in crop yield during the wet season may require running the agriculture 

model starting further back during the planting time. 

Each modeling task is explored by creating different modeling threads that consider alternative modeling 

assumptions, such as the use of different models and/or variations in parameters and input datasets.  For 

example, a modeling task to explore crop yield may have two modeling threads, each using a different 

agriculture model.  Separate threads can be created to explore different initial conditions and input data sources 

(e.g., alternative weather forecasts).  The use of alternative models and data sources and the comparison of 

results is crucial to assess uncertainty and increase confidence in the estimated outcomes. 

Note that the focus of our goal-oriented modeling is not on the decision problem but on creating goal-oriented 

modeling tasks that can drive modeling and make it more efficient.  We establish a relationship between 

modeling tasks and decision making through the explicit representation of interventions.  Much more work 

remains to be done to relate decisions to modeling problems and tasks.  

Table 3 summarizes major concepts in goal-oriented modeling.  By capturing the goals of modeling, modeling 

tasks drive the modeling process and constrain the choices of models and data.  In the next two sections, we 

present how models and data are described so they can be matched with the goals represented in modeling 

tasks. 

4.2 Modeling as Problem Solving 

Once the modeling goals have been specified, we can marshal models and data in service of those goals.  This 

section describes how models are retrieved and applied to modeling tasks. 
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4.2.1 Creating Problem Solving Components from Expert Models. 

Expert models capture sophisticated model theories that are often the result of years of work and are 

implemented in software packages, often with many versions and with many possible settings.  Given the 

software package for a model, we create software components that can be use that bundle together specific 

functionality in the model.  First, we create model configurations that include specific combinations of processes 

and inputs required to execute a model.  For example, for arid regions we may create a configuration of a 

hydrology model that does not include snowmelt processes.  For a given configuration, we then create model 

set ups that are customized for a specific scope. For instance, we may create a set up for a hydrology model 

that is customized for a specific river basin.  Model set ups are often created by adjusting model parameters 

using historical data, which can be automated (referred to as model calibration or model parameterization) or a 

manual process. 

Several considerations are important to the design of model set ups as problem solving components.  

First, an important aspect of creating problem solving components out of models is exposing drivers, 

interventions, and adjustable parameters as inputs to the model. These require:   

• Adjustable parameters whose variations could expose important patterns in the system and facilitate 

the exploration of system behaviors. In the documentation of models there is always reference to 

model parameters, which are used to customize models (e.g., for a specific region).  Although those 

parameters are by definition adjustable and have a clear role in modeling, they are not necessarily 

important for exploring possible future situations.  Identifying appropriate adjustable parameters can 

be facilitated by examining examples of drivers and interventions under consideration.   

• Data inputs that reflect possible initial states of the system as well as external variables that affect the 

system behavior.  These are data that represent drivers and interventions of interest.   

• Responses that can be generated by a model set up need to be identified and made explicit in the 

description of model results. 

Second, post-processing of model results is often needed in order to support decision making.  Model outputs 

are typically designed to provide a scientific characterization of the system, but are often not directly usable to 

convey patterns of behavior to non-scientists.  Post-processing workflows can be associated with model set 

ups to address the following requirements: 

Table 3. Glossary of major concepts in goal-oriented modeling. 
Concept Description 

Indicators and indices An indicator is a quantifiable variable that is identified as playing a special role, namely to 

help characterize a complex property of a system being modeled. Indicators can be 

single variables or combinations of variables, called indices.  Indices are created to 

summarize several indicators in an easy to grasp a single value that can be used for 

assessment of alternative modeling scenarios. 

Modeling problems A modeling problem is a theme that is useful to group a set of modeling tasks.  A modeling 

problem can be expressed as a statement, and it is not machine readable.  It is simply 

a convenient mechanism to organize modeling tasks. 
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Models A model in our context is a software implementation of an idealized representation of a 

physical system that can be used to make predictions and manage the system. 

Modeling tasks A modeling task is accomplished through a series of model runs in order to answer a 

question of interest. 

Modeling threads A modeling thread groups together model runs that are conceptually related. 

Adjustable parameters Parameters of a model whose value affects an input variable, and can be adjusted to 

explore different situations.  For example, an agriculture model can have an 

adjustable parameter that sets the crop to weeds ratio (or range thereof) so users 

can explore different weed growth situations. 

Interventions Interventions reflect human actions that can change the course of a system’s behavior.  

They can be explored through the settings of adjustable parameters and input 

variables.  For instance, interventions to improve weed management practices and 

increase crop yield could be studied in an agriculture model by adjusting the crop to 

weeds ratio. 

 

• Indices often have to be generated by combining raw model outputs with other information (e.g., 

drought indices), in order to provide variables and abstractions that can convey the state of the system 

and behavior patterns that are useful to audiences beyond the model developers.  Indices are often 

statistical in nature and describe deviation from an average condition. For instance, a drought index 

value of 4 means extreme drought conditions (4 standard deviations from the mean).  

• Visualization designs that are useful for a model need to be also captured.  This includes extracting 

useful variables from the inputs and outputs of the model, and creating appropriate views for 

visualization (e.g., coarser-grained results, statistical properties, etc.).  Generating proper 

visualizations may include fetching other data as reference (e.g. fetching historical data in order to 

compare the model predictions with annual averages).   

• Combined results often need to be generated from many model executions, and these combinations 

are specific to each model.    

• Responses that are not directly generated by the model but can be derived from model outputs. 

Table 4. Glossary of major concepts to describe models. 
Concept Description 

Model theories The principles underpinning the design and implementation of the model, including 

physical laws, biological postulates, chemical reactions, or socioeconomic theories. 

Model parameters The parameters in the equations that express model theories.  To apply the model to a 

specific system, model parameters are often adjusted based on the observations 

collected for that specific system. 

Model variables The observed or inferred quantities that can be measured or estimated about a complex 

system to describe its state over time.  A model can have input variables, internal 

variables, and output variables. 
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Model processes The dynamic drivers that make a system change state and therefore the value of its 

variables.   

Model software A software package that includes many different functions to set up and run a model under 

a variety of assumptions.  A model software can have different versions. 

Model configurations A specific invocation function for model software that ensures the inclusion of certain 

model processes and variables while excluding others. 

Model set ups The adaptation of a generic model configuration to a specific system, so that model 

parameters are adjusted to that system based on the observations collected about 

the system’s past behaviors. 

Adjustable parameters A parameter of a model whose value affects an input variable, and can be adjusted to 

explore different situations.  For example, an agriculture model can have an 

adjustable parameter that sets the crop to weeds ratio (or range thereof) so users 

can explore different weed growth situations. 

Interventions Human actions that can change the course of a system’s behavior, and can be explored 

through the settings of adjustable parameters and input variables.   

Model files Files that are inputs to a model or generated by a model, and contain input and output 

variables as well as model parameters. 

Table 4 summarizes major concepts to describe models as problem solving components.  The rest of this 

section provides formal definitions for the terms that are used in our work.  

Important modeling processes, such as model calibration, gridding, and sensitivity analysis, are not currently 

included in our framework.  Model calibration (or parameterization) requires adjusting model parameters so its 

predictions are consistent with historical data.  Gridding requires setting up spatial grids of a shape (e.g., regular 

cubes, irregular polygons) and size (e.g., 1 km, 1m) that allow the model to capture the physical environment 

with adequate granularity. Sensitivity analysis provides information about uncertain the results would be given 

underdetermined parameter values. These processes can be largely automated, but may require manual 

intervention and checking.  This is a priority area for future work. 

4.2.2 Model Set Ups and Model Discovery. 

A model set up is a tuple:  

MS = <SC, SE, SA, SF, SP, SI, SO, SM, SN, SR, SS, ST>  

where: 

• SC are pre-selected input file types that are to be used with the model set up, including configuration 

files that specify values for some of the model parameters, and possibly also input datasets that are 

fixed for that set up.      

• SE are pre-selected parameter values that are to be used with the model set up.    

• SA is the set of adjustable parameters that are exposed in the model invocation signature, each 

specified with a valid range of values for that set up.   

• SF is the set of input file types that still need to be provided in order for the set up to be executed.   
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• SP is the set of output file types that will contain the model results when the model is executed.   

• SI is the set of input variables that are associated with SF.   

• SO is the set of output variables that are associated with SP.   

• SM is a set of mappings that specifies how SI, SO, and SA are represented in SF and SP. 

• SN is the set of interventions that can be associated with SI.  

• SR is the set of responses that can be associated with SO.  

• SS is the area (or scope) where the model set up is appropriate, expressed as a polygon for 

geographical areas.  

• ST is the time period when the model can be run, expressed as begin and end dates. 

A model set up MS = <SC, SE, SA, SF, SP, SI, SO, SM, SN, SR, SS, ST> is a match for the goals of a modeling 

task MT = <TR, TD, TI, TA, TP> iff:  

TR  SR and TD   SI and TI   SN and   

  

TA is geographically contained in SS and  

  

TP contains ST 

Several model set ups can match any given modeling task.  

Note that almost all the elements of a MS tuple are used for goal-based modeling.  In effect, they are 

metadata that enable model discovery. 

4.2.3 Mapping Model Variables to Data. 

A set of mappings SM in the model set up specifies how the model variables and parameters SI, SO, and SA 

are represented in the input and output files (SF and SP respectively). Each file has its own format, typically a 

standard such as CSV, netCDF, or shapefiles.  The SM mappings expose where each modeling variable can 

be found within the file.  In addition, it specifies a unique variable name and units required by the model.  

Standard variable names are taken from the Scientific Variables Ontology (SVO) [Peckham and Stoica 2018; 

Stoica and Peckham 2019; SVO 2020], an ontology that describes thousands of variables in geosciences 

applications, and has been mapped to other domain specific standards like the Climate and Forecasting 

Conventions and Metadata [CF 2020]. For example, a variable in a model may be informally referred to as 

“streamflow” while in another model it may be called “discharge”, but both represent the same SVO physical 

variable “watershed_outlet_water__volume_flow_rate”.  We chose SVO among other existing ontologies (such 

as SWEET [Raskin and Pan 2005] and ENVO [Buttigieg et al 2013]) because it adopts a principled design of 

an upper ontology and naming patterns to create unique identifiers for physical variables.  For example, other 

ontologies have a concept for “precipitation”, but precipitation can be an amount, a flux, or a rate, and there are 

separate terms for each in SVO. SVO captures the context and relationships of variables, so it is not just a 

concept hierarchy. In addition, SVO has a clear set of principles for creating new variables in case a new concept 

needs to be created for one of our models.  SVO variable identifiers include the physical object being measured 

(the water in the watershed outlet), the property of that object that is being measured (outflow rate) and the 

quantity (volume), in addition to other qualifiers that define the context in which a variable is used.   
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4.2.4 Representing Adjustable Parameters. 

Adjustable parameters are very important for exploring drivers and interventions. Their representations must 

describe any constraints that will guide users to create sensible initial conditions and explore system patterns.  

An adjustable parameter is a tuple:  

AP = <PE, PU, PV, PD, PT, PM> 

where:  

• PE is an explanation of the parameter represents (e.g., the parameter weed fraction is the proportion 

of weeds that remain after a given weeding practice)  

• PU is the units for the parameter value (e.g., a fraction or percentage)  

• PV is the range of values that the parameter can take, which can be a discrete set of values or a range 

expressed as a minimum and maximum (e.g., between 0 and 1)  

• PD is the default value for the parameter (e.g., .25)  

• PT is the parameter type  

• PM is the model variables affected when the parameter is adjusted 

In addition, parameters are associated with interventions.  For example, an adjustable parameter for weed 

fraction in an agriculture model may have an associated intervention representing weed control and weed 

management practices, where the intervention is specified by indicating in this parameter the fraction of weeds 

that will remain after the weed treatments applied. A forced migration due to political instability may require 

weed control to be set to low due to its influence on labor availability. Weeds may fester and yields will be 

affected once the crops are harvested. Model inputs and model parameters allow translating practical questions 

into model operations. 

4.2.5 Other Model Metadata. 

Besides supporting discovery, model metadata is needed for other important aspects of modeling. 

Some metadata is useful for model execution. The adjustable parameters SA and the input file types SF will 

need to be specified by the user, and together with the pre-selected inputs SC and SE will turn a model set up 

into an executable model as we describe in Section 4.4.  The mappings SM of variables and parameters to files 

also enables model execution as these mappings are used to do automated transformations of data as we 

describe in Section 4.3.  

Other metadata allow users to understand the model.  This includes extensive documentation, including 

model authors, model assumptions (e.g., that the region is arid), model constraints (e.g. that the input weather 

data provides daily values), usage notes (e.g., the outputs of the model use a certain coordinate projection) and 

other information relevant for reproducibility and understandability.  This documentation is typically scattered in 

publications, software manuals, code documentation, and is often obtained through personal communication 

with model authors.  Providing this documentation is crucial for usability, so users can understand the model 

and its uses and limitations.  It is also crucial for documenting the provenance of modeling products, for 

reproducibility, and for future exploration of variations of the model executions.  
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Figure 1 illustrates how models can be characterized and differentiated through their metadata, though only 

a select subset of the information is shown here for space reasons.  The model shown at the top is version 

2005, and is used to estimate the height of the water table (i.e., the top of the aquifer).  For the Barton Springs 

area, two calibrations were done that correspond to drought and average conditions.  One of the setups of the 

model allows recharge to be specified, while the other has already pre-set inputs with average values.  The 

model shown at the bottom is used to estimate downstream model flow rates, and is version v36-2.1.0.  For the 

Baro basin in Ethiopia, a setup of the model was calibrated including infiltration processes and another set up 

was calibrated without infiltration.  Many different configurations, calibrations, and setups can be created for the 

same model software, and all the metadata and information captured not only characterizes each of them but 

helps relate them to one another as well as making useful distinctions and comparisons.  

In other publications we provide more details on the rationale for characterizing models as software [Gil et 

al 2016], their versions and calibrations [Carvalho et al 2018], configurations and setups [Garijo et al 2018].  In 

other work we describe where modelers typically document this important information in different locations, 

including published articles, technical reports, code documentation, and web sites [Essawy et al 2017], making 

it time consuming for others to understand and compare alternative implementations. 

4.3 Representing and Transforming Data for Scientific Modeling 

In this section we describe the techniques to prepare and organize the data for use in the various models.  We 

first describe how we represent, store and use metadata to support the search and discovery of new 

datasets.   Next, we describe the semantic representation of the individual datasets to support search and 

transformations, how we automatically import new datasets to create this semantic representation, and how we 

automatically perform unit detection on the cells of data.  Then, we describe how the system composes data 

transformations on the datasets using the rich semantic representations of the data.  Finally, we present a 

method for generating derived data products from raw satellite imagery that can be used for calibrating scientific 

models. 

4.3.1 Metadata that Enables Data Discovery. 

A major challenge in integrating cross-disciplinary models is the amount of effort required to locate model-

appropriate data (e.g., elevation, weather, or soil type) with the right quality and granularity, both temporal and 

spatial. Additionally, once a dataset is found, modelers oftentimes have to go through the additional challenge 

of transforming the data into a format that is required by their model (e.g., cropping global dataset to the specific 

region of interest, selecting only a relevant subset of the dataset’s variables, or translating variables from one 

system of units to another). 

Our approach was designed to address these issues. At a high level, it facilitates data discovery using a 

search and filtering mechanism based on the temporal and spatial extents of datasets as well as keywords and 

variable names.  In contrast with existing approaches that put an onerous burden on data consumers, we take 

a more principled approach to data sharing whereby we require data publishers to also describe a dataset's 

variables in a semantically standardized manner (using SVO). The philosophy behind this approach is that data 

are usually produced once but consumed many more times. Therefore, by requiring data providers to go through 

the extra step of describing their data using machine-readable format, it reduces the amount of effort end users 

would need to spend on (traditionally time-consuming) data pre-processing steps. 
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Figure 1: Characterizing and differentiating related configurations and setups of models.  

 

Figure 2: Generating additional keywords for datasets through a fuzzy augmentation process. 

More concretely, we consider a dataset to be a logical grouping of data about specific system variables 

contained in one or more resources (i.e., a set of files in a file system, web resources, or API endpoints). The 

resources in a dataset share metadata such as geospatial and temporal extent and provenance. Each dataset 

contains information about one or more variables, or scientific quantities of interest with a precise ontological 

definition. Variables are associated with one or more SVO names. We define variable presentations that include 

information about the variable’s representation such as the units of measure, handling of missing values, and 

metadata about collection. For each resource, we define a layout, which captures the physical relationships 

between variables in the resource. For example, in a CSV file with columns corresponding to months and rows 

corresponding to different variables of interest (e.g., GDP, inflation rate, imports, exports, etc.), the layout 

specifies which row contains each variable and how those variables relate to the columns (time), while the 

variable presentation provides metadata such as units and how the variables were measured.  

Raw datasets frequently contain very little context to determine their contents, often limited to a few keywords 

within its resources or to filenames. This presents a challenge for data discovery.  Using these meager clues to 

determine the correct semantic data types or ontological classes pertinent to the data poses a technical 

challenge.  We address this challenge through an augmentation-based approach that improves the alignment 

between ontological classes and keywords within data.   

Figure 2 illustrates the overall approach to create dataset entries using a fuzzy augmentation process. The 

first step of this process identifies keywords or terms within datasets, and in a second step these keywords are 

augmented using semantic sources and statistical techniques, generating an expanded set of dataset 

descriptors that are then re-weighted to create the final set of keywords.  The resulting keywords enable fuzzy 

search capabilities, where either informal keywords or technical terms used for search can be quickly matched 

to the relevant datasets.  
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Table understanding enables automated detection of headers and attributes (described in the next section), 

allowing the system to identify prominent keywords within the dataset. Since many extracted keywords may not 

provide meaningful information about ontological classes, such as stop words, units of measurement, or general 

metadata about collection, the system must discard some keywords. Our system uses common information 

retrieval filtering techniques such as term frequency-inverse document frequency (TF-IDF).  

 

Figure 3: Steps for building a D-REPR model for an agricultural price dataset. 

The second step uses these relevant keywords to generate additional keywords using three different 

sources. The first is a set of semantic resources such as WordNet [Miller, 1995], DBPedia [Auer et al., 2007], 

or ConceptNet [Liu and Singh, 2004], which include synonyms, hypernyms, meronyms, and relations to other 

concepts. The second source of keywords are statistical models such as word embeddings like Word2Vec 

[Mikolov et al., 2013] and GloVe [Pennington et al., 2014], and topic models [Blei et al., 2003] trained on 

corpora of scientific literature.  The final source of keywords are queries to the World Wide Web, where a query 

is constructed using the dataset's keywords and results are retrieved from commercial search engines which 

offer public API access.   

Through these three augmentation techniques, a set of augmentation candidates is generated. These 

candidates are re-weighted based on the number of sources that support the candidate, and then filtered using 

a similar TF-IDF technique. The final step of the fuzzy augmentation process is aligning the dataset to a user 

query or target ontology. Often, it is helpful to use the same augmentation techniques applied to dataset 

keywords to the query keywords or ontological data description. Using a combined set of weighted augmented 

keywords from both the data and user query, our system uses several different alignment techniques. We use 

well-known approaches, such as the cosine similarity and the Jaccard index, which can be extended to weighted 

set elements.   
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4.3.2 Interoperability of Data. 

A key aspect of our work to support interoperability of data is developing representations that support data 

integration and transformations.  Public datasets are available in various formats (e.g., XML, netCDF, 

spreadsheets), often have different data layouts (e.g., relational or matrix tables) and vocabularies to describe 

the data. To use these datasets for model calibration or prediction, we need the data to be represented in a 

unified and consistent way. Specifically, we use SVO and other standard ontologies (e.g., RDF Data Cube 

[DataCube 2020]) as a standard vocabulary, and RDF as a unified data model. Once the datasets are virtually 

or materially mapped to RDF, downstream tasks such as unit transformation, cropping by a bounding box or 

re-formatting to prepare data for running models can be easily done. 

 

Figure 4: Stages in table understanding. 

D-REPR Representation Language: To make the mapping process easier and less laborious, we developed 

a language called D-REPR [Vu et al 2019] for describing datasets. Users build a D-REPR model for a dataset 

through four steps. First, they specify the dataset's format and then define the dataset's attributes with their 

locations in the dataset. As the values of an attribute after the second step are collected as an array, this results 

in a set of arrays, in which each array is associated with an attribute. In the third step, users specify rules to join 

these arrays together to form tables containing all records in the dataset. Finally, they provide the semantic 

meaning of each attribute and the relationships between the attributes using ontology classes and predicates. 

Figure 3 depicts the process of building a D-REPR model for an agricultural price dataset.  

D-REPR offers several advantages over existing mapping systems such as RML [Dimou et al 2014] or 

XLWrap [Lefrançois et al 2015]: it can model datasets in different formats and layouts and can virtually map 

gigantic datasets to RDF. The later feature is very critical, especially in the scientific domain. One example is 

that the GLDAS [GLDAS 2020] weather dataset is stored efficiently in hundreds of GBs in netCDF, but it could 

be ten times bigger if stored in RDF triples. By processing the dataset using D-REPR in virtual mode, we achieve 

roughly the same speed as directly using netCDF without sacrificing the benefits of the RDF data model.  

Automatic Table Understanding: Another key aspect of our work to support data integration is table 

understanding. Data representations such as D-REPR enrich data interoperability, but constructing such 

representations can involve significant user effort and become a barrier to adoption of data catalogs. To assist 

users with data curation, the MINT Data Catalog supports a sophisticated set of tools for automatically profiling 

datasets to determine the syntactic and semantic representation and then generating a D-REPR 

definition.  Once this automated process is complete, a user may inspect the D-REPR file and correct any 

errors.   

The tools we present are focused on understanding tabular data, which provides coverage over a large 

portion of scientific datasets.  Figure 4 shows how we decompose the table understanding problem into three 
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stages: cell classification, block identification, and layout detection. Each stage of the process provides a 

different contribution to the D-REPR definition of a dataset, by identify ontological types, data locations, and 

join relationships respectively.  

Cell classification assigns each individual data item to a label class, either at a syntactic level (floating point 

value) or a semantic level (mass) depending on the needs of the domain. Cell classification techniques can 

benefit from models for semantic labeling or semantic typing, and our tools provide the semantic types used in 

the semantic model of the D-REPR definition. Our implementation of this task uses probabilistic graphical 

models, models that are able to use information of neighboring cells or headers in a table to make 

predictions.  The blocks of functionally similar table cells are identified using cell labels.  

Block identification identifies spatially contiguous regions of a table that have a similar functional role in the 

dataset. Identifying blocks uses information about the cell types, and our implementation adopts an entropy-

based approach that evaluates candidate blocks based on the homogeneity of the cell types in the 

dataset.  Once block boundaries are identified, they are used to determine the location of attributes in the 

dataset in the D-REPR definition. 

 

Figure 5: The CCUT process demonstrated over a compound unit of textual format `km/s^2`. 

The final step of table understanding is layout detection. Layout detection is formulated as a link prediction 

task between blocks identified in the previous stage. This task attempts to determine if a join relationship exists 

between two blocks, such as when an attribute block describes a set of observations. During layout detection, 

these relationships can optionally be labeled with properties in a semantic model based on type information 

from cell classification.  

We have released a flexible framework for table understanding, providing the core APIs for cell classification, 

block identification, and layout detection, along with reference implementations and utilities to provide 

visualizations of model output to assist in debugging and tools to translate input data into normalized data 

frames (Pujara et al., 2019). In our current architecture, these three stages are performed as a linear workflow, 

with earlier predictions used to influence subsequent decisions. The user can interact with the results in each 

of these three stages to review and make corrections as needed. In the future, we envision iteratively or jointly 

performing all three tasks and more sophisticated user interaction workflows.  

Representing and Transforming Units: For the kinds of modeling domains that we focus on, representing 

and transforming units of measurement is key. The identification of measurement units that are associated with 



   
 

27 

source data is a challenging task because it requires having some domain knowledge about the process that 

produced the data. Frequently, units appear in files within datasets in a textual representation that is not easily 

recognized and does not carry any semantic or dimensional meaning. We developed CCUT [Shbita et al 2019], 

an approach which uses grammar tools to automatically parse the different components in a unit found in textual 

data in files and map them to elements of a standard ontology that is used extensively in geosciences called 

QUDT [Chalk et al 2017] to form a structured semantic output. The output depicts the different relationships, 

attributes and semantics of units and allows users to have a better understanding of their data.  

The underlying pipeline behind CCUT is illustrated in Figure 5. First, we identify and parse the individual 

prefixes, single units, their exponents and multipliers which compose a string of a compound unit. Then, p we 

map each unit to its correct ontology in the schema. Finally, we compute the dimension of the compound unit 

and construct a normalized representation of the unit with attributes that are required for transformation. The 

evaluation of an early prototype has demonstrated a faster process of data analysis and understanding. 

4.3.3 Composable Data Transformations. 

In order to combine, transform or reformat datasets, we developed a framework called D-TRAN which 

constructs a transformation pipeline based on some specification from users. The framework uses the D-REPR 

representation presented in Section 4.3.2 to represent the actual data which may need to be transformed into 

one standard format for later uses. The idea is that we use smaller components (we refer to them as adapters 

or building blocks) which we concatenate to form a transformation flow. This modular design allows us to reuse 

existing modules and wrap ready-scripts to create a format-independent module and pipeline.  

 

Figure 6: General approach to data transformations.  

 

Figure 7: A data transformation pipeline for a hydrology model. 

In order to ensure the format independence of our system, all system inputs and outputs are described 

semantically using D-REPR models. Based on the D-REPR models, data in different formats will be converted 
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into our internal D-TRAN format. Therefore, all of the transformation adapters written in our system only need 

to work on the D-TRAN format and thus can be generalized easily. The D-TRAN format supports a graph-like 

interface, which allows users to search and process data in an ontological manner. Using the D-REPR models, 

our system can serialize input data into a graph form for normal use cases; or build a set of indices that map 

data values to their locations and thus allow graph queries for high volume datasets.  

There are three types of adapters in our transformation system:  

• Reader adapters are the entry point in the pipeline. A reader adapter reads a set of input files (data) 

and their descriptions using D-REPR, then create a dataset in D-TRAN format  

• Transformation adapters are the main execution modules in our pipeline. A transformation adapter 

takes a D-TRAN dataset as input, transforms it and outputs the resulting D-TRAN dataset.  

• Writer adapters are the exit points of the pipeline. A writer adapter outputs a set of files based on its 

input D-TRAN format following the design specified in a D-REPR model. 

Figure 6 depicts the general idea of our architecture that is based on reader, transformation and writer 

adapters and components that can be concatenated. The figure shows a simplified scheme of a transformation 

pipeline involving a reader adapter, two transformation adapters and a writer adapter. The reader adapter takes 

the input files and their D-REPR model to create a dataset in D-TRAN format. Then the dataset is transformed 

using two different transformation adapters. In the end, the transformed dataset will be written into files using a 

new D-REPR model.  

Figure 7 shows a transformation pipeline for a hydrology model where our transformation pipeline processes 

the global daily GPM1 weather data in 2018 in netCDF4 [Unidata 2020] format to create a CSV file which 

contains the monthly precipitation for every administrative region. First, the transformation pipeline takes both 

GPM netCDF4 and administrative region shape files as the input. Based on their D-REPR models, the pipeline 

creates two D-TRAN datasets and transfers them to later adapters. The Cropping adapter crops the global 

spatial dataset into multiple subsets for all Ethiopia districts based on their shape files. Then the precipitation 

values are aggregated for every month in the Aggregation adapter. Finally, the result D-TRAN dataset will be 

materialized based on its D-REPR model.  

Our approach is the first to support transformation between any type of data format. By leveraging the data 

representation power of D-REPR, D-TRAN can process and export data in any format while allowing users to 

write format-independent transformation functions.  

Finally, a very important aspect of data transformations is unit conversion. Scientific units of measurement 

are critical when end-users and non-domain experts desire to transform quantitative data. Unit conversions, 

which are commonly necessary in modeling world systems, can be automated using the same CCUT approach 

described above. We adapt the dimensions-based approach encoded in the QUDT ontology, which relates 

each unit to a system of base units using numeric factors. For example, any measurement of length can be 

expressed as a number multiplied by the unit ‘meter’ (the SI base for the length dimension). Given that, and the 

set of exponents, prefixes and multipliers derived from the grammar and put in a structured semantic output, 

we are able to generate the required calculation to perform unit conversions of the same dimension. This allows 

a safe and fast conversion between complex compound units without requiring the user to specify conversion 

multipliers or numerical offsets. As described in [Shbita et al 2019], our method has been tested on 
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spreadsheets and can be easily deployed over a range of quantitative data resources and thus accelerate and 

improve the modeling process in any scientific domain. 

4.3.4 Generating Novel Data for Modeling from Remote Sensing Sources. 

Physical models rely heavily on ground observations to ensure robust performance. These observations are 

primarily used to calibrate or customize the models for any given region.  For example, hydrological models 

contain numerous parameters (e.g., soil conductivity at different grid points) whose values need to be calibrated 

for each study region with the help of observations. However, in many regions, calibration is a key challenge 

because these ground observations are scarce or absent. Gage stations are costly to install and maintain, and 

thus are limited in number.  This paucity of observational data can lead to poorly calibrated models that provide 

incorrect predictions or have high uncertainty in practice. For this reason, we incorporate in our approach 

techniques to derive new data products from raw data, which we consider as a special kind of data 

transformations.  

Our approach is to use novel machine learning techniques to derive new data products from freely available 

from satellite imagery data (such as Sentinel and Landsat). We describe here a method to generate river surface 

area dynamics. For hydrological models, the most commonly used observation is discharge (volume per 

second). Even though discharge cannot be estimated directly from satellite imagery, it can be approximated 

using surface extent of rivers. Specifically, surface extent of rivers can be used to estimate proxies for discharge 

if the extent estimates are available for several locations on the river at regular intervals (due to physical 

relationships between width and discharge). To illustrate this relationship, Figure 8 shows the comparison 

between surface area variation in a river segment and discharge estimates from a nearby gage station. The 

USGS gage station (ID:02232500) is located on St. Johns river near Christmas, Florida. A river segment ~ 8km 

away was selected to compare the surface area variations with discharge estimates from the gage. The surface 

area estimates were created by analyzing satellite imagery data from Sentinel-2 satellite (10 m spatial 

resolution, ~10 day repeat frequency). As we can see, surface area (shown as blue timeseries) and discharge 

(shown as red timeseries) show a very high correlation. This illustrates the promise of our approach in using 

river width as a surrogate for river gauges where such calibration data is difficult to obtain. 

 
                        (a)                                                                                           (b) 

Figure 8: An illustrative example of the potential of satellite imagery analysis to provide calibration data for hydrological 

models. (a) Study region: St. Johns river near Christmas, Florida. The red star on the image shows the location of the 

USGS gage station (ID:02232500). The blue circle shows the river segment (~8kms away from the gage station) analyzed 
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using machine learning and satellite imagery from Sentinel 2 between 2015 and 2020. (b) Estimated river segment surface 

area (in blue) and daily discharge measured from the gage station (in red). 

 

Figure 9: An illustrative example to demonstrate the ability of auto-encoder architecture to learn inherent characteristics in 

the data. The three sets of images show a sample of 25 images from three different clusters that were obtained by 

clustering images based on the features learned by the auto-encoder architecture. 

 

(a)                                              (b) 

Figure 10: An illustrative example to demonstrate the utility of our physics guided machine learning approach (a) False color 

composite of the river segment (same segment as Figure 7) on June 23rd, 2016. (b) The corresponding land/water mask 

that captures the surface extent despite the presence of issues such as clouds and shadows. 

A key challenge in deriving surface extents of river segments is high degree of heterogeneity in spatial 

properties of land and water across different geographies and time which makes it difficult for traditional pixel-

based machine learning algorithms to achieve good performance [Karpatne et al. 2016]. These issues are 

exacerbated by atmospheric disturbances such as clouds, cloud shadows and haze. In MINT, we have 

developed new techniques based on Deep Convolutional Neural Networks (DCNNs) to estimate the surface 

extents of river segments. These methods can produce spatially consistent mappings of land and water that 

are robust against atmospheric effects such as clouds, haze as well as missing data. However, for performing 

accurately, these methods require a lot of training data, which is very difficult and expensive to obtain on a 

global scale, especially given the heterogeneity in both space and time. To address this issue, we used an auto-

encoder architecture to automatically construct highly expressive features in an unsupervised setting. 
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Specifically, we trained the auto-encoder architecture using 11,000 images (each image covered roughly a 

region of 1kmx1km) that were sampled manually from river networks around the world.   

The effectiveness of this architecture can be seen in the ability of these features to cluster similar river 

segments as shown in Figure 9. We first used the auto-encoder architecture [Le et al. 2013] to learn low-

dimensional features. These features were then used to cluster images into 100 clusters using a k-means 

algorithm. The figure shows a sample of 25 images from three different clusters. As we can see, different 

clusters capture very different types of river segments and there a lot of similarity among the images within a 

cluster.    

A convolutional neural network (CNN) based on semantic image segmentation network [Ronneberger et al. 

2015] is initialized using this unsupervised framework and then trained using 2,900 training images for which 

we manually constructed ground truth. This architecture was able to much better handle issues related to light 

haze and shadows that often confound the performance of pixel-based methods for identifying land and water 

pixels, as we reported in [Wei et al 2020]. To make the paradigm more robust, we incorporated physical 

principles into traditional machine learning frameworks [Khandelwal et al. 2017, 2019]. Specifically, pixels of a 

river segment do not change independently but are related to each other through hydraulic and bathymetric 

constraints. These constraints can be used to identify and correct physical inconsistencies in land/water labels 

obtained from machine learning algorithms.   

Figure 10 illustrates the utility of this physics guided machine learning approach to obtain robust surface 

area estimates. Figure 9 (a) shows the false color image (Near Infrared as Red channel, Red as Green channel, 

Green as Blue channel) of the river segment (same segment as Figure 8) on June 23, 2016. This band 

combination highlights vegetation and water appears distinctively black in color. Figure 9 (b) shows the 

corresponding land/water mask obtained using our approach. Water pixels are shown in dark blue color; and a 

large shadow and some clouds can be seen on the bottom of the image. Even with the presence of these 

occlusions, the machine learning algorithms are able to effectively estimate the surface extent.  We continue to 

improve these algorithms and to reduce the amount of labeled data needed. 

4.4 User Guidance for Interactive Scenario Exploration  

Ultimately, the guidance provided to users is key to the efficient selection and use of models.  This section 

describes how the semantic representations about models and data are used to guide users through structured 

stages of modeling.    

4.4.1 Guiding Users Through Modeling Stages. 

MINT guides users through several steps, illustrated in Figure 11:  

1. Formulate modeling objectives: This is done by specifying a modeling task, consisting (as defined 

earlier) of drivers, responses, interventions, region, and time period.    

2. Select models: MINT then shows users the models available that generate the indicators of interest, 

and that have the adjustable parameters and intervention inputs desired by the analyst.  Users can 

compare models and select one or more models to run. 

3. Select datasets: MINT then shows users the datasets that are available as inputs to the models 

selected, either directly in their existing formats or that can be transformed into the formats required.  

Users can compare datasets and select one or more datasets to run.  
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4. Set up models: MINT shows users the adjustable parameters that are input to the model, and the 

possible values that they can take. Users can select multiple parameter values which result in different 

runs.  

5. Monitor the status of model runs:  This allows users to track model executions that take a long time, 

and to be informed of execution failures.  

6. View results of model executions: Users can download and save any results from models. 

7. Visualize model results: MINT generates interactive visualizations that allow users to understand the 

model results. 

 

Figure 11: Major steps involved in modeling.  

Models and datasets are described using the techniques mentioned in Sections 4.1 and 4.2.  This enables 

MINT to find models that are relevant to the modeling objectives defined.  Once a model is selected, its data 

requirements result in a search for relevant datasets that either already have the model’s input formats or can 

be transformed into those formats. 

4.4.2 Model Executions and Ensembles. 

To run a model, a user would choose a model set up MS = <SC, SE, SA, SF, SP, SI, SO, SM, SN, SR, SS, 

ST> and specify a model set up assignment.  A model set up assignment MA is a set of bindings B for all the 

files in SF and all the adjustable parameters SA for a model set up MS.  The model is then executed using the 

set up assignment, the files and parameters in SC and SE, and the area TA and time period TP of the modeling 

task MT = <TR, TD, TI, TA, TP> being solved.  

Once a modeling task is specified and models and data are selected, users may want to run the model under 

different assumptions and initial conditions.    

Users often want to see how the model behaves under different assumptions or initial conditions, so each 

model is typically run many times to capture these different initial conditions. For example, a hydrology model 

can be run with different forecasts of rainfall (e.g., 20% less rain than the previous year, 10% less rain, 10% 

more rain, etc.).  Therefore, it is useful to define a model ensemble as a model set up and a collection of model 

set up assignments that need to be executed.  A collection of model set up assignments can be specified as a 

model ensemble specification, where the columns correspond to adjustable parameters and inputs and each 

row specifies the values chosen for each run.  Once the model is executed, the execution results become part 
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of the ensemble specification, and each row is augmented with an additional column that links to the model 

outputs of that run. 

4.4.3 Provenance for Explanation and Reproducibility. 

Provenance is key to generating explanations of model products.  Extensive provenance accompanies the 

model runs.  The provenance includes what model and software version was used, and all the parameter values 

used for each run.  This is summarized for the user so that the provenance of the data products is well 

documented.  Because provenance records contain references to all model setups, data, and parameters used, 

they can be used to grab any information required for explanation.  In that sense, provenance records serve as 

the basis for explaining and presenting model products to a user.    

Because the provenance records are linked to specific choices during the modeling process, users can 

browse a provenance report and drill down to examine other alternatives and the reasons for a certain selection.    

Provenance records are also useful for reproducibility, in case the model needs to be re-executed with 

different initial situations.  In addition, this enables the re-execution of the model in the future when the forecasts 

change.  

The treatment of provenance as a mechanism for drill down to details, revisiting choices, and re-running 

analyses is crucial to creating interactive reports for decision making. 

4.4.4 Interactive Dashboards. 

MINT creates interactive dashboards with visualizations that take the results of individual model executions 

and aggregate the results to allow users to contrast different scenarios and interventions.  Once models or 

model ensembles are executed, the data is reorganized by extracting relevant variables only which are those 

specified in TR, TD, TI of the modeling task at hand.  This process may take time, particularly if a model 

ensemble contains tens of thousands of runs.  MINT then generates visualizations that are designed based on 

the type of model and the type of data.  

The values specified by the user for the adjustable parameters of the model parameters are used to create 

user controls in the dashboard. Therefore, when creating models, it is important to specify adjustable 

parameters based on what the users interacting with these visualizations would want to see.   

These dashboards can be integrated within a user’s report, so that a decision maker can explore the results 

of different tradeoffs and additional outcomes. 

5 MODELING WITH MINT 

This section provides a walkthrough of how a user interacts with MINT, and the models and data capabilities 

currently available.   

5.1 Models and Data 

Our work to date has focused on the impacts of drought and flooding in crop production in Sub-Saharan Africa, 

as well as water availability in the South-Central region of the United States.  This requires models and data 

that span climate, hydrology, agriculture, and economics.  MINT contains a range of relevant models and 

datasets, including:  
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• Hydrology models to simulate water movement on the land surface, including river flow, flooding, and 

infiltration. These models require a large number of spatially-distributed input variables that describe 

various properties of the topography (e.g. elevation, slope, flow direction, total contributing area), the 

meteorology (rainfall rate, relative humidity, air temperature, surface temperature, etc.) and the soil 

(including many intrinsic and hydraulic properties), and river banks (e.g. slope). 

• An agriculture model that generates regional potential crop yields (e.g. maize, sorghum, wheat, 

sesame, cassava, teff, and peanuts) for a choice of planting dates, fertilization rates, and weed 

pressure levels.     

• An econometrics model that represent the effect of decisions by agricultural households on estimates 

of crop production in a region. This decisions include subsidies for fertilizers and/or land as well as the 

effect of crop price.  

• A groundwater model for storage and recharge of aquifers, for instance in response to   depletion of 

groundwater through pumping through wells and irrigation for farming.  

• A drought model that uses data from several climate sources on precipitation and temperature to 

generate three useful drought indices based on precipitation, precipitation evapotranspiration, and 

evapotranspiration.  

• Climate data that include precipitation, temperature, and other variables from monthly to daily 

frequencies.  This data is extracted from sources that provide this information at global scales, and 

subsets of interest are automatically extracted so they are readily available for modeling.  

• Historical water levels extracted from remote sensing data, since observations from river gauges are 

only available for some points and only for a few years for some regions.  

MINT includes other datasets needed by the models, such as soil data, digital elevation, and market prices.  

Major models that we use include PIHM [Shi et al 2013; Qu and Duffy 2007], TopoFlow [Peckham et al 

2017], Cycles [Kemanian and Stöckle 2010; Stöckle et al 2014], HAND [Zheng et al 2018a; 2018b], and 

MODFLOW [MODFLOW 2020] among others.  These models are configured by experts for a variety of regions 

in different regional testbeds as described below.    

These models and data support a range of scenarios and interventions:  

• Crop yield under different weather conditions, planting date and fertilizer choices, and weed 

management practices.  Soil moisture affects plant growth within a given planting window.  

Interventions that force potential planting windows can be specified as start and end planting dates.  

Interventions concerning weed control and weed management practices can be reflected as a 

parameter for the weed fraction remaining after the weed treatments applied by farmers.  

• Crop production under different farmer decisions.  Interventions concerning fertilizer subsidies can be 

expressed as a percentage of fertilizer prices.  

• Flooding under different weather conditions, with detailed flood maps that outline not only the areas 

that are likely to be affected by floods but the dates when flooding is likely. 

• Drought severity scenarios under different weather forecasts.  
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Both model and dataset metadata can be edited through the MINT user interface, allowing model developers 

to describe their models with the desired level of detail, add configurations for new regions, or specify parameter 

values for manual calibration. 

5.2 Interacting with MINT 

The MINT user interface (UI) guides users through modeling steps, providing assistance and automation along 

the way. When a step has been completed, it is shown in a darker color.  Users can revisit an earlier step, and 

if the choices are changed for that step, then the subsequent steps are canceled and need to be redone.  Each 

of these steps is done in a separate Web page and has its own URL, which allows users to share with others a 

particular selection or result by sharing its URL. 
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Figure 12: MINT User Interface: Exploring data and models available. 

Figure 12 illustrates the first step (shown in green at the top left), where users can select a region and browse 

the models and data available.  Here, the user has selected a region in South Sudan where there are several 

agriculture model prepared by experts for that region that can be explored (top right), and datasets that can be 

downloaded and transformed to run the model (bottom right).  This step allows users to understand the scope 

of modeling capabilities available for that region, which helps them frame the modeling problem in a later step.  

Users can also prepare models and browse datasets, as shown at the top.  The model selection, in this case 

Cycles, exposes the user to model input that can be changed. Preparing models is a stage where users can 

fine-tune an existing model for a region, by adjusting parameters with values that can improve model accuracy 

for that region. Repeating the process for multiple models or with the same model but different data sources 

while seeking the same output variables provides the user with a quick but not systematic, way of estimating 

uncertainty.  Output convergence increases confidence and output divergence suggests that further exploration 

is needed. 
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Figure 13: MINT User Interface: Specifying modeling tasks. 

The next stage is to use the models and generate results.  Before setting up and running models, MINT asks 

users to frame the modeling problem.  Figure 13 shows that the user has specified modeling tasks (left), and 

for each task has defined variables of interest (top right).  These include an indicator or response of interest as 

well as input variables that can be specified by the user, and MINT notes the possibility of exploring interventions 

through adjustments to the input variables.  Next, the user creates modeling threads to explore alternative 

problems related to the task, possibly through different data inputs, different models, or different parameters 

and interventions.  For each thread, MINT guides users through several substeps as shown in the figure, with 

the first substep highlighted to indicate that the user needs to start by choosing the models to be used. MINT 

shows the models that are relevant to the region and have variables specified in the task.  

Figure 14 illustrates the next two substeps. The user selects input datasets for the model selected (left side 

of the figure).  Similar to models, MINT shows datasets that are compatible with the model selected, and users 

can compare their main features and do more detailed exploration if needed.  Next, the user sets up parameter 

values for the model selected (right side of the figure).  For each parameter, several possible values can be 

specified, and MINT will run all combinations of values.  Note that these parameters are not all model 

parameters, but a carefully selected subset of parameters that are of interest for decision making.  Each 

combination of parameter values is submitted as a model execution.    

 

Figure 14: MINT User Interface: Selecting model inputs, both datasets and parameters.  

The next substep allows a user to track model executions, and note any execution failures due to missing or 

low-quality data in input files, inconsistencies in parameter settings, and other modeling issues.  At the moment, 
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MINT proceeds with the executions that are successful, and leaves it to the user to work on repairs to any of 

the failures.  These repairs may be as simple as fixing a missing value in an input file, or adjusting some 

parameters in the model to be mutually consistent, or in some cases rejecting an input dataset because it is not 

appropriate for the model.  With the validation that we have done for our models in our regions of interest, 

execution failures are rare.  However, execution failures will not be uncommon when using models in new 

regions.  This is an area of future work, where we plan to extend MINT with knowledge about model constraints 

that can be used to avoid these execution failures or to advise users on how to address them.    

In the substeps that follow, the user can examine and visualize the model execution results.  Users may 

browse and download model outputs, and use them in custom visualizations or download them.   

Figure 15 shows an example of a visualization dashboard in MINT. The first and second visualizations show 

the results from an agriculture model that estimates crop yield for several different locations within the Western 

Flood Plains of South Sudan. An ensemble was set up that varied the location, the year, the start planting date, 

and weed fractions for several crops.  The graphs in the figure show crop yield for sorghum and maize in the 

year 2005 for various amount of fertilizers, with varying weed fractions shown as different colored lines.  Users 

can slide over different years, plotting the potential crop yield with different weed fractions. Interacting with this 

dashboard shows that: 1) the response to the use of fertilizer varies greatly for different locations, and 2) the 

weather in 2017 leads to a much lower yield overall than other years.  The third visualization in the figure shows 

the results from an economic model that generates potential crop production by considering the potential crop 

yield from the agriculture model, projected market prices for different crops, and fertilizer cost (which can be 

affected through an intervention such as fertilizer subsidies) to analyze what crops farmers will most likely be 

planting. Through interaction with the visualization dashboard, users can easily see that: 1) Higher subsidies 

for sorghum fertilizer will increase sorghum production and decrease production of all other crops; 2) If sorghum 

prices fall, production for all other crops will increase; 3) Sorghum has the highest range of possible production 

outcomes depending on the chosen intervention. 
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Figure 15: Interactive Dashboards in MINT.  

 

Figure 16: Showing Provenance of Model Results. 

Finally, users start to prepare reports for decision makers, and can get from MINT information extracted from 

the provenance records for each thread.  Figure 16 shows a summary of all the details involved in generating 

a particular model output or visualization. Users will add many additional aspects to their reports, notably the 

user’s comments about the findings based on the modeling results.  What MINT offers is a sound justification 

for how the results were obtained, and the means to quickly update the results when more data or models 

become available.  

Individual models can be combined to create integrated models of complex systems.  For example, hydrology 

model outputs can be used as input in the daily time step of agriculture models provided these models have a 

means to uptake such data.  In such cases, the input weather data sources have to be the same for both models 

in order for the model outputs to be meaningful.  Another example of model integration is the use of agriculture 

model outputs to estimate crop yield elasticity as a factor for modeling actual crop production.  Combining 

models, even in simple ways, enables powerful integrated modeling and opens the door to causal reasoning 

about interventions, their intended consequences, and potential undesirable side effects. 

5.3 Accessibility 

We show here two focal testbeds that we have created to support our research. 

5.3.1 Sub-Saharan Africa. 

Food shortages may result in human migration and displacement.  With droughts reducing water availability 

and floods destroying crop fields, many areas have food shortages and food insecurity for large populations.  

Some countries have limited capacity to compensate local shortages with domestic or international trade, which 

results in migrations and in extreme cases famines.  When flooding is expected, planting could be delayed in 

order to save seed, labor and ultimately the crop harvest.  But in what areas will flooding likely occur?  For what 
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crops and under what conditions can the harvest be accomplished before the floods to avoid food shortages 

and migration?  While long-term planning for such situations is desirable, decision makers pose questions that 

are often short fused in order to prepare for natural disasters or to decide on near-term policies.  Delivering 

modeling systems and outputs in a form that allows decision makers to explore scenarios and policies remains 

a challenge. 

 

Figure 17: Models of flooding in South Sudan and Ethiopia. 

We have been developing models for Ethiopia and South Sudan, including hydrology models for major river 

basins, and agriculture models for large administrative regions and smaller administrative units.  MINT contains 

many models and model outputs for major regions of interest.  Most models focus on the Oromia and Gambella 

regions of Ethiopia, and the Western Flood Plains of South Sudan.  

This testbed currently includes 26 model configurations and 95 model setups.  It includes 297 datasets with 

over 2.46 million resources for relevant regions of Sub-Saharan Africa.  MINT has models and data for different 

administrative regions of Ethiopia, all the way down to woredas that make independent land allocations and 

other decisions that affect crop production.  MINT also has models for major river basins, in particular for Baro, 

Muger, Guder, Bashilo, Beko-Tippi, Ganale, Tezeke, Shebelle, Awash, and Jamma. The models were run for 

backcasting for the past decade, using alternative weather sources.  A total of 33,412 model runs have been 

executed to date, with more than 3.1 Terabytes of model outputs.  

Figure 17 shows an example of two models of flooding, on the left for the 2017 wet season in the Bahr El 

Ghazal basin in South Sudan generated with PIHM, and on the right for the Baro basin in Ethiopia in 2017 

generated with TopoFlow.  These models generate detailed timeseries of water flow along the river channel.  

The figure on the left shows in pink the locations with high risk of flooding during at that particular point in time, 

showing roads in yellow and cities in red.  The figure on the right shows in red two separate segments of the 

river that have higher water volumes at that time.   



   
 

42 

5.3.2 South-Central United States. 

South-central regions of the United States, such as the state of Texas, are faced with unprecedented risks due 

to expected intensification of weather patterns and the projected doubling of population in the next thirty years, 

with concomitant urban, agricultural and industrial growth posing increasing demands on water and energy 

resources.  Vulnerability to drought is exacerbated by increased pumping of groundwater as population 

expands. This leads to regional depletion of major aquifers by hundreds of wells, reducing water reserves and 

resulting in impacts to ecosystems such as lower spring flow rates, limitations to land use due to subsidence, 

and sinking of land areas.  In addition, extreme events such as destructive floods require accurate modeling of 

potential overflow of rivers particularly in urban areas.  Models of the hydrological and ground water systems 

help answer important questions and support planning for future scenarios. What levels of pumping in wells are 

sufficient to conserve water for expected drought periods?  What areas will be safe from flooding so that 

infrastructure and critical services can be properly positioned?    

Figure 18: Models of flood vulnerability in central Texas. 

In collaboration with the Planet Texas 2050 research initiative at The University of Texas at Austin, we have 

been including in MINT hydrologic models for groundwater across the state, as well as surface water for flooding 

and other related models.  

Figure 18 shows model results of flooding risk for a small urban area near Austin, generated using the HAND 

model.  The model is simple and can be run quickly for large areas.  The model does an assessment of flood 

risk down to the building level. 

6 USER EVALUATIONS  

The MINT framework is continuously improving based on user feedback, as we incorporate additional features 

and improve its usability.  We recognize the importance of formal user evaluations, even though they require 

significant effort for a complex system like MINT.  Evaluating MINT with modelers and decision makers would 

be very difficult since they are scarcely available and designing and arranging the evaluations would require 

significant resources.  In addition, that level of effort would only be worth doing with a more polished and 

improved user interface that we are more confident will reveal useful insights.  Since we are still early in the 

development of MINT, we have not done formal user evaluations in our work to date.  Instead, we have focused 

on formative evaluations with few users intended to inform our work intended to inform our research, reveal 

usability issues, and prioritize planned extensions and future work.    

We carried out an initial formative evaluation in September of 2019 when MINT was in early stages of 

development.  This evaluation focused on model search and model execution capabilities of the MINT UI. The 

subjects were graduate students with basic expertise in economic modeling but no previous exposure to MINT. 
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Each participant was provided a user guide of MINT, plus instructions to complete a series of modeling tasks 

using a simplified economic model for agriculture production in South Sudan. All subjects were able to complete 

their modeling tasks within 40 and 70 minutes. When asked about their impression, all participants gave positive 

feedback about the modeling capabilities of the system, specifically commenting on the ability to easily learn 

more about models, and the ability to execute models with different data. Users also reported some difficulties 

when using the UI, in particular having to make assumptions about how the models worked in order to 

successfully finish their tasks. We used this feedback to extend model metadata, to improve the documentation 

about models, and to allow users to access information based on the region of interest.  

A second formative evaluation was carried out in December 2020 with a more advanced version of MINT. 

The nine participants ranged from graduate students with some modeling background to modelers who had an 

interest in AI technologies. Each participant attended a short twenty-minute tutorial overview of MINT, and was 

given an hour to complete three tasks: 1) find models according to given keywords or indices and describe their 

inputs and variables; 2) find existing results and datasets in the data and provenance catalogs; and 3) execute 

two models for assessing drought and crop production respectively and answer questions about the results. 

Once the tasks were finalized, participants were asked to fill in a survey about the usability of MINT. All usability 

questions followed a five-point Licker scale, ranging from “Very easy” to “Very difficult” (the neutral answer was 

“moderate”).   

 

Figure 19: An overview of the MINT architecture, showing the interdependencies between its modules. 

Eight participants were able to complete all three tasks correctly. All participants managed to find their target 

datasets and models in MINT, execute models, and answer brief questions about the results. A ninth participant 
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completed most of the tasks successfully, but was not able to finalize the third as they were not able to locate 

the execution results of the crop and planting date specified in the task. We believe that this is due to the current 

design of the user interface that separates the search for raw data (done in the data catalog) and the search for 

data products of models (done in the provenance catalog), and that a unified, consistent view on data would 

improve usability. When asked for feedback, all participants found easy or very easy to find a model to fit their 

purposes in MINT, and the majority found it easy or moderate to understand the purpose of a model. Most 

participants (56%) found it moderate to compare the differences between existing models for a given task. All 

participants except one found it easy or very easy to find datasets and existing results; and most participants 

found it was easy or very easy to set up a new modeling task. As for the points for improvement, respondents 

mentioned that the user interface is sometimes “a little overcrowded with text”, and suggested improvements 

for the specification of problem statements.  They also asked for better support for visualizations of model 

results.   

Overall, 77% of the participants found it easy or very easy to use MINT once familiar with the platform (23% 

considered it moderate), mentioning that they were surprised by the suggestions made by the system at least 

once. Several comments mentioned that the user interface was clear and the information well organized (e.g., 

“This is a fantastic tool and will be very helpful for scientists to run models”, “The interface is very intuitive”).   

We continue to improve the MINT system and its user interface.  Major areas currently being redesigned are 

the specification of modeling tasks and threads, integrated access of raw data and model products, and the 

development of visualizations that highlight spatial-temporal patterns in the data.   

7 MINT SYSTEM ARCHITECTURE AND SOFTWARE  

Figure 19 shows an overview of the MINT architecture components, illustrating the services and catalogs that 

implement the capabilities described in previous sections. The MINT User Interface and Scenario Exploration 

component, described in Section 4.4 and illustrated in Section 5.2, serves as an entry point for users and 

orchestrates the invocation of all other MINT components. This user interface allows users can define their own 

tasks and problems to investigate, issue ensembles of model runs for execution, keep track of the problems 

and tasks defined by others; and explore datasets, provenance of existing runs and models by querying the 

data, provenance and model services respectively.  

A snapshot of the MINT software and documentation can be found under open-source licenses in [MINT 

2020], including data services, model services, execution services, and the user interface.  

Our representation for models and associated metadata is available as the Software Description Ontology 

for Models [SDM 2020].  All the model, model version, model configuration and model setup metadata are 

described in a model catalog that uses semantic web standards [Garijo et al 2019], with links to external 

resources (e.g., GitHub, DockerHub) to appropriately version and store code and execution environments.  The 

SVO ontology is available at [SVO 2020]. 

8 DISCUSSION: INTEGRATED MODELING AND DECISION MAKING  

Table 5 revisits the modeling challenges in Table 1 and points out the relevant capabilities and benefits of MINT. 

Modeling in the context of decision making involves diverse users and tasks, particularly when it concerns 

complex systems that require the integration of models from different disciplines. This section discusses the 

particular aspects of modeling that are addressed by our work to date.  
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A literature review about the use of models for decision making is presented in [Elshall et al 2020], with a 

focus on groundwater models but offering general views on the modeling context. It describes the diversity of 

perspectives and values brought in by different stakeholders as considerations evolve from basic concerns with 

safe yield, to longer-term sustainable yield, to more comprehensive sustainable water management.  It is 

important also to acknowledge the plurality of modeling expertise and types of knowledge that can be brought 

to bear in any given context [Krueger et al 2012].  Because the underlying systems are interconnected and 

interdependent, and each may be studied by a different discipline, integrated modeling can be approached as 

integrating that diverse expertise.  Stakeholders are often seen simply as providers of data, but participatory 

modeling emphasizes the use models to empower stakeholders [Oliver et al 2012].  

One way to set the context for our work is to see the different kinds of users that would be involved in different 

aspects of those modeling and decision-making phases and stages. In that regard, we distinguish three different 

types of users based on required skill sets that can use MINT for different purposes:  

• Modeler: This user generates model outputs and has basic expertise in the modeling domain.  A 

modeler can use MINT to browse through pre-prepared models and pre-prepared datasets, select 

appropriate ones for their problems, and set up and run models.  A modeler can also use MINT to 

explore interventions in models. This user can also use MINT to publish model outputs to be used by 

other modelers (with expertise in other disciplines) or by analysts.  

• Analyst: This user defines problem/scenarios for the modeler, and creates reports for decision makers 

based on model products.  They may have some limited modeling expertise in the domain, enough to 

be able to run models already selected by the modelers. This user can use MINT to generate model 

outputs, determine problem areas, explore interventions, and create reports for decision makers.  An 

analyst can use MINT to do large amounts of model runs in order to explore scenarios, which can then 

be used in other tools to estimate and characterize uncertainty.  

• Decision maker: This user makes decisions and understands causality for interventions based on 

reports from analysts.  They can use MINT simply to browse reports from analysts to understand 

situation and interventions, drilling down if needed to understand how model outputs were generated. 

Table 5. Benefits of AI capabilities in MINT. 
Problem Addressed Relevant AI Capabilities in MINT Benefit 

Delays in decision 

making 
• Metadata that enables data discovery 

• Generating novel data for modeling 

• Automated data transformations 

• Metadata that enables data and model discovery 

• Automated checking of model requirements and constraints 

• Step-by-step guidance for modeling tasks 

Timely 

analysis 

Limited scenario 

exploration 
• Problem framing based on decision space 

• Models extended to expose potential interventions 

Intervention-

centered 

modeling 
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• Interactive dashboards to explore scenarios and interventions 

as well as their outcomes 

Restricted domain 

modeling 
• Models expose only parameters that are relevant for decision 

making 

• Models are pre-configured/pre-calibrated for easy use by 

others for scenario exploration 

Accessible 

models 

Static analysis reports 
• Interactive dashboards to explore scenarios 

• Stylized narratives of modeling choices and scenarios 

• Provenance records with metadata of model runs 

Interactive 

model 

products 

We also consider two additional types of users that populate MINT with models, data, and related software: 

• Expert modeler: This user has deep expertise in a particular domain (e.g., agriculture modeling), and 

has a detailed understanding of modeling variables and processes as well as model software.  This 

user would add new models with appropriate model configurations and setups for the problems and 

decisions of interest, and to run model with example/test data.  This user would also implement custom 

data preparation, model calibration, data post-processing, and visualization codes that enable easy 

use of each model. This user would also do a sensitivity analysis to determine what model inputs result 

in the most uncertainty for the model outputs.  

• Data specialist: This user is proficient in data formats and data systems, and can characterize, catalog, 

and curate data sources useful for modeling in the context of interest.  This user would incorporate 

new data sources and datasets with necessary metadata.  This user would also populate the system 

with specialized data products, e.g. extracted from remote sensing data, rescaling products, highly 

curated data, etc.  This user would also implement custom data preparation and data transformation 

procedures for commonly used formats and models.  

These tasks need to be accomplished before modelers and analysists can use MINT, and they are currently 

supported through APIs and services to add models and data. We note that an expert modeler is typically 

proficient in a particular domain, so in the case of complex systems several expert modelers may be involved.  

Similarly, a range of skills may be required for handling data, so different data specialists may be involved.  We 

are extending MINT to support these kinds of users. 
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Figure 20: Major stages in integrated modeling. 

Figure 20 illustrates the context in which MINT operates.  Our focus has been on empowering modelers who 

are not necessarily expert in a domain to find appropriate models that have already been configured for a 

specific context (e.g., for a region) and find necessary data to run them.  This kind of user is shown in the middle 

of the figure.  In order for their work to be possible, expert modelers and data scientists would have to populate 

the system ahead of time by preparing the models for the regions of interest and incorporating relevant datasets 

into the framework.  They also scope the context for modeling, in our case defining regions for agriculture 

models and well-outlined river basins.  Once modelers have created models, analysts can do uncertainty 

analysis, and generate reports with appropriate explanations and supporting materials extracted from the 

provenance records so that decision makers can drill-down and understand scenarios and interventions.  

Figure 21 takes an even broader context, showing an idealized view of the stages involved in modeling in 

the context of decision making, inspired by the cycle of participatory modeling proposed in [Voinov et al 2016] 

and the model building steps articulated in [Jakeman et al 2006]. Before the modeling stage that MINT 

addresses, there is an initial phase where an expert modeler would confer with an analyst and decision maker 

to frame the modeling problem based on key issues facing the complex system under study, and then to focus 

on key variables of interest in the system under consideration as well as reference behaviors and desirable 

outcomes.  Once this is accomplished, the modeler moves to a second phase to explore potential scenarios.  

In a modeling stage, models are created and a baseline case is generated. The next stage involves search to 

explore the solution space and alternative scenarios.  A rank stage is used to filter and rank solutions to select 

those of interest.  The analyst then goes through an analysis stage to create a summary of the solutions explored 

and assess uncertainty. The third and final phase involves the generation of a report for decision makers, and 
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involves a judgement stage to adjudicate possible interventions, a bargain stage to consider tradeoffs between 

them, and a choice stage to make recommendations and converge on decisions. These steps are iterated to 

refine, reframe, and refocus modeling goals.  Our work to date focuses on modeling stage of the second phase, 

but MINT can provide support throughout this process.    

 

Figure 21: Modeling in the context of decision making. 

We have not discussed the economic cost of interventions, which usually offer tradeoffs that are crucial for 

decision making.  Optimization algorithms are important for understanding these tradeoffs and finding choice 

points in the decision space.  

There are many opportunities to use AI to make these modeling processes more efficient, by optimizing the 

role of the modeler and accelerating learning by the analyst. There are many opportunities to assist an analyst 

so they can work more efficiently. Provided that the computing and data storage capacities allow running 

simulations unattended, there are multiple options to run and rank simulations to explore a large array of model 

input and intervention combinations. An AI system can learn which of those combinations provide solutions 

within acceptable boundaries. For such task, the modeling system needs to be able to run unsupervised, still a 

toll order for many expert domain models. Indicator variables in the outputs as well as indices need to be 

carefully selected and weighted to allow an AI system to grade scenarios, so that it can learn in a way that 

mimics modelers and analyst. The AI system can be nested, for example testing first the agricultural space to 

rule out conditions that are not worth exploring further with other models. Finding the right combination of 

automated and human effort requires further work to exploit synergies, a work that can only be done 

systematically with robust systems as such describe here. 

9 CONCLUSIONS 

This paper describes AI techniques to assist modelers to create models of complex systems efficiently, and in 

a form that will be relevant to decision makers.  Our work makes several innovative contributions. First, goal-

oriented modeling is used to frame modeling questions and formulate potential interventions and decision 

variables.  Second, problem solving is used to select models and datasets relevant to the goals.  This requires 
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models to be encapsulated into configurations and settings that expose only relevant parameters and variables 

as drivers, responses, and relates them to interventions and decisions.  Third, data is represented in terms of 

metadata, formats, structure, and contents, so that it can be found and automatically transformed.  Fourth, novel 

machine learning techniques are used to extract data from remote sensing sources that can be used when 

historical observations are not available to calibrate models. Fifth, an intelligent user interface guides users 

through structured stages of modeling, allows interactive exploration of scenarios, and generates provenance 

for model products to support explanation and reproducibility of the resulting reports presented to decision 

makers.    

These innovations are implemented in the MINT framework, which includes real models and datasets for 

two different regions to analyze the interactions between natural and human systems, in particular the 

relationships between climate, water availability, agriculture production, and markets. Users with general 

modeling background are guided to use sophisticated models in an accessible manner.   

There are many directions for future work.  We plan to extend MINT to assist expert models to encapsulate 

their models so they can be easily used by other modelers.  We plan to improve MINT to allow data scientists 

to extend the library of data transformations and data formats that can be handled, many of them are of 

spatiotemporal nature.  We are also starting to apply our framework to modeling in other regions (Asia) and 

domains (fire). Finally, while our formative evaluations have shown how users can use MINT successfully to 

find models, existing results and set up modeling tasks and problems, we also plan to extend our assessment 

by evaluating the use of MINT by expert modelers to apply models created by others; and by analysists to run 

models and create reports with useful scenarios and uncertainty records that enable them to explore 

interventions and tradeoffs.  

MINT provides assistance for core modeling tasks surrounding the execution of models, such as identifying 

modeling objectives, transforming data, and running models. MINT could be extended to provide assistance in 

upstream tasks involving framing the modeling problem and preparing models for a region.  MINT could also 

be extended to assist with subsequent tasks such as uncertainty analysis and report preparation.    

A major area for future work is to leverage our approach to streamline model integration. In many cases, 

models are tightly integrated through model coupling where state variables are exchanged continuously across 

models during simulation. Our approach would be best suited for other types of model integration that are more 

sequential in nature, where the results of a model would be used by another model.  Given the rich semantic 

data and model representations that we have developed, it should be possible to automate or assist with data 

transformations needed to convert a model’s results into the formats needed by another model. An important 

aspect in model integration is ensuring that the models are used consistently, for example in terms of their 

assumptions, the treatment of processes, and the use of the same or at least compatible data sources. Future 

research is needed to capture such forms of model dependencies as constraints, and to develop constraint 

reasoning techniques to assist users to ensure the integrated models can produce valid results.  

The need for modeling complex systems is crucial for environmental sciences.  This need is ubiquitous in 

many sciences, from physics to biology to medicine. By providing assistance and automation and by ensuring 

proper use of models, AI has immense potential to make modeling more efficient by orders of magnitude.  This 

will accelerate the progress of science, and our understanding of the world. 



   
 

50 

ACKNOWLEDGMENTS 

We would like to thank our collaborators over the years for many useful insights that inspired and shaped this 

work.  This research was funded by the Defense Advanced Research Projects Agency with award W911NF-

18-1-0027, the Planet Texas 2050 program of The University of Texas at Austin, and the National Science 

Foundation with award ICER-1440323.   

REFERENCES 

[Abdelghaffar et al 2010] Abdelghaffar, H., Kamel, S., and Duquenoy, P. 2010. “Studying E-Government Trust in Developing Nations: Case of 

University and Colleges Admissions and Services in Egypt”. Proceedings of the International Information Management Association 

Conference, Utrecht, The Netherlands. 

[Abdelsalam et al 2013] Abdelsalam, H., Reddick, C., Gamal, S., and Al-shaar, A. 2013. “Social Media in Egyptian Government Websites: 

Presence, Usage, and Effectiveness”. Government Information Quarterly, 30(4): 406-416. 

[Abulaish and Dey 2007] Abulaish M., and Dey, L. 2007. “Biological relation extraction and query answering from MEDLINE abstracts using 

ontology-based text mining”. Data & Knowledge Engineering 61, 2, 228–262 

[Afgan et al 2018] Enis Afgan, Dannon Baker, Bérénice Batut, Marius van den Beek, Dave Bouvier, Martin Čech, John Chilton, Dave Clements, 

Nate Coraor, Björn Grüning, Aysam Guerler, Jennifer Hillman-Jackson, Vahid Jalili, Helena Rasche, Nicola Soranzo, Jeremy Goecks, 

James Taylor, Anton Nekrutenko, and Daniel Blankenberg. The Galaxy platform for accessible, reproducible and collaborative biomedical 

analyses: 2018 update, Nucleic Acids Research, Volume 46, Issue W1, 2 July 2018, Pages W537–W544, doi:10.1093/nar/gky379 

[Auer et al 2007] Auer, S., Bizer, C., Kobilarov, G., Lehmann, J., Cyganiak, R., and Ives, Z. 2007. “Dbpedia: A nucleus for a web of open data”. 

In The semantic web. Springer, 722–735 

[Baldassare 2000] Baldassare, M. 2000. “California in the New Millennium: The Changing Social and Political Landscape”. Berke ley: University 

of California Press 

[Bauer, and Kaltenböck 2011] Bauer, F, and Kaltenböck, M. 2011. "Linked open data: The essentials". Edition mono/monochrom, Vienna 710. 

[Bertot and Grimes 2012] Bertot, J. and Grimes, J. 2012. “Promoting Transparency and Accountability through ICTs, Social Media, and 

Collaborative E-Government”. Transforming Government: People, Process and Policy, 6(1): 78-91. 

[Blei et al 2003] Blei, D. M., Ng, A. Y., and Jordan, M. I. 2003. “Latent dirichlet allocation”. Journal of Machine Learning Research, 3, 993–1022. 

[Brickley et al 2019] Brickley, D., Burgess, M., and Noy, N. 2019. “Google Dataset Search: Building a search engine for datasets in an open 

Web ecosystem”. In The World Wide Web Conference (WWW ’19). Association for Computing Machinery, New York, NY, USA, 1365–

1375. 

[Buttigieg et al 2013] Buttigieg, P. L., Morrison, N., Smith, B., Mungall, C. J., & Lewis, S. E. 2013. “The environment ontology: contextualising 

biological and biomedical entities.” Journal of Biomedical Semantics, 4(1), 43. doi:10.1186/2041-1480-4-43 

[Cafarella et al 2008] Cafarella, M. J., Halevy, A., Wang, D. Z., Wu, E., and Zhang, Y. 2008. “Webtables: exploring the power of tables on the 

web”. Proceedings of the VLDB Endowment 1, 1, 538–549. 

[Carvalho et al 2018] Carvalho, L.; Garijo, D., Medeiros, C. B., and Gil, Y. 2018. “Semantic Software Metadata for Workflow Exploration and 

Evolution”.  Proceedings of the Fourteenth IEEE International Conference on eScience, Amsterdam, The Netherlands. 

[Chalk et al 2017] Chalk, S., Hodgson, R., and Ray, S. 2017. “Qudt toolkit: Development o f framework to allow management of digital scientific 

units”. In Abstracts of Papers of the American Chemical Society, Volume 253.  

[CF 2020] The Climate and Forecasting (CF) Conventions and Metadata.  2020. Available from https://cfconventions.org/. 

[Cycles. 2020] Cycles. 2020. http://plantscience.psu.edu/research/labs/kemanian/models-and-tools/cycles 

[DataCube 2020] DataCube.  2020. https://www.w3.org/TR/vocab-data-cube/ 

[David et al 2013] David, O., Ascough II, J., Lloyd, W., Green, T., Rojas, K., Leavesley, G., and. Ahuja, L. 2013. “A software engineering 

perspective on environmental modeling framework design: The Object Modeling System”. Environmental Modelling & Software 39, pp 

201-213.  

[DCAT 2020] The Data Catalog Vocabulary (DCAT).  2020. https://www.w3.org/TR/vocab-dcat/. 

[Dimou et al 2014] Dimou, A., Vander Sande, M., Colpaert, P., Verborgh, R., Mannens, E., and Van de Walle, R. 2014. “RML: A Generic 

Language for Integrated RDF Mappings of Heterogeneous Data”. 7th Workshop on Linked Data on the Web, Proceedings 1184. 

[DockerHub 2020] Docker Hub. 2020.  https://hub.docker.com/. 

[Dong et al 2019] Dong, H., Liu, S., Han, S., Fu, Z., Zhang, D. 2019. "Tablesense: Spreadsheet table detection with convolutional neural 

networks". Proceedings of the AAAI Conference on Artificial Intelligence. Vol. 33.  

[Elshall et al 2020] Elshall, A. S., Arik A. D., El-Kadi, A., Pierce, S., Ye, M., Burnett, K., Wada, C., Bremer, L., and G. Chun. 2020. “Groundwater 

sustainability: A review of the interactions between science and policy.” Environmental Research Letters.  https://doi.org/10.1088/1748-

9326/ab8e8c 

[Essawy et al 2017] Essawy, B. T., Goodall, J. L., Xu, H., and Gil, Y. 2017. “Evaluation of the OntoSoft Ontology for Describing Legacy 

https://cfconventions.org/
http://plantscience.psu.edu/research/labs/kemanian/models-and-tools/cycles
https://www.w3.org/TR/vocab-data-cube/
https://www.w3.org/TR/vocab-dcat/
https://hub.docker.com/
https://doi.org/10.1088/1748-9326/ab8e8c
https://doi.org/10.1088/1748-9326/ab8e8c


   
 

51 

Hydrologic Modeling Software”. Environmental Modelling & Software, 92. 

[Garijo et al 2018] Garijo, D., Khider, D., Gil, Y., Carvalho, L., Essawy, B., Pierce, S., Lewis, D. H., Ratnakar, V.; Peckham, S. D., Duffy, C., 

and Goodall, J. 2018. “A Semantic Model Registry to Support Comparison and Reuse”. Proceedings of the Ninth International Congress 

on Environmental Modeling and Software, Ft Collins, CO,  

[Garijo et al 2019] Garijo, D., Khider, D., Ratnakar, V., Gil, Y., Deelman, E., Ferreira da Silva, R., Knoblock, C., Chiang, Y., Pham, M., Pujara, 

J., Vu, B., Feldman, D., Mayani, R., Cobourn, K., Duffy, C., Kemanian, A., Shu, L., Kumar, V., Khandelwal, A., Tayal, K., Peckham, S.D., 

Stoica, M., Dabrowski, A., Hardesty-Lewis, D., and Pierce, S. 2019. “An Intelligent Interface for Integrating Climate, Hydrology, Agriculture, 

and Socioeconomic Models”. ACM 24th International Conference on Intelligent User Interfaces (IUI’19) p. 111–112. 

[Garijo et al 2019] Garijo, D., Osorio, M., Khider, D., Ratnakar, V., and Gil, Y. 2019. “OKG-Soft: An Open Knowledge Graph with Machine 

Readable Scientific Software Metadata”. Proceedings of the 15th IEEE Conference on eScience. 

[Gatterbauer et ak 2007] Gatterbauer, W., Bohunsky, P., Herzog, M., Krüpl, B., and Pollak, B. 2007. “Towards domain-independent information 

extraction from web tables”. In Proceedings of the 16th international conference on World Wide Web. ACM,71–80 

[Gil et al 2011] Gil, Y.; Gonzalez-Calero, P. A.; Kim, J.; Moody, J.; and Ratnakar, V. “A Semantic Framework for Automatic Generation of 

Computational Workflows Using Distributed Data and Component Catalogs.” Journal of Experimental and Theoretical Artificial 

Intelligence, 23(4). 2011. 

[Gil et al 2016] Gil, Y., Garijo, D., Mishra, S., and Ratnakar, V. 2016. “OntoSoft: A Distributed Semantic Registry for Scientific Software”. 

Proceedings of the Twelfth IEEE Conference on eScience, Baltimore, MD. 

[Gil et al 2018] Gil, Y., Cobourn, K., Deelman, E., Duffy, C., Ferreira da Silva, R., Kemanian, A., Knoblock, C., Kumar, V., Peckham, S.D., 

Carvalho, L., Chiang, Y., Garijo, D., Khider, D., Khandelwal, A., Pham, M., Pujara, J., Ratnakar, V., Stoica, M., and Vu, B. 2018. “MINT: 

Model Integration Through Knowledge-Powered Data and Process Composition”. 9th International Congress on Environmental Modelling 

and Software. 

[GitHub 2020] GitHub. 2020.  Available from https://github.com/  

[GLDAS 2020] GLDAS. 2020. Available from https://ldas.gsfc.nasa.gov/gldas.  

[Gleason et al 2014] Gleason, C.J., Smith, L.C. and Lee, J. 2014. “Retrieval of river discharge solely from satellite imagery and at‐many‐stations 

hydraulic geometry: Sensitivity to river form and optimization parameters”. Water Resources Research, 50(12), pp.9604 -9619. 

[Goel et al ICAI], Goel, A., Knoblock, C., and Lerman, K. ICAI. "Exploiting structure within data for accurate labeling using conditional random 

fields". Proceedings on the International Conference on Artificial Intelligence (ICAI). 

[Guha et al 2016] Guha, R. V., Brickley, D., and Macbeth, S. 2016. "Schema. org: evolution of structured data on the web." Communications 

of the ACM 59.2: 44-51. 

[GuoDong et al 2005] GuoDong, Z., Jian, S., Jie, Z., and Min, Z. 2005. “Exploring various knowledge in relation extraction”. In Proceedings of 

the 43rd annual meeting on association for computational linguistics. Association for Computational Linguistics, 427–434 

[HDX 2020] Humanitarian Data Exchange.  2020. Available from https://data.humdata.org/  

[Hellerstein et al 2019] Hellerstein, Joseph L., Stanley Gu, Kiri Choi, and Herbert M. Sauro. "Recent advances in biomedical simulations: a 

manifesto for model engineering." F1000Research 8 (2019). 

[Hoehndorf et al 2011] Hoehndorf, Robert, Michel Dumontier, John H. Gennari, Sarala Wimalaratne, Bernard De Bono, Daniel L. Cook, and 

Georgios V. Gkoutos. "Integrating systems biology models and biomedical ontologies." BMC systems biology 5, no. 1 (2011): 124. 

[Jakeman et al 2006] Jakeman, A.J., Letcher, R.A., and J.P. Norton. 2006. “Ten iterative steps in development and evaluation of environmental 

models.” Environmental Modelling & Software, 21(5). https://doi.org/10.1016/j.envsoft.2006.01.004  

[Kandel et al 2011] Kandel,S., Paepcke, A., Hellerstein,J., and Heer, J. 2011. “Wrangler: Interactive visual specification of data transformation 

scripts”. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems, pp. 3363-3372.  

[Karpatne et al 2016] Karpatne, A., Khandelwal, A., Chen, X., Mithal, V., Faghmous, J., and Kumar, V., 2016. “Global monitoring of inland water 

dynamics: State-of-the-art, challenges, and opportunities”. In: Lässig J., Kersting K., Morik K. (eds) Computational Sustainability. Studies 

in Computational Intelligence, vol 645. Springer, Cham. https://doi.org/10.1007/978-3-319-31858-5_7. 

[Kemanian and Stöckle 2010] Kemanian, A. R., and Stöckle, C. O. 2010.  "C-Farm: A simple model to evaluate the carbon balance of soil 

profiles". European Journal of Agronomy 32, no. 1: 22-29. 

[Khandelwal 2019] Khandelwal, A. 2019. “ORBIT (Ordering Based Information Transfer): A Physics Guided Machine Learning Framework to 

Monitor the Dynamics of Water Bodies at a Global Scale”. 

[Khandelwal et al 2017] Khandelwal, A., Karpatne, A., Marlier, M.E., Kim, J., Lettenmaier, D.P. and Kumar, V. 2017. “An approach for g lobal 

monitoring of surface water extent variations in reservoirs using MODIS data”. Remote Sensing of Environment, 202, pp.113 -128. 

[King 2007] King, G. 2007. “An Introduction to the Dataverse Network as an Infrastructure for Data Sharing”. Sociological Methods & Research, 

36(2), 173–199. 

[Koci et al 2016] Koci, E., Thiele, M., Romero, O., Lehner, W. 2016. “Cell classification for layout recognition in spreadsheets.”  International 

Joint Conference on Knowledge Discovery, Knowledge Engineering, and Knowledge Management. pp. 78–100  

[Kolaitis 2005] Kolaitis, P. G. 2005. "Schema mappings, data exchange, and metadata management". Proceedings of the twenty-fourth ACM 

SIGMOD-SIGACT-SIGART symposium on Principles of database systems.  

[Krishnan et al 2016] Krishnan, S., Wang, J., Wu, E., Franklin, M.J., and Goldberg, K. 2016. “Activeclean: interactive data c leaning for statistical 

modeling”. Proceedings of the VLDB Endowment, 9(12). 

https://github.com/
https://ldas.gsfc.nasa.gov/gldas
https://data.humdata.org/
https://doi.org/10.1016/j.envsoft.2006.01.004
https://doi.org/10.1007/978-3-319-31858-5_7


   
 

52 

[Krueger et al 2012] Krueger, T., Page, T., Hubacek, K., Smith, L., and K. Hiscock. 2012. “The role of expert opinion in environmental modelling.” 

Environmental Modelling & Software, 36. https://doi.org/10.1016/j.envsoft.2012.01.011 

[Langegger and Wolfram 2009] Langegger, A., and Wolfram Wöß. 2009. “XLWrap — Querying and Integrating Arbitrary Spreadsheets with 

SPARQL”. In ISWC ’09 Proceedings of the 8th International Semantic Web Conference. 359–374.  

[Le 2013] Le, Q.V. 2013. “Building high-level features using large scale unsupervised learning”. 2013. Proceedings of the IEEE international 

conference on acoustics, speech and signal processing (pp. 8595-8598). 

[Lefrançois et al 2017] Lefrançois, M., Zimmermann, A., and Bakerally, N. 2017. “A SPARQL extension for generating RDF from heterogeneous 

formats”. In European Semantic Web Conference, Vol. 10249. 35–50. 

[Liu and Singh 2004] Liu, H., and Singh, P. 2004.  “ConceptNet—a practical commonsense reasoning toolkit”. BT technology journal 22, 4, 

211–226 

[Maeir et al 2014] Maier, H. R., Kapelan, Z., Kasprzyk, J., Kollat, J., Matott, L. S., Cunha, M. C., Dandy, G.C. 2014. "Evolutionary algorithms 

and other metaheuristics in water resources: Current status, research challenges and future directions". Environmental Modelling & 

Software 62: 271-299. 

[Manning et al 2008] Manning, C., Raghavan, P., and Schutza, H. 2008. “Introduction to information retrieval”. An  Introduction to Information 

Retrieval. 151, 177. 

[McLennan and Kennell 2010] McLennan, M., and Kennell, R. 2010. "HUBzero: A Platform for Dissemination and Collaboration in 

Computational Science and Engineerin,". Computing in Science & Engineering, vol. 12, no. 2, pp. 48-53. [MCT 2020] Model Coupling 

Toolkit. https://portal.enes.org/oasis  

[Michel et al 2015] Michel, F., Djimenou, L., Faron Zucker, C., and Montagnat, J. 2015. “Translation of relational and non-relational databases 

into RDF with xR2RML”. In 11th International Conference on Web Information Systems and Technologies (WEBIST’15). 443–454.  

[Mikolov et al 2013] Mikolov, T., Sutskever, I., Chen, K., Corrado, G.S., and Dean, J. 2013. “Distributed representations of words and phrases 

and their compositionality”. In Advances in neural information processing systems. 3111–3119 

[Miller 1995] Miller, G.A. 1995. “WordNet: a lexical database for English.” Communications of the ACM, 38, 11, 39–41 

[MINT 2020] MINT software. Available from https://mintproject.github.io/mint/ 

[MODFLOW 2020] MODFLOW. 2020. US Geological Survey https://water.usgs.gov/ogw/modflow/ 

[Oliver et al 2012] Oliver, D. M., Fish, R. D., Winter, M., Hodgson, C. J., Heathwaite, A. L., and D. R. Chadwick. 2012. “Valuing local knowledge 

as a source of expert data: Farmer engagement and the design of decision support systems.” Environmental Modelling & Software, 36. 

https://doi.org/10.1016/j.envsoft.2011.09.013.  

[OR 2020] OpenRefine.  2020. Available from https://openrefine.org/ 

[Palmblad et al 2019] Magnus Palmblad, Anna-Lena Lamprecht, Jon Ison, Veit Schwämmle, Automated workflow composition in mass 

spectrometry-based proteomics, Bioinformatics, Volume 35, Issue 4, 15 February 2019, Pages 656–664, 

https://doi.org/10.1093/bioinformatics/bty646 

[Perkel 2017] Perkel JM. How bioinformatics tools are bringing genetic analysis to the masses. Nature. 2017;543(7643):137-138. 

doi:10.1038/543137a 

[Pebesma et al 2016] Pebesma, E., Mailund, T., and Hiebert, J. 2016. “Measurement units in R”. The R Journal, 8(2). 

[Peckham and Stoica 2018] Peckham, S.D., and Stoica, M. 2018. “Principle-based, Semi-automatic Ontology Generation to Support Cross-

Domain Interoperability of Data Sets and Models”. 9th International Congress on Environmental Modelling and Software. 

[Peckham et al 2013] Peckham S.D., Hutton, EWH., Norris, B. 2013. “A component-based approach to integrated modeling in the geosciences: 

The design of CSDMS”. Computers and Geosciences 53:3-12. 

[Peckham et al 2017] Peckham, S.D., Stoica, M., Jafarov, E.E., Endalamaw, A., Bolton, W.R. 2017. “Reproducible, component-based modeling 

with TopoFlow, a spatial hydrologic modeling toolkit”. Earth and Space Science, 4(6). 

[Pennington et al 2014] Pennington, J., Socher, R., and Manning, C. 2014. “Glove: Global Vectors for word representation”. Proceedings of the 

2014 conference on empirical methods in natural language processing (EMNLP). 1532–1545  

[Pham et al 2016] Pham, M., Alse, S., Knoblock, C.A., Szekely, P. 2016 "Semantic labeling: a domain-independent approach". International 

Semantic Web Conference. Springer, Cham. 

[Pujara et al 2019] Pujara, J., Rajendran, A., Ghasemi-Gol, M., and Szekely, P. 2019. “A Common Framework for Developing Table 

Understanding Models”. International Semantic Web Conference - Posters.  

[Qu and Duffy 2007] Qu Y., Duffy, C. J. 2007. “A semidiscrete finite volume formulation for multiprocess watershed simulation ”. Water 

Resources Research, 43: W08419. https://doi.org/10.1029/2006wr005752 

[Ramnandan et al 2015] Ramnandan, S. K., Mittal, A., Knoblock, C. 2015. "Assigning semantic labels to data sources". European Semantic 

Web Conference. Springer, Cham. 

[Raskin and Pan 2005] Robert G. Raskin, Michael J. Pan. 2005. “Knowledge representation in the semantic web for Earth and env ironmental 

terminology (SWEET).” Computers & Geosciences, Volume 31, Issue 9. https://doi.org/10.1016/j.cageo.2004.12.004. 

[RDF 2020] RDF. 2020.  Available from https://www.w3.org/RDF/ 

[Ritze et al 2015] Ritze, D., Lehmberg, O., and Bizer, C. 2015. “Matching HTML Tables to DBPedia”. In Proceedings of the 5th International 

Conference on Web Intelligence, Mining and Semantics. ACM, 10. 

https://doi.org/10.1016/j.envsoft.2012.01.011
https://portal.enes.org/oasis
https://mintproject.github.io/mint/
https://water.usgs.gov/ogw/modflow/
https://doi.org/10.1016/j.envsoft.2011.09.013
https://openrefine.org/
https://doi.org/10.1093/bioinformatics/bty646
https://doi.org/10.1029/2006wr005752
https://doi.org/10.1016/j.cageo.2004.12.004
https://www.w3.org/RDF/


   
 

53 

[Rodriguez-Tomé 1998] Patricia Rodriguez-Tomé, The BioCatalog., Bioinformatics, Volume 14, Issue 5, Jun 1998, Pages 469–470, 

https://doi.org/10.1093/bioinformatics/14.5.469 

[Ronneberger et al 2015] Ronneberger, O., Fischer, P. and Brox, T. 2015. “U-net: Convolutional networks for biomedical image segmentation”. 

International Conference on Medical image computing and computer-assisted intervention (pp. 234-241), Springer. 

[Sarawagi 2008] Sarawagi, S. 2008. “Information extraction”. Foundations and Trends in Databases. 1(3), 261–377. 

[SDM 2020] The Software Description Ontology for Models.  2020.  Available from https://w3id.org/okn/o/sdm/. 

[Shamir et al 2013] Shamir, L., Wallin, JF., Allen, A. 2013. “Practices in source code sharing in astrophysics”. Astron Comput. 1:54-58.  

[Shbita et al 2019] Shbita, B., Rajendran, A., Pujara, J., and Knoblock, C. 2019. “Parsing, Representing and Transforming Units of Measure”. 

Modeling the World’s Systems Conference, Washington DC.  

[Shi et al 2013] Shi, Y., K. J. Davis, C. J. Duffy, and X. Yu, 2013: Development of a coupled land surface hydrologic model and evaluation at a 

critical zone observatory. Journal of Hydrometeorology, 14, 1401—1420, doi:10.1175/JHM-D-12-0145.1.  

[Slepicka et al 2015] Slepicka, J., Yin, C., Szekely, P., and Knoblock, C. 2015. “KR2RML: An Alternative Interpretation of R2RML for 

Heterogeneous Sources”. In Proceedings of the 6th International Workshop on Consuming Linked Data (COLD).  

[Stöckle et al 2014] Stöckle, C. O., Kemanian, A. R., Nelson, R. L., Adam, J.C., Sommer, R., and Carlson, B. 2014. "CropSyst model evolution: 

From field to regional to global scales and from research to decision support systems". Environmental Modelling & Software 62: 361-369. 

[Stoica and Peckham 2018] Stoica, M., and Peckham, S.D. 2018. "An Ontology Blueprint for Constructing Qualitative and Quantitative Scientific 

Variables." International Semantic Web Conference (P&D/Industry/BlueSky).   

[Stoica and Peckham 2019] Stoica M., and Peckham, S.D. 2019. “Incorporating New Concepts into the Scientific Variables Ontology”. Workshop 

on Advanced Knowledge Technologies for Science in a FAIR World. 

[Stoica and Peckham 2019] Stoica, M. and Peckham, S.D. 2019. “The Scientific Variables Ontology: A Blueprint for Cus tom Manual and 

Automated Creation and Alignment of Machine-Interpretable Qualitative and Quantitative Variable Concepts”. Modeling the World's 

Systems Conference. 

[SVO 2020] The Scientific Variables Ontology (SVO). 2020. Available from http://www.geoscienceontology.org/svo/1.0.0/ 

[Szekely et al 2019] Szekely, P., Garijo, D., Bhatia, D., Wu, J., Yao, Y., and Pujara, J. 2019. “T2WML: Table To Wikidata Mapping Language”. 

In Proceedings of the 10th International Conference on Knowledge Capture (K-CAP ’19). Association for Computing Machinery, New 

York, NY, USA, 267–270. 

[TauDEM 2020] “Terrain Analysis Using Digital Elevation Models (TauDEM)”. 2020. Available from https://github.com/dtarb/TauDEM 

[TF 2020] Trifacta.  2020.  Available from https://www.trifacta.com/  

[Turk et al AJSS] Turk, M. J., Smith, B. D., Oishi, J. S., Skory, S., Skillman, S. W., Abel, T., and Norman, M. L. AJSS. “yt: A multi-code analysis 

toolkit for astrophysical simulation data”. The Astrophysical Journal Supplement Series,192(1). 

[Unidata 2020] Unidata, 2012: Integrated Data Viewer (IDV) version 3.1 [software]. Boulder, CO: UCAR/Unidata. 

(http://doi.org/10.5065/D6RN35XM)   

[Voinov et al 2016] Voinov, A., Kolagani, N., McCall, M. K., Glynn, P. D., Kragt, M. E., Ostermann, F. O., Pierce, S. A., and Ramu, P. 2016. 

“Modelling with stakeholders – Next generation.” Environmental Modelling & Software, 77. https://doi.org/10.1016/j.envsoft.2015.11.016  

[Vu et al 2019] Vu, B., Pujara, J., and Knoblock, C. 2019. “D-REPR: A Language for Describing and Mapping Diversely-Structured Data Sources 

to RDF”. In Proceedings of the 10th International Conference on Knowledge Capture (K-CAP ’19). Association for Computing Machinery, 

New York, NY, USA, 189–196. 

[Wei et al 2020] Wei, Zhihao, Kebin Jia, Xiaowei Jia, Ankush Khandelwal, and Vipin Kumar. "Global River Monitoring Using Semantic Fusion 

Networks." Water 12, no. 8 (2020): 2258. 

[Wilkinson et al 2011] Wilkinson, M.D., Vandervalk, B. & McCarthy, L. The Semantic Automated Discovery and Integration (SADI) Web service 

Design-Pattern, API and Reference Implementation. J Biomed Semant 2, 8 (2011). https://doi.org/10.1186/2041-1480-2-8 

[Zanibbi et al 2004] Zanibbi, R., Blostein, D. and Cordy, J.R. 2004. “A survey of table recognition”. IJDAR 7, 1–16. 

https://doi.org/10.1007/s10032-004-0120-9 

https://doi.org/10.1093/bioinformatics/14.5.469
https://w3id.org/okn/o/sdm/
http://www.geoscienceontology.org/svo/1.0.0/
https://github.com/dtarb/TauDEM
https://www.trifacta.com/
http://doi.org/10.5065/D6RN35XM
https://doi.org/10.1016/j.envsoft.2015.11.016
https://doi.org/10.1186/2041-1480-2-8
https://doi.org/10.1007/s10032-004-0120-9

	1 Introduction
	2 Motivating Scenarios and Requirements
	3 RELATED WORK
	3.1 Modeling Frameworks
	3.2 Model Repositories
	3.3 Data Repositories

	4 Technical Approach
	4.1 Goal-Oriented Modeling
	4.2 Modeling as Problem Solving
	4.2.1 Creating Problem Solving Components from Expert Models.
	4.2.2 Model Set Ups and Model Discovery.
	4.2.3 Mapping Model Variables to Data.
	4.2.4 Representing Adjustable Parameters.
	4.2.5 Other Model Metadata.

	4.3 Representing and Transforming Data for Scientific Modeling
	4.3.1 Metadata that Enables Data Discovery.
	4.3.2 Interoperability of Data.
	4.3.3 Composable Data Transformations.
	4.3.4 Generating Novel Data for Modeling from Remote Sensing Sources.

	4.4 User Guidance for Interactive Scenario Exploration
	4.4.1 Guiding Users Through Modeling Stages.
	4.4.2 Model Executions and Ensembles.
	4.4.3 Provenance for Explanation and Reproducibility.
	4.4.4 Interactive Dashboards.


	5 Modeling with mint
	5.1 Models and Data
	5.2 Interacting with MINT
	5.3 Accessibility
	5.3.1 Sub-Saharan Africa.
	5.3.2 South-Central United States.


	6 User Evaluations
	7 MINT System Architecture and Software
	8 Discussion: Integrated Modeling and Decision Making
	9 Conclusions
	acknowledgments
	references

