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Abstract

While many problems could benefit from recent advances in machine learning, significant
time and expertise are required to design customized solutions to each problem. Prior
attempts to automate machine learning have focused on generating multi-step solutions
composed of primitive steps for feature engineering and modeling, but using already clean
and featurized data and carefully curated primitives. However, cleaning and featurization
are often the most time-consuming steps in a data science pipeline. We present a novel
approach that works with naturally occurring data of any size and type, and with diverse
third-party data processing and modeling primitives that can lead to better quality so-
lutions. The key idea is to generate multi-step pipelines (or workflows) by factoring the
search for solutions into phases that apply a different expert-like strategy designed to im-
prove performance. This approach is implemented in the P4ML system, and demonstrates
superior performance over other systems on a variety of raw datasets.
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1. Introduction

Machine learning applications require significant expertise, tuning and effort. Research on
automating machine learning (AutoML) focuses on developing approaches to automatically
generate models for a given dataset, including any necessary featurization and data prepa-
ration steps. Early work in this area explored the use of artificial intelligence planning to
generate multi-step pipelines (i.e., workflows) composed of data pre-processing and modeling
steps (St. Amant and Cohen, 1998; Hauder et al., 2011). Given the ubiquity of data and the
great interest in exploiting it, AutoML has been receiving increased attention. Auto-sklearn
uses Bayesian optimization methods, and placed first in the ChaLearn AutoML challenge
(Feurer et al., 2015a). Fusi et al. (2017) augmented that approach with probabilistic ma-
trix factorization. A very different approach was used in TPOT, which relies on genetic
algorithms to explore combinations of steps that lead to better performance (Olson et al.,
2016b). However, there are still many open research topics in AutoML. Existing approaches
focus on feature engineering and modeling, and assume that the data is already clean and
that numerical features have already been generated. They use a carefully selected and
well-curated set of pre-processing and modeling steps (or primitives) in order to make the
search manageable. They also focus on classification tasks. Our goal is to design AutoML
approaches that can accommodate any type of naturally occurring data, any collection of
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primitives, and any size of data. This paper presents a novel approach to AutoML that
supports these goals and that has three key contributions:

1. Exploits expert strategies to structure the search for solutions in a machine learning
problem into meaningful phases,

2. Uses knowledge about both datasets and primitives in order to design end-to-end
pipelines that include data cleaning and featurization steps,

3. Explores the search space efficiently and returns the best solution found within a given
time limit.

The paper begins articulating our goals and requirements, followed by an overview of our
approach. We then describe the implementation of our approach in P4ML, a phased
performance-based pipeline planner for automating machine learning. P4ML was popu-
lated with dozens of diverse third-party primitives, and the evaluations so far demonstrate
superior performance on a variety of naturally occurring datasets.

2. Goals and Requirements

Our goal is to automate machine learning with approaches that will handle naturally oc-
curring datasets, which leads us to several important requirements not addressed in prior
research. First, we need to be able to generate solutions for any type of dataset. Our objec-
tive is to handle a wide variety of data such as images, audio, text, etc. There may be many
ways to featurize these datasets, and the featurization approach matters for the quality of
the solution. Second, we need to assume that the datasets are not necessarily clean. Raw
data is typically full of errors, missing values, and other imperfections that make it of a
less than acceptable quality to get reasonable results from models. Therefore, data cleaning
steps should be part of the automatically generated pipeline. Third, we want to be able
to incorporate a large number of diverse third-party modeling and other data processing
primitives. A small number of primitives may be sufficient to generate some solution, but
each algorithm works better for some datasets. Therefore, having a wide range and a large
number of primitives is desirable. Our goal is to be able to incorporate into the pipeline
generation process a large and diverse set of third party primitives and use them to generate
the best solutions. Fourth, we need to be able to handle very large datasets within time
constraints. At any time, complete pipelines should be available, so the best one can be
returned as the answer.

3. P4ML: A Phased Performance-Based Pipeline Planner

There are three key aspects of our approach:

1. Exploit expert-like strategies to factor the search space. We use a hierarchical metadata-
based planner that searches for solutions while being mindful of performance. The
planner is given a time limit and outputs the best solution generated within that time.

2. Automatically annotate a catalog of primitive data processing and modeling steps.
The annotations provide rich metadata about preconditions, performance, and other
constraints of each primitive that are used during search.
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3. Dynamically characterize, clean, and featurize datasets.

We first describe the pipeline generation process that uses metadata about primitives and
datasets, and then discuss how that metadata is obtained or created.

3.1. Pipeline Generation

The pipeline generation process starts with a task (e.g., classification, regression, etc.), a
metric (e.g., f1 macro, mean squared error, etc.), a dataset and a time limit. A catalog of
primitives for modeling and data processing is used, and is described in Section 3.2. We
divide the search into five distinct phases:

1. Phase 1: Dataset characterization and featurization. Tabular datasets are
characterized in terms of the types of features (enumerated values, strings, numerical,
etc.) and their ranges. Cleaning primitives are added to improve the overall quality
of the dataset. Datasets that contain image, sound and video need to be featurized in
order to extract relevant features that can be used by modeling primitives. Featuriza-
tion primitives are selected depending on the type of data, and if several are available
then multiple candidate pipelines are generated and passed on to the next phase.

2. Phase 2: Pipeline skeleton design. In this phase, we identify the modeling
primitives in the catalog that are suitable for addressing the given task based on
annotations of their functionality. This results in pipeline candidates for phase 3.
Pipeline candidates are prioritized according to the diversity of the algorithms, i.e.,
if a Naive Bayes classifier has already been explored as a solution, we will prioritize
other type of classifiers (e.g., based on random forest or decision trees).

3. Phase 3: Requirement satisfaction. Each primitive may have different require-
ments that need to be addressed prior to its execution. For example, a classifier may
only work on datasets that have no missing values. Other primitives may only work
on numerical data (i.e., not on categorical features that are strings), or on negative
values. Given a candidate pipeline from Phase 2, Phase 3 analyzes the requirements of
the pipeline primitives and adds additional primitives to create an executable pipeline.
These requirements are addressed by profiling the dataset being analyzed, and adding
primitives to address requirements when necessary. For any Phase 2 pipeline candi-
date, several Phase 3 pipelines may be generated, as there could be different strate-
gies for addressing the requirements of a primitive. For example, different imputation
primitives may be available to address missing values (e.g., fill in the most common
value of a column, average values, etc.), each leading to different pipeline performance.
While Phase 2 pipelines are just skeletons and are not executable, Phase 3 candidate
pipelines can be run. A cross validation is performed to rank the candidate pipelines
in a global table according to their performance in the given metric.

4. Phase 4: Hyperparameter search. Phase 3 pipelines provide the basic structure
of the pipeline solutions. However, these pipelines use default hyperparameters for
each of their primitives. In Phase 4 we select the highest ranked Phase 3 pipelines
and perform a random search on their hyperparameters. The results are stored in the
the global table as well.
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5. Phase 5: Ensemble generation. An ensemble is created with the top perform-
ing pipelines. We carry out a greedy search over ensembles, beginning with the best
performing pipeline and adding pipelines (with replacement) while the cross valida-
tion score is improving. Ensemble predictions are calculated and evaluated using a
majority vote for classification or mean for regression.

In order to be able to explore a maximum number of solutions within the given time
limit, phases 2 to 4 occur in parallel. When the given time limit is approaching, the best
solution available in the global rank will be selected as the final output.

3.2. Primitive Catalog

We assume a catalog of primitives that contains metadata to describe their invocation and
functionality. We clustered all primitives using bi-level rules that took into account both the
’primitive family’ (e.g., Classification) and ’algorithm type’ (e.g., KNN) annotations that
accompany each primitive release. This rule-based clustering was found to closely mirror
pre-built algorithmic hierarchies like scikit-klearn (Pedregosa et al., 2011), and we used it
to build a primitive taxonomy to organize our search. We also performed an automated
analysis on the primitive catalog to automatically annotate requirements of a primitive (e.g.
inputs must have no missing values) by using a profiler1. These requirements are used in
Phase 3 of our planner.

3.3. Characterizing, Cleaning, and Featurizing Datasets

Data profiling and cleaning are integral components in many real-world machine learning
pipelines. We designed a data profiling primitive that accepts a tabular dataset as input
and computes both basic profiles, examples being column data types (e.g., String, Date,
Number) and the proportions of missing values in each column, but also more advanced
profiles such as the language in text columns. The constructed profiles are used in Phase 2
when the system searches the pipeline skeleton design space.

We have also designed a suite of data cleaning primitives, the most important of which
is missing value imputation (MVI). Our MVI primitive encapsulates various algorithmic
options for imputing missing values, including simple algorithms (e.g., using column mean
values), and advanced matrix-based algorithms. By default, a greedy search algorithm is
used to automatically configure the primitive and decide which MVI algorithm to impute
for each column containing missing values.

3.4. Implementation

We have implemented this approach in P4ML, an AutoML system that is organized in a
modular architecture. P4ML is an initial prototype, and the pipeline generation phases can
be easily extended as our research moves forward. As more metadata about primitives is
added, the system can use that information to generate and prioritize candidates.

We build on a primitive catalog provided by third parties that participate in the DARPA
Data Driven Discovery of Models (D3M) program. The version of the catalog used for this

1. https://github.com/usc-isi-i2/dsbox-ta2/tree/master/python/dsbox/profiler/primitive
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work includes 127 primitives that contain basic metadata describing their main functionality.
Among these 127 primitives, 43 are scikit-learn primitives (classifiers, regressors and data
processing primitives) (Pedregosa et al., 2011). We collaborated with D3M program par-
ticipants to develop appropriate APIs for the primitives, as well as for ingestion of datasets
and for testing and evaluation. Datasets are read from files, and Pandas DataFrames are
generated to represent attribute matrices and target vectors. A development version of for
our prototype is available in Github;2 while a snapshot of the code with the version used in
this paper is available in Zenodo (Yao et al., 2018).

4. Related Work

Recent development in AutoML has focused on the algorithm selection and hyperparameter
optimization problems using Bayesian optimization and genetic programming approaches.

Auto-sklearn (Feurer et al., 2015a), the overall winner of the ChaLearn AutoML chal-
lenge (Guyon et al., 2016), extends the Bayesian optimization approach of the Auto-WEKA
system. (Thornton et al., 2013) to a Python environment. In particular, Sequential Model-
Based Algorithm Configuration (Hutter et al., 2011) (SMAC), is used not only for hyperpa-
rameter optimization, but also for algorithm selection by conditionally initializing relevant
parameters. Importantly, (Feurer et al., 2015a) find marked improvement from using en-
sembles of models (Caruana et al., 2004) and warm-starting hyperparameter settings based
on dataset meta-features (Feurer et al., 2015b), fitting within the wider tradition of meta-
learning (Brazdil et al., 2008; Lemke et al., 2015). Meta-learning is also useful in finding a
surrogate model, used by SMAC to predict performance for a given algorithm configuration
and guide exploration toward promising models. While Feurer et al. (2015a) use random
forests as a surrogate, recent advances have been achieved by using matrix factorization
(Fusi et al., 2017) or scaling Gaussian process surrogates to large collections of metadata
(Wistuba et al., 2018).

Tree-based genetic programming provides an alternative viable solution to the AutoML
problem. Most notably, the TPOT system (Olson et al., 2016b,a) can construct arbitrarily
long sequences of feature construction, feature selection, and classification operations via
insertion, deletion, and sampling mutations.

It is important to note that these systems often draw from a restricted space of possible
models. For example, Auto-sklearn is limited to 15 classifiers, 14 feature selectors, and 4
data preprocessors, while TPOT uses only decision tree and random forest based methods
and Fusi et al. (2017) fixes the space of possible pipelines prior to training. Adapting and
scaling AutoML methods to work over a fully flexible space of preprocessing, featurization,
and modeling primitives remains a primary goal of our system.

5. Evaluation

For this evaluation we use datasets provided by DARPA’s D3M program, specifically the
LL0 datasets.3 We note that the program will be releasing these datasets and other eval-
uation harness in the near future. The LL0 datasets consists of 384 individual datasets.

2. https://github.com/usc-isi-i2/dsbox-ta2
3. https://gitlab.datadrivendiscovery.org/d3m/datasets
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Classification Regression
Success Failure Success Failure

Auto-sklearn 124 93 61 16

P4ML 217 0 76 1

Table 1: Total number of datasets successfully handled by Auto-sklearn and P4ML.

Better performance
P4ML Ties Auto-sklearn Total problems

Classification 61 8 55 124

Regression 22 1 38 61

Table 2: Number of datasets where P4ML and Auto-sklearn had the best metric scores.

The datasets include text, images, audio, tables, and nested tables. Of the 384 datasets
217 datasets are classification problems, and the remaining 77 datasets are regression prob-
lems. Of the 217 classification datasets 120 are binary classification problems and 97 are
multivariate classification problems. The F1 macro metric is used to evaluate classification
problems, and the mean squared error is used for regression problems. The number of in-
stances in the datasets range from 152 to 1,025,001, with a median of 751 instances. The
number of attributes range from 4 to 10,938 with a median of 15 attributes.

We compare P4ML against Auto-sklearn version 0.3.0 (Auto-sklearn, 2018) with respect
to coverage, that is, the ability to process any datasets including those that are not neces-
sarily clean. We use Pandas DataFrames as inputs for both systems. Table 1 summarizes
the results of the runs. Auto-sklearn was able to successfully complete 124 of the 217 classi-
fication datasets and 61 of the 77 regression datasets. Most of the failures were due to text
attributes and to categorical attributes. P4ML was able to successfully complete all 217
of the classification datasets and 76 of the 77 regression datasets. The only dataset that
P4ML failed to process was due to a bug in the D3M code used to read the input.

We also compare the performance with respect to the metric given in each problem.
Table 2 shows that the metric scores of our P4ML prototype are comparable to Auto-
sklearn. Of the datasets that Auto-sklearn was able to process, P4ML performed better in
61 of the 124 classification datasets, and Auto-sklearn did better in 38 of the 61 regression
datasets. The results of the evaluation are available for inspection in (Yao, 2018).

6. Conclusions

We present a novel approach to automated machine learning that works with naturally
occurring data of any type and can generate multi-step pipelines using third-party data
processing and modeling primitives. The key idea is to generate multi-step pipelines by
factoring the search for solutions into phases that apply a different expert-like strategy
designed to improve performance. This approach is implemented in the P4ML system, and
has been evaluated with a broad range of datasets. Future work includes the incorporation of
feature engineering primitives and deep learning approaches, learning and reusing pipeline
fragments, meta-learning from other datasets to prioritize primitives and pipelines, and
supporting interactive problem definition by domain experts.
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